Application Activity — formatting and
extracting key information

Mark E Taylor
Published on 31/07/2018

1

Application Activity Trace

Application Activity Trace is a mechanism on the MQ Distributed platforms that give a report of all
the MQI calls made by a program. Originally configured via a text file, MQ V9 enhanced them by
allowing a monitoring application to subscribe to topics that describe the application or channel of
interest.

Like all MQ events, they are PCF messages with the need to format them before they can be read by
a real person. MQ provides a sample program, amqsact to do just that. But that sample program
does not make it easy to automate processing of the events. Production-level monitoring tools are
expected to take the raw events, format them, and then do something interesting with the contents.

In another post I wrote about the amgsevt sample program and extensions that provide JSON
output for MQ events. I did not originally intend amgsevt to be used for application activity events.
I was more interested in processing the regular events such as “queue full”, and the amgsact sample
was already available and designed specifically for those events. But it did turn out to work with
them anyway. That JSON-capable variant of amgsevt is included in the new MQ V9.1, so you don’t
need to download and compile the program yourself. And since it is now part of the product I've
deleted the original source code from github.

One benefit of using JSON is that there are many tools capable of processing that format. In the
earlier article about amgsevt, I showed how events could be passed to Splunk. This new article
shows how I can use amqgsevt to get a few key fields from application activity trace with a simple
filter. That should make any subsequent review — perhaps an application audit — or processing much
faster. It ought to be a much lighter-weight mechanism for monitoring what applications do, if you
don’t need to preserve the full set of data that activity traces contain.

This can be seen as another piece of a broader strategy of extending MQ’s administrative actions
and reports to work with JSON. There is the REST administrative API, error logs via JSON, and
even z/OS SMF data can be formatted that way.

The English output from amgsevt

I’1l start off showing the basic English-ish output from amgsevt. For these examples, I’m using the
queue-based activity trace information rather than the subscription model, but both work equally
well. In a real environment, you may prefer to use the subscription approach to permit multiple
independent processors of the events.

https://www.ibm.com/developerworks/community/blogs/messaging/entry/Formatting_MQ_Events_as_JSON?lang=en
https://developer.ibm.com/messaging/author/marke_taylor/
https://developer.ibm.com/messaging/2018/05/08/mq-smf-reports-json/
https://developer.ibm.com/messaging/2017/12/05/introducing-mq-error-logs-json-format/
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.adm.doc/q128250_.html
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.mon.doc/mo00020_.html
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.mon.doc/q037520_.html
https://developer.ibm.com/messaging/2018/07/31/filtering-mq-activity-traces/#comments

Run the command

amgsevt -m QM1 -q SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE

and the start of the output will look like this:

*x** Message #1 (5712 Bytes) on Queue SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE ****

Event Type : Activity Trace [209]
Reason : None [0]
Event created ! 2018/07/10 12:38:22.81 GMT
Queue Mgr Name QM1
Host Name : example.hursley.ibm.com
Start Date ! 2018-07-10
Start Time : 13:38:22
Appl Name : amgsput
Channel Type : Svrconn

ACTIVITY TRACE

Operation Id : Connx
Thread Id : 88
Operation Date ! 2018-07-10
Operation Time : 13:38:22

Connection Id
414D514356393030305F4120202020205BZB779523E479A8

Queue Mgr Name QM1
Qmgr Op Duration : 1102

Comp Code : Ok [0]

The JSON output from amgsevt
Next, I will do the same thing but adding the new “-o json” option to the command

amgsevt -m QM1 -g SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE -0 json

Which produces output that starts like this:

{
"eventSource" : { "objectName": "SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE",

"objectType" : "Queue" 1},
"eventType" : {
"name" : "Activity Trace",
"value" : 209

4
"eventReason" : {
"name" : "None",
"value" : 0
4
"eventCreation" : {
"timeStamp" : "2018-07-10T12:44:26Z",
"epoch" : 1531226666
4
"eventData" : {
"queueMgrName" : "QM1",
"hostName" : "example.hursley.ibm.com",
"startDate" : "2018-07-10",
"startTime" : "13:44:25",
"endDate" : '"2018-07-10",
"endTime" : "13:44:26",

"commandLevel" : 910,

Any management application that understands JSON could take this and process it directly.

CSV-formatted filtered output from amgsevt

The final demonstration filters the JSON to give single output lines for each MQI verb. These show
key fields describing an application’s execution. The command to get the messages is identical to
before, but there is an extra step after the retrieval.

amgsevt -m QM1 -g SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE -o json | jq -r -f jgFilt

I’ll show the output and then describe how I created it.

