
®

IBM Software Group

®

IBM Software Group

© 2019

IBM Corporation

®

IBM Software Group

®

IBM Software Group

®

IBM Software Group

© 2019 IBM Corporation

IDz Workbench – Debugging

z/OS Assembler Applications

▪ Jon Sayles, Rational System z Products - jsayles@us.ibm.com

Updated July, 2019

DevOps/Modernization

mailto:jsayles@us.ibm.com

2

IBM Trademarks and Copyrights
© Copyright IBM Corporation 2008 through 2019.

All rights reserved – including the right to use these materials for IDz instruction.

The information contained in these materials is provided for informational purposes only, and is
provided AS IS without warranty of any kind, express or implied. IBM shall not be responsible
for any damages arising out of the use of, or otherwise related to, these materials. Nothing
contained in these materials is intended to, nor shall have the effect of, creating any warranties
or representations from IBM or its suppliers or licensors, or altering the terms and conditions of
the applicable license agreement governing the use of IBM software. References in these
materials to IBM products, programs, or services do not imply that they will be available in all
countries in which IBM operates.

This information is based on current IBM product plans and strategy, which are subject to change
by IBM without notice. Product release dates and/or capabilities referenced in these materials
may change at any time at IBM’s sole discretion based on market opportunities or other factors,
and are not intended to be a commitment to future product or feature availability in any way.

IBM, the IBM logo, the on-demand business logo, Rational, the Rational logo, and other IBM
Rational products and services are trademarks or registered trademarks of the International
Business Machines Corporation, in the United States, other countries or both. Other company,
product, or service names may be trademarks or service marks of others.

3

Course Contributing Authors

▪ Thanks to the following individuals, for assisting
with this course:
 Larry England/IBM

 Russ Courtney/IBM

 Doug Stout/IBM

4

Course Overview

▪ Audience
This course is designed for application developers who have learned or

programmed in Assembler, and who need to do z/OS Traditional
Development and Maintenance as well as build leading-edge
applications using Assembler and Rational Developer for System z.

▪ Prerequisites
This course assumes that the student has a basic understanding and

knowledge of software computing technologies, and general data
processing terms, concepts and vocabulary, as well as a working
knowledge of Assembler and z/OS.

Knowledge of SQL (Structured Query Language) is assumed for
database access is assumed as well.

Basic PC and mouse-driven development skills, terms and concepts are
also assumed.

5

UNIT

Topics:

The IDz Workbench

▪ Debugging z/OS Assembler Batch Applications

▪ Debugging z/OS Assembler Online Applications

▪ Appendix

6

Topic Considerations

 Note: In this topic you will learn how to debug a Assembler program

running on a z/OS mainframe. The screen captures all describe connecting to a

public z/OS machine that IBM makes available – during classes.

If you are taking this course through standard IBM services delivery you should

be able to use the properties (I/P address, port#s, etc.), logon IDs and passwords

that your instructor provides you with.

But you may also be taking this course standalone – and in that case, you will

need to speak to your company's Systems Programming staff to learn how to

connect and logon.

It goes without saying that the actual file names in the screen captures of

mainframe libraries and datasets will vary. So you should focus on the process

and steps and "how to" – and don't be perplexed at differences in screen

captures.

You also may be using your company's own Source Control Management system

– to do things like builds, compiles, etc. In that case much of the remote

functionality in IDz will be customized and tailored to your company's unique and

idiosyncratic procedures and protocols.

7

Topic Objectives

After completing this unit, you should be able to:
▪Describe the concept of source code debugging

▪ List the run-times that Debug Tool supports

▪ List the steps in preparing a program for debugging

▪ Debug a mainframe batch job

– Describe the run/step/animate options

– List PF-Keys associated with them

– Set/unset/inspect conditional and unconditional break-points

– Set "watch" break-points that halt execution when a value in a variable changes

– Show how to access the LPEX editor functionality during debugging (such as Perform

Hierarchy)

– Be able to Jump to any given line, and run to a line

– Show how to change variable values dynamically during debug

– Show how to set different levels of variable display

– Monitor specific variables you are interested in

▪ Debug a CICS online transaction

– Discuss the Debug Option setup and configuration requirements for Online Debugging

– DTCN Profile/View

– DTCN Transaction

– Launch a CICS transaction that invokes Debug Tool

8

Debugging Overview

Face facts: No one gets
it right the first time.

