
Logger enhancements for MQ v9.0.2 and 
v9.1 

 
MarkWhitlock 
Published on 28/08/2018 / Updated on 29/08/2018 
 
In MQ v9.0.2, we enhanced linear logging to enable automatic management of log extents 
and automatic recording of media images, as well as improving the general performance of 
linear logging scenarios exploiting these capabilities. This addressed some of the most highly 
voted for RFE’s. The decision to choose circular or linear can now be made based primarily 
upon whether you want media recovery. Now that we’ve made linear so much easier to 
administer and brought linear up to a similar performance to circular, these factors cease to 
be so important in a linear vs circular decision. We also added in some new statistics to help 
you tune your log, and now attempt to keep the workload in the primaries only. In MQ v9.1 
we have also enabled automatic recording of media images on IBM i. 
 
Before v9.0.2, if you used linear logging, you had to manage log extents yourself – deleting 
them when they were no longer needed for restart or media recovery, typically by using one 
of the supportpacs or by writing your own logger event listener. Also you had to record 
media images regularly yourself by calling rcdmqimg periodically. 
 
But with v9.0.2 onwards, the queue manager can automatically manage log extents and 
automatically record media images, this makes linear logging almost as easy to administer as 
using circular logging. The performance of linear logging is much improved to the extent that 
circular logging now only performs slightly better. As it has always done, linear logging also 
provides media recovery which circular logging does not. By media recovery, I mean it 
allows you to recover objects and queues if they are damaged. 
 
Log management 
From MQ v9.0.2, you can use automatic, archive or manual log management. Manual is the 
default which behaves exactly the same as before v9.0.2 – so you have to manage log extents 
yourself. 
 
Automatic log management means the queue manager will perform all the management of 
log extents itself. When an extent becomes superfluous (so it is no longer needed for restart 
or media recovery), the queue manager either reuses or deletes it automatically – so there’s 
no need for you to write your own logger event listener anymore. Archive log management is 
for customers who wish to archive log extents – once your event listener or script has 
archived an extent, issue SET LOG ARCHIVED to let the queue manager know. 
 
The automatic reuse of log extents is responsible for much of the performance benefit you get 
with automatic log management. You can recognise extents that are waiting to be reused (we 
call them reuse extents) because they are prefixed with the letter “R” instead of the usual “S”. 
Switch on log management by passing -lla (for automatic) or -lln (for archive) to crtmqm 
instead of -ll. To change an existing linear logging queue manager to use automatic or 
archive log management, set LogManagement=Automatic or LogManagement=Archive in 
qm.ini and then restart your queue manager. 



 
Figure 1 
 
Figure 1 above, shows the improvement in linear logging performance, between V9.0.1 and 
V9.0.2 (with automatic log management). A workload run that was limited by the rate the 
queue manager could write to the log files (on SAN storage). The overall round trip rate is 
shown on the y-axis, which increases as we add more applications putting and getting to the 
queues. For both linear logging tests, media images were recorded every 10 seconds with 
rcdmqimg. Whilst the V9.0.1 test will continue to create and format new linear log files 
continuously, in V9.0.2, existing log files are made available for re-use as the media recovery 
point is moved forward in the log. Performance is significantly improved in V9.0.2 as a 
result, coming close the that of circular logging (with an efficiently sized log). Running the 
same test with an over-sized circular log file set (V9.0.2 Circular Log(Large) in the figure 
above) shows a similar level of performance to linear logging, indicating that the number of 
files being used is the main difference between circular and linear logging now, rather than 
the additional formatting costs. 
 
Automatic recording of media images 
Also from v9.0.2, you can ask the queue manager to record media images automatically. Set 
the new queue manager attribute IMGSCHED(AUTO). The default value is 
IMGSCHED(MANUAL) which behaves like pre-v9.0.2, i.e. you are expected to call 
rcdmqimg manually yourself. 
 
Once you have set IMGSCHED(AUTO), also set IMGINTVL and/or IMGLOGLN. 
IMGINTVL is how often the queue manager will take automatic media images, in minutes. 
IMGLOGLN is how much log data gets written before the queue manager takes the next 
automatic media image, in megabytes. Both IMGINTVL and IMGLOGLN are targets – the 
actual gap between images may be larger or smaller. 
 
Setting IMGLOGLN is often a better idea than only setting IMGINTVL, as setting 
IMGLOGLN will stop your log getting too large no matter how heavy your workload is. Or 
you can set both IMGINTVL and IMGLOGLN together and then an image is recorded when 



either of them expire. In fact setting both can be quite a good idea, so images are taken more 
frequently during a heavy workload when IMGLOGLN expires, but are still taken 
occasionally during a light workload when IMGINTVL expires. 
 