Output
The output looks like this:

"amgsput", "2018-07-11","08:16:48", "Connx", 0, "N/A"

"amqgsput", "2018-07-11","08:16:48", "Open", 0, "X"

"amgsput", "2018-07 -

11","08:16:48", "Put", 0, "X", 48, "414D512056393030305F4120202020205B2B779523E4BFBE"
"amgsput", "2018-07-11","08:16:48", "Close", 0, "X"

"amgsput", "2018-07-11","08:16:48", "Disc", 0, "N/A"

"amgsget", "2018-07-11","08:16:48", "Connx", 0, "N/A"

"amgsget", "2018-07-11","08:16:48", "Open", 0, "X"

"amgsget", ''2018-07-

11","08:16:48", "Get", 0, "X", 38, "414D512056393030305F4120202020205B2B779523E4BFBE"
"amgsget", "2018-07-11","08:16:48", "Get", 2033, "X", 250059, 0

"amgsget", "2018-07-11","08:16:48", "Close", 0, "X"

"amgsget", "2018-07-11","08:16:48", "Disc", 0, "N/A"

This shows the execution of amgsput and amgsget, with a measure of how long in microseconds it
took to do the MQPUT and MQGET on queue “X”. I’ve also chosen to show the msgid from the
messages which might be valuable for later auditing. You can see how they match up here,
demonstrating that the same message was sent and retrieved. You can also see that a second
MQGET took 250ms. That is the wait interval after which there’s a 2033 (no message available)
return code. The rows are in CSV (comma-separated value) style, another common format for direct
processing or for import to spreadsheets and databases where they can be analysed.

The jg command

The jq command is a commonly-used open source program that manipulates JSON records. It’s a
bit like awk but dealing with JSON structures instead of text fields. There are compiled versions of
it for many platforms including Linux and Windows. It is easy to compile on many other platforms
too — I often run it on AIX. The jqFilt file passed to jq is just a program executed by jq to tell it how
to process the input JSON records.

The filter script

Although it might appear complicated at first glance, the program that jq runs is actually rather
simple once you understand the principles. JSON fields are referenced by name, separated with a .’
for the nesting of objects within objects. Arrays can be handled too. There is a pipeline within the
script, as JSON objects are selected or transformed, and passed to the next stage. There are

https://stedolan.github.io/jq/download

functions such as length to work with the data. And the script language permits variables. In this
program, variables are used to stash the application name which does not appear in the details of
every individual MQI operation, but which is useful for each output line in the CSV format.

The final step of this script formats the values in a JSON object as CSV. That conversion is a built-
in function in jq. It deals with any special escape characters and getting the right levels of quotes.

The -r flag to jgq removes one layer of quote characters from the output -

better for CSV import

Operations are

1. Select only activity trace records from stdin.

2. Pull out the application name so that the lower entries can use it in the

output.

3. If there's an object name, print it; if not, we still print something to
keep consistent columns.

4. Put out extra fields for the get/put verbs.

5. Finally format the whole record as CSV.

H* H*

select(.eventData.activityTrace != null) |
.eventData.applName as $applName |
(.eventData.activityTrace[] |
[
$applName,
.operationDate,
.operationTime,
.operationId,
.reasonCode.value,
if (.objectName | length) > 0
then
.objectName
else
IIN/AII
end,
if .operationld == "Get" or
.operationId == "Put" or
.operationId == "Putl"
then
.qmgrOpDuration,
.msgId
else
empty
end
]
) |

@csv

Imported CSV

And here we can see the data after it has been imported to a spreadsheet.

Al J amgsput
A B € | D E F G H
1 |amqspul _| 11/07/2018 08:16:48 Connx 0 N/A
2 |amgsput 11/07/2018 08:16:48 Open 0X
3 |amgsput 11/07/2018 08:16:48 Put 0X 48 414D512056393030305F4120202020205B2B779523E4BFBE
4 |amgsput 11/07/2018 08:16:48 Close 0X
5 |amgsput 11/07/2018 08:16:48 Disc 0 N/A
6 |amgsget 11/07/2018 08:16:48 Connx 0 N/A
7 |amagsget 11/07/2018 08:16:48 Open 0x
8 amgsget 11/07/2018 08:16:48 Get 0 X 38 414D512056393030305F4120202020205B2B779523E4BFBE
9 |amgsget 11/07/2018 08:16:48 Get 2033 X 250059 o
10 amgsget 11/07/2018 08:16:48 Close 0 X
11 amqgsget 11/07/2018 08:16:48 Disc 0 N/A
Conclusion

The full Application Activity Trace output can contain a lot more information than you might want

to store long-term, and it can be tricky to process without specialised programs. I hope this article

has shown how a couple of simple tools can make the job of selection and analysis much easier.

https://developer.ibm.com/messaging/wp-content/uploads/sites/18/2018/07/activity-jq.png

	Application Activity – formatting and extracting key information
	Application Activity Trace
	The English output from amqsevt
	The JSON output from amqsevt
	CSV-formatted filtered output from amqsevt
	Output
	The jq command
	The filter script
	Imported CSV

	Conclusion