Not at the level of
production business
logic

That's why IBM invented source-level application
debuggers, so that you can:

 View program execution, line-by-line

 Verify the value of a variable – during program execution

 Stop and start program execution, and analyze results at
the speed that our procedural understanding of the
application's execution flow can handle

9

Enter Source-Level Debuggers

▪ Specifically: IBM Debug Tool/PD Tools Family
Green-screen (TSO-based) or IDz/Workstation-based interface to z/OS-

based debugging engines

Debug:

▪Online (CICS, or IMS TM)

▪ Batch

▪Multiple languages (Assembler, PL/I, COBOL, Java, etc.)

Seamless debugging of mixed-language/cross-platform applications

Interactive, source-level debugging in IDz with program running on z/OS

Display, monitor and alter program variables

Set standard types of breakpoints

View data in Hex (EBCDIC) or string values

Multiple configurable views

Ability to make adjustments to the program while debugging

▪ Debug Tool product web-site: http://www-01.ibm.com/software/awdtools/debugtool/

http://www-01.ibm.com/software/awdtools/debugtool/

10

Debug Tool - Application Environments

One debugging engine, with support for many environments:

z/OS

3270
or GUI

3270
or GUI

Debug Tool

Batch
Application

Batch
region

Debug Tool

Transaction

CICS
Application

CICS
region

Debug Tool

Transaction

IMS
Application

IMS/TM
region

Debug Tool

DB2 Stored
Procedure

WLM
region

Batch

Debug Tool

Posix
Application

3270
or GUI

3270
or GUI

3270
or GUI

CICS IMS/TM
DB2

stored
procedure

UNIX
systems
services

11

z/OS

IDz Interfacing with Debug Tool

The IDz remote debugger
 Client software that is installed with IDz on your workstation

 Communicates with the Debug Tool engine on the mainframe

▪ Note that Debug Tool must be installed on z/OS in order for you to do
the labs in this unit

Debug Tool
TCP/IP Debug Tool

Engine

Data

Source

Your

Application

Load Module

12

Steps for Batch Application Debug Session

1. Ensure that your compile proc has the necessary

TEST parameter, and Compile/Link options and DD

cards to create a debug-ready load module

2. Discover workstation TCP/IP parameters:

 IP Address

 Listener port#

3. Enter TCP/IP address of workstation in run JCL for

Debug Tool DD statement, and Submit the JCL

4. Load the Assembler source code

5. Debug the application

13

Compile JCL Requirements for Using Debug Tool for Assembler

▪ To debug Assembler programs, you will need additional
datasets and steps:

▪ SYSADATA

▪ EQALANGX

Step creates Debug symbolics

▪ See the Debug Tool vxx Users Guide – Preparing an
Assembler program – for more information on these datasets.

▪ Sample Assembler JCL is in the slide notes

14

2. Discover TCP/IP address and IDz Port

▪ Open the Debug Perspective
Click the small downward pointing triangle

next to the debug-daemon icon

Note the Port#

Select: Get Workstation IP…

Copy the IP address

Note: Your IDz Port# will most likely be set

once, and will change infrequently.

However, depending on your installation's

setup, your workstation's TCP/IP address

could change - often See Notes

15

3. Submit the JCL for Assembler Debugging

▪ Configure your application to start Debug Tool by including a
specific DD card in the run JCL – that includes your
workstation's current Port# and TCP/IP address

 This is an example of JCL to run a batch job

 The EQANMDBG DD statement is the easiest way to start
the Debug Tool for batch applications

//EQANMDBG DD *

PGM TEST(,,,TCPIP&5.76.97.236%8003:)

16

3a. Debug Tool - Prompts
▪ Debug Tool will

interface with
IDz and throw
the Confirm
Perspective
Switch prompt

 Click Yes

Additionally, if
your mainframe
source code is out
sync with the
Load Module
you'll get an
informational
prompt.