You can even record media images manually by calling rcdmqimg when you’ve enabled 
automatic recording of media images, if you know it’s a really good time to do so, such as a 
very quiet time. When you do that the queue manager will reset its interval and log length 
before the next automatic media image is taken. 
 
Beware of setting IMGLOGLN too small though. If you make it a similar sort of size to your 
largest queue, then the queue manager will spend all its time recording media images, 
because the media image itself is included in the log data being counted towards 
IMGLOGLN. Better to make IMGLOGLN a fraction of the size of your log filesystem – 
maybe a third or less. 
 
There are other performance advantages to automatic recording of media images such as 
staggering of media images, partial media images, and recording media images early when 
the queue is empty – but I’ll talk more about these later. 
 
Improved documentation 
Having problems sizing your log? Not sure how to calculate how many primary and 
secondary log files you need? Having problems knowing how big to make your log 
filesystem? There’s now much better information in the MQ knowledgecenter to help you 
with this. Have a look 
at https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.0.0/com.ibm.mq.con.doc/q018
470_.htm and the subpages under it. 
 
Keeping the workload in the primary extents only 
The active log is those log extents needed for restart recovery. When the queue manager 
checkpoints, it is attempting to mark some of the first few active extents as inactive – no 
longer needed for restart recovery. The active log can only grow to the size of the primary 
and secondary log extents. That’s what primary and secondary log extents mean. Inactive log 
extents may still be needed for media recovery. When the log is starting to fill (the number of 
primary/secondary are getting full), the queue manager schedules a checkpoint so extents can 
be marked as inactive and the active log shrinks. 
 
Before v9.0.2, the queue manager scheduled checkpoints based on the number of primaries 
plus secondaries – so secondaries were often used for regular workload. From v9.0.2, the 
queue manager prefers to only use primaries for regular workload. Secondaries should only 
be used when there are long-running transactions. 
 
This means that the next checkpoint is scheduled when a large fraction of the primaries are 
being used. If the next checkpoint is scheduled before the previous checkpoint has completed 
you will get AMQ7466 “There is a problem with the size of the logfile. The log for queue 
manager is too small to support the current data rate.” So if your normal workload has 
previously been using secondary extents, you may well get this error message in your error 
logs when you migrate to v9.0.2 or later whether or not you use the new logger enhancements 
and whether you use linear or circular logging. If you do, increase the number of primary 
extents, making sure that the total size of all your extents won’t exceed the size of your log 



filesystem, and also making sure that you’re ok with increasing your restart time, since 
increasing primaries alone increases the maximum size of your active log. 
 
More log attributes and better statistics 
Also from v9.0.2, there’re more log attributes returned from runmqsc DISPLAY 
QMSTATUS LOG that will help you with monitoring your log. As well as the existing 
attributes such as CURRLOG, RECLOG and MEDIALOG, new attributes returned include 
ARCHLOG, RECSZ, MEDIASZ, ARCHSZ, REUSESZ, LOGUTIL and LOGINUSE. 
ARCHLOG is the oldest extent needing archiving (only set for archive log management). 
ARCHLOG is also passed to your logger event listener, to help you know where to start 
archiving extents. RECSZ, MEDIASZ, ARCHSZ and REUSESZ are the sizes in megabytes 
of all the extents needed for each of restart recovery, media recovery, needing archiving and 
available for reuse. 
 
LOGUTIL and LOGINUSE both give the percentage of the primary files that are being used 
for the active log – so these statistics can help you better size your log. LOGUTIL and 
LOGINUSE are different though. LOGINUSE is a point in time statement and so will 
increase until a checkpoint is taken, when it will typically suddenly decrease as a bunch of 
extents become inactive. So a rolling average of LOGINUSE would help more than the 
sawtooth that sampling LOGINUSE would give you. And that’s exactly what LOGUTIL is – 
a rolling average of the percentage of the primary files that are being used by the active log. 
So LOGUTIL shouldn’t jump sharply on a checkpoint in the way LOGINUSE does. Of 
course LOGINUSE and LOGUTIL can both be over 100% – that just means you’re using 
secondaries. And because the queue manager tries to keep the workload in the primaries, 
when LOGUTIL goes above 100% it means you have long-running transactions. Perhaps 
you’re ok with that – but you might want to think about making those transactions shorter, or 
else increasing your primaries a bit. Best practice is to keep LOGUTIL below 100%. 
 
When an object is damaged 
A word of warning though if I have persuaded you that automatic log management and 
automatic recording of media images means that all the management of log extents is taken 
care of. If you get a damaged object then you need to act to resolve the problem. An object 
such as a queue can become damaged if it’s queue file gets deleted or is corrupted. 
When using linear logging, you can recover the queue by using rcrmqobj. But until you 
recover or delete the object, your log filesystem will start filling (just as before V9.0.2). This 
is because the queue manager will no longer be able to record media images of the damaged 
object. So the oldest extent needed for the media recovery of the damaged object (and all 
subsequent ones) will need to be kept by the queue manager. If your workload continues, new 
log extents will be written to but the old ones can’t be reused until a new image of the object 
is taken which can’t happen until the damaged object is recovered or deleted – hence the 
problem. 
 
