
Understanding re-allocation of messages 
in IBM MQ Clusters 

 
AdrianDick 
Published on 27/09/2018 
 
Many users of IBM MQ utilise the clustering functionality to distribute messages across 
multiple instances of given queues, either to share the workload or as a failover mechanism. 
Generally, the selection of destination is made as an application puts a message into the 
system. However, if a message is in-flight and unable to be delivered to the selected cluster 
queue manager the clustering capability can automatically re-allocate messages to an 
alternate queue manager. 

When does re-allocation occur? 
Re-allocation of messages only occurs when a cluster-sender channel stops, e.g. unable to 
communicate with remote queue manager. And again every time a channel retries its 
connection and fails (so based on the channel’s retry setting). 
When reallocating, the clustering function examines all messages on the cluster transmission 
queue targeted for the stopping channel and re-drives the internal workload balancing 
algorithms to route each message to an alternative available destination. 

When won’t messages be re-allocated? 
If carefully monitoring the cluster transmission queues, there are times where messages 
remain targeted for the original queue manager selection without any apparent re-allocation. 
This failure to select an alternate queue manager could be for one of two reasons: 
• Not eligible for re-allocation 
• Still most favourable destination 

Messages not eligible for re-allocation 
There are some messages which are flagged as not eligible for re-allocation. If the cluster 
transmission queue were to be browsed these can be identified as messages with the Message 
Descriptor (MD) accounting token field set to all zeroes. 

Why is it not eligible? 
If you see any message not eligible for re-allocation, it will be because of one of the 
following: 

• Bind behaviour of putting application 
o Using bind-on-open – all message must go to the same queue instance 
o Using bind-on-group and actively using managed groups (MQPMO_LOGICAL_ORDER) – 

indicates all message in current group must go to the same queue instance 



• Putting application has explicitly named the target queue manager, therefore bypassing the 
cluster workload management algorithms 

o This includes system messages to system queues on the target queue manager. 

Still most favourable destination 
Having confirmed the message is available for re-allocation, it may be that the workload 
balancing algorithm considers the original destination the most favourable target. You can 
detect this by seeing that the PutDate/PutTime gets updated as the stopped channel triggers 
further attempts at re-allocation. 

Why is it still most favoured? 
Now we’re starting to delve into the mechanics of how workload balancing makes its 
decisions… 

There is only one choice! 
If issuing DISPLAY QCLUSTER shows just one instance of the queue, then clearly MQ can 
only send it to that queue manager, so reallocation can not select a different queue manager. 

Need to understand precedence of cluster workload attributes 
Having got this far the chances are that your system has non-default values for one or more of 
the cluster workload attributes on queues and channels. And it isn’t always obvious to the 
uninitiated how these interact with each other. 
So, let’s talk our way through them. As we work down this list, eliminate all but the equal 
highest before considering the next attribute. To do this you’ll need to inspect the cluster 
queue manager and cluster queue definitions cached on the sending queue manager. After 
elimination, if only a single choice remains, that will be why the message hasn’t been 
directed elsewhere. 

1. Eliminate all but the highest ranked channels, based on each of the channel 
CLWLRANK values 

2. Eliminate all but the highest ranked queue, based on each of the queue CLWLRANK 
values 

3. Eliminate all PUT(DISABLED) queues – If that’s all the remaining instances the 
operation will fail, and the original message is not re-allocated 

4. Eliminate queue managers suspended from the cluster – Unless they’re the only 
option remaining! 

5. Consider channel state and eliminate all but the most favoured: 
o Running channels most favoured 
o But stopping channels are favoured over those that are retrying which in turn are 

preferred over a stopped channel 
6. NETPRTY on channels, if more than one channel remains for a given queue manager 
7. Eliminate all but the highest priority channels, based on each of the channel 

CLWLPRTY values 
8. Eliminate all but the highest priority queues, based on each of the queue CLWLPRTY 

values 



A common issue here is misunderstanding the difference between CLWLRANK and 
CLWLPRTY, as both work in a very similar manner. The significant difference is whether 
you want them to be considered before or after the state of the channel. Before (using 
CLWLRANK) means messages will not be redirected in the event of a channel simply 
stopping. 

Further reading 
IBM Knowledge Center – MQOPEN and clusters 
IBM Knowledge Center – Workload balancing in clusters 
 