This typically means
you need to check
your compile
listings for syntax
errors that caused
the link edit step
not to execute
because of
condition codes

17

3b. Debug Tool Connects to IDz
▪ Debug Perspective is

launched in IDz

▪ Program source is
copied down from z/OS
to your IDz workstation

▪ Execution is on z/OS

Note: Initially the Assembled instruction set is loaded into Debug

Tool.

You will want to load and utilize "debug data" source – the LANGX file
output from Assemble in your testing.

This is achieved via the LDD XXXX command (next slide)

http://images.google.com/imgres?imgurl=http://blog.micfo.com/wp-content/uploads/2008/10/z10-system-ec.jpg&imgrefurl=http://blog.micfo.com/news-current-release/ibm-releases-junior-version-of-system-z10-enterprise-class-mainframe/&usg=__4thq6RobWUnb1l2ODC8VJDRlKNg=&h=1600&w=1280&sz=119&hl=en&start=2&sig2=Ffo8J9Q-vOkeahph-H6hsg&tbnid=MrIUswUyZ8BF8M:&tbnh=150&tbnw=120&prev=/images%3Fq%3Dibm%2Bz/10%26gbv%3D2%26hl%3Den&ei=NJl8SqrsFZLWM9O0lP4C

18

4. Load Debug Data (LDD Command)

▪ Before you can debug an assembler
program, you must:

 Define the compilation unit (CU) as
an assembler CU

 Load the debug data for the
compilation unit.

▪ This can only be done for a

compilation unit that is currently

known to Debug Tool as a

"disassembly CU".

▪ Use the LOADDEBUGDATA
command

 abbreviated as LDD

… to define a disassembly CU as an
assembler CU and to cause the debug
data for this CU to be loaded.

▪ See the Debug Tool Users Guide for
additional details on this command

Steps:
▪ From the Debug Console view

▪ Enter the Debug Command:

 LDD <modulename>

Note: Debug Commands are not case-sensitive

19

5. The Debug Perspective and Views

Your code

Breakpoints
Monitors and

Registers views

The Debug Icons

Assembler
Macro

Expansions

Hovering over a
variable returns the

variable value

Current Instruction Pointer

20

Displaying/Manipulating the Registers
Enable from: Window > Show View > Registers

Opens the Registers view to a scrollable, editable register list with
access to the following:

21

Debug and IDz's LPEX Editor Functionality

All of the LPEX editing features work under Debug Tool

Command Line➔

P
re

fi
x

 A
re

a

22

Action Icons – Review

Resume: Run

the program to

the next

breakpoint or

to the end

Terminate:

End the

program

Step: run one

statement

Step Over:

run one

statement,

but step over

a CALL

Step Return:

run until return

from

subprogram

Disconnect:

from the

debug engine

Animated Step

Continuous source-level

debugging without user

interaction

Debug Listener

(Should be green)

23

Run Menu
▪ Shows same + additional

debugging functionality as
icons on toolbar

 However, not all Run menu
functionality enabled for
Assembler/PL1

▪ Also shows hot-keys

 Your PC's function keys

▪ Context-sensitive:

 Options are grayed in current
debug session if not
applicable

24

Statement Breakpoints – Review

▪ A statement breakpoint will stop the program when it
reaches a statement:

 It stops before the statement runs

▪ A breakpoint can optionally be made conditional

 A simple condition may be specified such as:

▪ VAR1 > 999

…or…

▪ VAR2 = 'ABC'

▪ A breakpoint can be based on a frequency:

 Stop the Nth time a statement runs

25

Set a Statement Breakpoint – Review

Set a statement breakpoint by

double-clicking in the gray area

next to a statement

dbl

click

26

Set/Edit Conditional Statement Breakpoints

A breakpoint can trigger the

Nth time the statement runs…

… and breakpoints

can be conditional.

Select the Breakpoint.