How long you have until your log filesystem fills up completely depends on how big your log 
filesystem is and how much log data is being written to disk by your workload. If or when 
your log filesystem fills, the queue manager will start rolling back transactions to conserve 
log space. So your workload will get rolled back. While the queue manager should initially 
stay up, if the situation persists the queue manager may eventually fail. 
 



You will know you have a damaged object because you will get FFDCs as soon as the queue 
manager realises. It would be prudent to investigate why the object got damaged in the first 
place, and then recover it quickly which should alleviate the space problems. 
 
Performance advantages of automatic recording of media images 
Earlier I mentioned there were more performance advantages with allowing the queue 
manager to record media images automatically. One such advantage is that these media 
images will gradually get staggered over time. When a manual image is requested the queue 
manager is required to respond synchronously to the request and records the image relatively 
quickly into the log. When an automatic image is scheduled the queue manager does not need 
to respond synchronously and can write the image over a longer period of time. By writing 
the image more slowly the act of recording the image itself has less impact on the foreground 
workload, and gradually results in the images being spread over time. When you first start 
your queue manager, it may record media images of all objects immediately after one 
another. But as each object’s image is recorded separately, recording these images will 
gradually get staggered as your workload progresses, meaning that performance hit of 
recording images is spread out and so is likely to impact your workload less. 

 
Figure 2 



 
Figure 3 
 
Figures 2&3 above show the difference in impact between manual, and automatic media 
image recording. A queue manager was configured with a deep queue (1000 x 1MB 
messages on queue) and a workload run that was limited by the rate the queue manager could 
write to the log files (round trips/sec on the y-axis). In Figure 2, media images are triggered 
manually, by running rcdmqimg roughly every 10 seconds (we wait 10 seconds after the 
completion of each copy). In figure 3, the same test is configured to run with automatic 
media image recording (with IMGLOGLN set to 400, to approximate the frequency of image 
recording in the manual test). As you can see in Figure 2, the test is severely impacted by the 
asynchronous nature of the manual image recording, whereas the automatic media image 
recording (Figure 3) ameliorates the impact by interleaving the image records with the 
normal log writes. Since this is a test running at the limits of the log disk bandwidth, the peak 
rate drops in Figure 3, but if we we had some headroom in terms of log write bandwidth, the 
media images recorded with the new automatic management might take place with little or no 
impact on the workload. 
 
Another performance advantage of automatic recording of media images is that the queue 
manager may be able to record less data into the log. Establishing a point of recovery while 
not recording a full copy of the object in the log is known as a partial media image. When the 
queue manager records a partial media image, it does so on behalf of a recovery point which 
is a little time in the past. If many (or all) of the messages on the queue were put since the 
recovery point, then these messages do not have to be recorded in the media image, since 
recovering the queue would replay all log records since the recovery point and so would 
include all these recent puts. In a similar vein, if many or all of the messages that were on the 
queue at the recovery point have been got off the queue since, these messages don’t have to 
be recorded in the partial media image because they aren’t on the queue now. So, if the queue 
manager is lucky, the partial media image may contain no data at all and so be very quick to 
record, even though the queue was never empty. This optimization is most effective when 
most messages only rest on the queue for a short period of time. If you do the opposite and 



use MQ as a database, using queues as a place to store data long-term, then the queue 
manager has no alternative but to record full media images every time. 
 
One of the best times to automatically record a media image is when the queue is completely 
empty, or almost empty, because then there is little user data to log so the media image 
written is very small. The queue manager looks out for such times and if a media image 
hasn’t been written for a while, but IMGINTVL or IMGLOGLN hasn’t expired yet, the 
queue manager may decide to record a media image anyway because now is a really good 
time. It is much easier for the queue manager to spot such times than it is likely to be for you, 
so this provides another performance boost to automatic media image recording. 
 
More runmqsc logger commands 
There are a couple of other new runmqsc logger commands from v9.0.2 – RESET QMGR 
TYPE(REDUCELOG) and RESET QMGR TYPE(ARCHLOG). RESET QMGR 
TYPE(REDUCELOG) requests the queue manager to reduce the number of reuse extents. 
RESET QMGR TYPE(ARCHLOG) tells the queue manager you’ve archived a whole bunch 
of extents, instead of having to call SET LOG ARCHIVED on each one individually. 
RESET QMGR TYPE(REDUCELOG) can also be used in a circular logging environment to 
request the queue manager to try to reduce the number of secondary extents currently 
allocated. 
 
Also you can make individual queues recoverable or not by setting the new queue attribute 
IMGRCOVQ or letting it default to the IMGRCOVQ queue manager attribute. You can also 
make other objects recoverable or not by setting the new queue manager attribute 
IMGRCOVO. By default when you use linear logging, all objects are recoverable, so you can 
recover them and media images need to be recorded for them. But if you have objects or 
queues which contain messages that you don’t really care about or could be regenerated or 
are regularly superceded, then make them not recoverable. This means that media images 
can’t be recorded for them but they can’t be recovered either. 
 
IBM i support 
In v9.1, some of these new logger enhancements are available on IBM i as well. On IBM i, 
logging is different because the MQ logger uses journal receivers, which cannot be reused, so 
only linear logging is supported. In v9.1 on IBM i, automatic recording of media images is 
supported, but automatic and archive log management is not. So in v9.1 you get all the 
performance advantages of automatic recording of media images by specifying 
IMGSCHED(AUTO) along with IMGLOGLN and IMGINTVL. 
 
Conclusion 
In summary, the new logger enhancements for v9.0.2 make linear logging much simpler and 
easier to use, as well as improving performance. And we’ve also made the documentation in 
the knowledgecenter quite a lot 
better https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.0.0/com.ibm.mq.con.doc/q
018410_.htm. Most customers who use linear logging pre-v9.0.2 should benefit from moving 
to automatic log management and automatic recording of media images. 
TAGS ARCHLOG, CURRLOG, DAMAGEDOBJECT, IBMI, IMGSCHED, LINEARLOG, LOG, LOGGER, LOGMANAG
EMENT, LOGUTIL, MEDIALOG, MQ9, MQ9.0.2, PERFORMANCE, RCDMQIMG, RCRMQOBJ, RECLOG, RECORD
MEDIAIMAGE 
by MarkWhitlock 
4 comments on"Logger enhancements for MQ v9.0.2 and v9.1" 



1. MarkWhitlock February 13, 2020 
Hi Rak, 
The new log attributes ARCHLOG, RECSZ, MEDIASZ, ARCHSZ, REUSESZ, 
LOGUTIL and LOGINUSE as well as the existing CURRLOG, RECLOG and 
MEDIALOG attributes can be used to check how the log is being managed. These 
attributes are returned from runmqsc DISPLAY QMSTATUS LOG. They enable you 
to monitor the current extent, and which extents are needed for media and restart 
recovery, as well as the sizes of all the extents needed for media and restart 
recovery as well as those needing archiving and available for reuse. For more 
information, please see the “More log attributes” paragraph above, 
or https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.ref.
adm.doc/q086250_.htm or the subpages 
under https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.
con.doc/q018410_.htm 
Mark 

2. Rakesh February 07, 2020 
Hi, 
I have configured all the required attributes and could see the log rotation is 
happening. Is there any way to check the log management information(Like in 
manual setup). will it writes the output somewhere ? 
Thanks, 
Rak. 

3. MarkWhitlock April 23, 2019 
Hi Jared, 
Yes, setting IMGINTVL to 360 and IMGLOGLN to 1560 will mean the queue 
manager automatically records a media image every 6 hours or 1560M, whichever 
happens first. Don’t forget to also set IMGSCHED(AUTO) to enable the queue 
manager to automatically record media images. When you say your linear log 
currently has 24 log extents of 65M each, I guess this is the average size of your 
log, or the target size, and the size of the filesystem that contains the log is much 
larger. Make sure your log filesystem is much larger than IMGLOGLN otherwise you 
risk the log filesystem filling. 
Setting IMGSCHED, IMGINTVL and IMGLOGLN automatically records media 
images, but doesn’t manage log extents. To enable automatic management of log 
extents set LogManagement=Automatic in qm.ini. Automatic log management 
means the queue manager will automatically reuse log extents that are not needed 
for restart recovery or media recovery. Automatic log management prevents the log 
from growing indefinitely as long as media images are being taken regularly. 
I hope this helps, 
Mark 

4. Jared April 19, 2019 
I am currently on MQ8 and I have cronjobs triggering rcdmqimg and cleanmqlogs 
every 6 hours, then after 48 hours I delete the zipped logs. I use backups in case I 
need to go through deleted logs. 
In a transition to MQ9.0.4 I would like to utilize Automatic logging. What settings 
would you recommend? I have linear logging containing 24 logs of 65MB. 
I have turned on Automatic logging on a test server, but I’m not sure of the 
parameters to emulate what i have in manual logging. 
Default settings for automatic logging are 



IMGLOGLN(OFF) (Image Log Length/Size in MB) 
IMGINTVL(60) (Imaging Interval in minutes) 
Would I be correct in changing the IMGINTVL to 360 for 6 hours and IMGLOGLN for 
24*65? 
What other settings should I be looking into? 
 