Right-click and select: Edit Breakpoint…

Can set to different statement/line

Or click Next > to specify

conditional breakpoint logic

RECORDS = 9

27

Watch Monitor Breakpoints

▪ Can have breakpoints occur
conditionally, when:
 The value in a field changes

 Some portion (# of bytes) of a field
changes

 A simple condition tests true for the
value in the field

▪ Steps:
 Select a variable

 Right-click, and select: Add Watch
Breakpoint…

 Select Number of bytes to watch –
or add a simple condition

▪ Specify Auto to test for all bytes

28

Run (F8) to a Statement Breakpoint

A breakpoint icon is shown…

and the breakpoint is also

shown in the Breakpoints view.

click

Resume

See Slide Notes

29

Breakpoint Options – 1 of 2

The program ran to

the breakpoint

… or by deleting it from

the Breakpoints view

from the Context Menu

You can remove the

breakpoint by double

clicking again here…

Disable (but do not Remove)

Breakpoints by un-

checking a box ➔

30

Breakpoint Options – 2 of 2
Disable (but do not Remove)

Breakpoints by un-

checking a box ➔

By Editing a

Breakpoint… you can

make the Breakpoint

conditional (prior topic)

31

Monitoring Variable Values
Besides hovering over a variable, you can:

1. Double-click and select any variable

2. Right-click and monitor the variable value

throughout your debug session

The Monitors view shows the variable's value

32

Monitors View – Options

Monitored variable value – in EBCDIC

internal display ➔ very useful for

debugging data exceptions

Change Value… allows you to modify the

variable's value on the fly – during debug

33

Detach the Monitors View

A useful Best Practice…

Can view any # of variable values

during debug, animated debug or

Resume to breakpoints

34

Making Optimal use of Screen Real Estate

▪ Some of the Debug Perspective views are not enabled for Assembler

programs: Variables, Outline, etc.

▪ Along with detaching views, consider moving the useful Assembler views

"front-and-center" to maximize your screen real estate – adding to your ability

to see as much useful information at a glance

Monitors view

Registers view

Breakpoints view

35

Monitor Memory

▪ Monitor Memory
▪ The memory content can be shown (or “rendered”) in several different formats:

▪ Raw HEX, EDBCDIC or ASCII

▪ Tree structure using customized XML mappings.

36

The Debug Console View

Debug Tool messages

You can enter a subset of

commands from the

Debug Tool 3270

interface, a list of Debug

Tool commands that are

valid for use in IDz can be

found in the Appendix of

the Debug Tool Reference

and Messages Guide.

The Debug Console view shows IDz

messages and lets you enter some

Debug Tool commands

Place your cursor in the Command area and press Ctrl+Spacebar – to see a list of available commands

37

Debug Console Commands – Tracing Statement Execution

This is another very popular

command:

SET AUTOMONITOR ON LOG

It forces Debug Tool to track each

statement as it's executed and write

it to the Debug Console

Using this technique you can copy and

paste your program's dynamic

execution and trace forward and

backward through any portion of

your code

You can also copy all of the statements

to hard-copy :

1. Right-click

2. Select Export History

3. Specify a file – preferably an RTF or

MS-Word doc, as formatting will be

retained

38

Debug Option – Jump to / Run To

▪ Jump to Location - skip over sections of code to avoid executing certain

statements or move to a position where certain statements can be executed again.
Useful:

▪ To avoid called programs or I/OS to a not available dataset

▪ Or to iteratively execute some statements of interest

▪ Run to Location - executes all statements between the current location and the

run-to location.

Context Menu

39

How to return from anywhere in your program to the Current Instruction

▪ To get back to the Current Instruction Pointer (the "next sequential

instruction") – if you've navigated away within the source:

Click the small blue rectangle in the right-hand margin of your
source code

40

Record and Playback

▪ Debug Tool allows you to record and then playback
recorded statements during Debug

Steps:

▪ From the Debug toolbar
Click the white downward-pointing triangle, and select:
✓ Show Playback Toolbar

From the Playback toolbar, click the green-go button, to start
playback recording

▪ All of your statements are being recorded from that

point until you:
– Stop recording

– End the Debug Session (ABEND or normal EOJ)

If your program pauses (Breakpoint, etc.) you can
backtrack through the recorded statements by pressing
the Move Back icon on the toolbar

You can also play the recorded statements forward, by
clicking Move Forward on the toolbar

41

Utilizing the Outline View
▪ To enable the Outline View during your Debugging session:

From Remote Systems – open the program

Manipulate the View size/window proportion, and ensure that the
Outline view synchronizes with the source file editor

Note that the Outline view does not synchronize with the Debugger's code view.

You can still utilize it for navigation & program understanding

42

Handling program abends

▪ Debug Tool can receive control back from the system after an
abend occurs

The program will be stopped at the abending statement

▪ You can:

Allow the application to abend and terminate

▪ Capture abend info with a product such as Fault Analyzer

▪ Terminate the application and prevent further processing

Or continue running the program

▪ Usage note:

The LE TRAP(ON) option must be active

43

Terminating the application

▪ There are several options for terminating your application:

 Remain in the debugger, and RESUME until the program
runs to completion

▪ The program will terminate normally or with an abend

▪ The return code is controlled by the program

 Disconnect the debugger, and allow the program to run
to completion

▪ The program will terminate normally or with an abend

▪ The return code is controlled by the program

44

Termination action buttons
You can immediately terminate the

application using action buttons

Terminate: Immediate

termination of the application.

No more program statements

run. RC=0 is returned to the

environment.

Disconnect: Disconnect

Debug Tool from the

application. The program

continues to run from the

current location without the

debugger. And subsequent

batch job steps can finish as

well.

45

Force an immediate termination with abend

right

click

1

2
3

Right click in the
Debug view

Options
Terminate
and abend

46

Restart Your Debugging Session

For batch debugging

If your submitted JCL is
still in the code
(Content) area
▪ No need to return to the z/OS

Projects perspective

Right-click

Select: Submit

Note that F11 (or Debug from
the Run menu) does NOT work
– as it did with Local Assembler
debugging

47

Summary

Having completed this unit, you should now be
able to:

 Describe where the debug engines are located

 Show how to set the workbench preferences for running
and debugging

 Show how to invoke the debugger for local programs

 Describe the views of the Debug perspective

 Demonstrate how to set breakpoints in Assembler code

 Explain how to set up the Assembler compile options for
remote debugging

 Show how to debug a remote batch Assembler program

48

UNIT

Topics:

The IDz Workbench

▪ Debugging z/OS Assembler Batch Applications

▪ Code Coverage - for Assembler Programs

▪ Appendix

49

Code Coverage with Assembler - LE Assembler

▪ You can run Code Coverage with Both LE & Non-LE Assembler ("BAL")

▪ No changes are needed to the Load Module (Assemble) process. But you will need to modify the JCL
slightly - example here of an LE-Assembler program and its Code Coverage

50

Code Coverage with Assembler - Non-LE Assembler

▪ Note changes to the TEST statement - and the addition of the LDD statements, which identify the Debug
Data. Note; Thanks to Francisco Anaya/IBM for the syntax examples

51

UNIT

Topics:

The IDz Workbench

▪ Debugging z/OS Assembler Batch Applications

▪ Debugging z/OS Assembler Online Applications

▪ Appendix

52

Topic Objectives

After completing this unit, you should be able to:

Using the Problem Determination Tools, Debug Option and
IDz:

▪Debug a mainframe online transaction

Describe the online transaction features for configuring your
3270 sessions with Debug Option

Debug a CICS 3270 Application

53

Online Debugging Overview

▪ Guess what?
No one gets
it right the first time
coding online
programs either ☺

▪ Lucky for you:

 Debug tool handles:

▪CICS 3270 online transactions

▪ IMS TM online transactions

 Without any different debugging techniques
▪ The only difference from batch is the debug setup procedure for the online

environment

54

Steps for Online (CICS) Application Debug Session

▪ Ensure that your compile proc has the necessary TEST parameter, and

Compile/Link to create load module – and that your CICS application is setup

for Debug Option testing

▪ Discover workstation TCP/IP parameters:

▪ IP Address

▪ Listener port#

▪ Access and login to your CICS region – Green Screen

▪ Use the DTCN view, or execute the DTCN transaction and specify:

▪ Terminal ID

▪ Transaction code and programs – to put under Debug control

▪ User-ID

▪ TCP/IP parameters:

▪ IP Address

▪ Port#

▪ Save the DTCN transaction specification

▪ Debug your CICS application

55

Discover TCP/IP address and IDz Port - Review

▪ Open the Debug Perspective
Click the small downward pointing triangle

next to the debug-daemon icon

Note the Port#

Select: Get Workstation IP…

Copy the IP address

Either paste the IP address into Notepad, or write it down

Note: Your IDz Port# will most likely be set

once, and will change infrequently.

However, depending on your installation's

setup, your workstation's TCP/IP address

could change - often

56

Setup the DTCN Parameters Using the DTCN View

If you are using IDz v7.6.1 or higher, you can utilize an IDz view to setup your DTCN
CICS Debug properties.

▪ Steps:

From Window > Show View > Other type: DTCN and select DTCN Profiles

Right-click inside the new, empty view and select: Create

From the DTCN profiles window:

▪ Enter your User ID

▪ Click DTCN Preferences

From DTCN preferences specify:

▪ Host Name/IP Address

▪ CICS DTCN transaction port

▪ CICS login credentials:

– User ID

– Password

▪ Other fields as shown ➔

▪ Click Test Connection

▪ Click OK to check your work

57

Setup the DTCN Parameters Using the DTCN View – continued

From DTCN profiles click Next >

From DTCN pattern matching specify :

Terminal ID: *

Transaction ID (Trancode) ➔

Click Add, and specify the Compile Units

(Load Module names)

Click Next >

From DTCN TEST run-time specify:

Fields as shown ➔

Session Address (your workstation I/P address)

Port (your listener Debug Tool listener port)

Other fields – as shown ➔

Click Finish

DTCN Profiles will be populated with entries for all users connecting into that CICS region

58

Using the DTCN View

Once you have setup the DTCN View, you can:

▪ Activate the profile

This modifies the CICS System Tables dynamically, through the
Debug Tool facilities – and allows you to debug CICS transactions

▪ Other options include:
Edit the profile – and change your I/P address

▪ After you reboot your machine

Delete the profile

Create a new profile

Refresh the display of DTCN entries in the region

Note: In order to debug CICS programs you will have to launch a 3270
emulation session (next slides) to kick off the transaction

59

3. Login to your CICS Region

From Remote Systems Explorer:

 Right-click

 Select: Host Connection Emulator

 Select your CICS application

 Enter your Userid and Password and sign in

60

3. Setup the Debug Option Parameters using DTCN Transaction – 1 of 2

If you did NOT use the DTCN view to enter your DTCN properties

you can do so using a CICS Transaction (green screen)

From CICS (after signing in):

 Clear the screen, Enter: DTCN – and press  Enter

From the DTCN screen

 Press F10 – this will fill in the Terminal Id for your workstation

Note that you can also

type an asterisk: *
…as the Terminal Id

 Note: You would only

use the DTCN transaction to
specify your Debug Option
properties if you could not
use the DTCN view (prior
slides)

61

3. Setup the Debug Option Parameters using DTCN Transaction – 2 of 2

DTCN transaction data entry screen

 Enter the Tran-code

▪ Transaction ID

 Enter up to eight

specific Program Id(s)

you wish to debug

through …or…

 Enter wildcard text

for the Program Id(s)

▪ Ex. CD*

 Enter your User-ID

 Session Type: TCP

 Port Number:

from your Debugger look-up

 Display ID:

Your TCP/IP address, from

your Debugger look-up (note that you can not paste into this 3270, screen)

▪ Press F4 to save your debug profile

▪ Press F3 to clear the screen

62

4. Start Debugging

From the CICS region

 Enter the Tran-code

 Press  Enter

 Click: Yes at the
Confirm Perspective Switch

63

4. Start Debugging

Debug as previously learned in the batch/remote and Local debug units.

64

What Happens for Calls and Screen-IO? – 1 of 2

You will be

prompted,

and

presented

with debug-

run-time

options

65

What Happens for Calls and Screen-IO? – 2 of 2

If your current transaction ends, and a BMS or 3270 screen is sent:

▪ You will be notified (prompted) by the debug engine

▪ If a screen is sent, the 3270 will display in the content area

66

What About PF-Keys and Other Data Entry?

▪ You can resize the screen portion of the debugger

▪ And use the
PF-Key emulation
options in the
Host Connection

67

Topic Objectives

After having completed this unit, you now should be
able to:

Using the Problem Determination Tools, Debug Option and
IDz:

▪Debug a mainframe online transaction

Describe the online transaction features for configuring your
3270 sessions with Debug Option

Debug a CICS 3270 Application

