
IBM i Performance Analysis
with Performance Data Investigator

Tool
Finding answers to 5 basic performance

questions

Prepared By : Satid Singkorapoom

Power Systems and IBM i Consultant April 2022
Page 1

Page 2

IBM i Performance Data Investigator (PDI) tool

A built-in IBM i performance report tool that produces
graphical performance data charts that accommodate
uncomplicated interpretation on performance health of
various components of Power servers running IBM i.

A picture is worth a thousand words.

Page 3

Do we need to add more CPU core?

Do we need to add more memory?

I have multiple disk pools (ASP).
How does each perform?

Do we have workload growth or reduction?

Does performance tuning work?

Page 4

Do we need to add more CPU core?

Page 5

Use PDI charts on Wait Overview and Wait by (Generic) Job or Task and
Wait by Subsystem.

Dispatched CPU Time is the most desirable component in these charts
that any active jobs need.

More CPU power is needed when CPU Queuing or Machine Level Gate
Serialization wait time appears substantially or overwhelmingly against
Dispatched CPU Time while running important workload and reducing
number of concurrent jobs is not possible.

Page 6

Minimum wait time. Good overall health.

Proportion between Dispatched CPU Time VS sum of all
wait times is key to wait time analysis interpretation

Page 7

To reduce high CPU Queuing or Machine Level Gate Serialization wait
time during batch process period, consider reducing number of
concurrent jobs first and observe run-time result. This can improve
overall run-time. If this is not the case, add more CPU core(s).

Rule of thumb: 6 concurrent jobs per CPU core (POWER8, 9, 10).

Persistent CPU % Busy at 90% or more but without or little CPU
Queuing or Machine Level Gate Serialization wait time means there is no
immediate lack of CPU power. But there remains system capacity sizing
issue to be considered.

Page 8

High CPU % Busy is not a reliable deciding factor on whether to add
more core for better workload performance (as opposed to system
capacity sizing) because as of POWER5-based server when simultaneous
multithreading (SMT-2) was introduced up to POWER10 with SMT-8,
POWER CPU can be highly busy without any CPU Queuing.

Let’s look at sample analyses next.

Page 9

CPU queuing is the only dominant wait component

CPU Queuing appears when
CPU % Busy exceeds 70%

1 POWER8 core runs this Java-based workload.

Page 10

Individual job view of wait components

This is the “core” Java-based
application job running 1,200 threads
with substantial CPU queuing wait

Page 11

CPU queuing no longer exists. Overall CPU % Busy also reduces.

After adding 1 more CPU
core, CPU queuing almost
completely disappears

Page 12

Individual job view of wait components

Case close!

After adding 1 more CPU
core, CPU queuing almost
completely disappears

Another example – non-Java workload
Overwhelming CPU Queuing wait when CPU hits 100%

5 CPU cores run this workload. Will adding 1 more core help?

Virtually all jobs suffer from CPU
Queuing wait in varying degree.
Can concurrent jobs be reduced?
If not, how many CPU cores to
add?

Another example – non-Java workload

Page 15

If reducing concurrent jobs is not a viable solution, the question is how
many more CPU cores are needed over the base 5 cores?

For enterprise class Power server, use Trial Capacity on Demand to find
the answer. Trial CoD is free of charge for 30 days.

https://www.ibm.com/docs/en/power9/9223-42H?topic=demand-trial-capacity-
concepts

For non-enterprise class server, buy Temporary IBM i License. This is
charged per month.

https://www.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/
rep_ca/5/897/ENUS216-425/index.html

Page 16

If many LPARs run in the same server, check if Uncapped Partitioning is
used or not? You also need to use Shared Processor Pool for this to
work.

Another example – no dominant wait component

Each wait is modest but their total sum is overwhelming

Another example – no dominant wait component

Virtually all jobs suffer from
waits in varying degree

Another example – no dominant wait component

Need to take multiple remedial actions
to reduce these wait components

Page 20

Batch run period:
Persistently overwhelming
CPU queuing. Consider
reducing concurrent jobs
and optimize workload first
and observer run-time
result.

Another example – issue during batch run period

Page 21

Disk page fault time
was dominant from
5 to 9 PM

Another example – trivial job causing high wait

Page 22

This is a utility job, not core app job.

Another example – trivial job causing high wait

Page 23

Do we need to add more memory?

Page 24

Use PDI chart on Memory Available by Pool.

PDI Memory by Pool charts were enhancement delivered via PTF for
IBM i 7.3 and 7.4 in early 2020.

Look at the chart on several high/peak workload days before making a
decision on which pool has persistent excess memory and which has
persistently little or none left. This helps you move memory among pools
for optimal use.

Learn to use WRKSHRPOOL command to put lower and upper limits to
each pool after reviewing the charts.

 Let’s look at a sample analysis.

Page 25

About 4GB in *MACHINE pool is not used all day long
Compare this chart with the next one

A max of 10GB of *BASE pool is not used but only sporadically

About 5.5GB in *MACHINE pool is not used all day long
Same server, same workload, a different day.

Other pools have around 1GB left sporadically

Page 27

From the charts, *MACHINE pool is the only pool with persistent
excess memory left all day long. Its size should be reduced and have its
maximum fixed by WRKSHRPOOL command.

Distribute the excess memory to *INTERACT, *SHRPOOL1, 2, and 4.

Produce the charts again and repeat the process of resizing the pools
until high amount of excess memory is no longer seen.

Page 28

Do we need to add more memory to our server?

Use “evidence of absence” in the chart Memory Available by Pool. If you
see “empty” charts on several high/peak workload days, it’s time to add
more memory to the server because you see no excess memory at all.

Page 29

I have multiple disk pools (ASPs).
How does each perform?

Page 30

Use PDI charts on Disk Overview for Disk Pools and Disk Overview by
Disk Unit.

Rule of thumb: Good disk response time guideline is 5 millisecond or
less for HDD, 2.5 millisecond or less for SSD/Flash disk.

Let’s look at some sample analyses.

Page 31

Page 32

ASP 1 response time is relatively better but not consistent
Bad disk response time in ASP 33

Disk Overview for Disk Pools

Page 33

ASP 33

ASP 1

Same server as in
preceding chart.

Disk response time discrepancy
should NOT exceed 1 msec within the
same ASP for good performance.

Disk Overview by Disk Unit

Bad overall response time.

Page 34

Disk response time does not distribute well among all disk units

ASP 1 Unit 1-15

ASP 1 Unit 16-30
Not good

Another example – one disk pool only

Good (discrepancy less than 1 msec)

Page 35

ASP 33

ASP 1 Good overall average response
time for both disk pools

Another example – good disk response time
Average disk response time distributes well among all LUNs in each ASP

Page 36

Do we have workload growth (or reduction)?

Page 37

Use PDI charts on Resource Utilization Rates and look at Total Logical
Database I/Os Per Second component.

Why not use CPU % Busy as an indicator? This is not consistently
reliable in many cases, For example, application “tuning” action(s) can
reduce CPU % busy while Logical DB IOPS may even increase.

Look at multiple charts from multiple high/peak workload days or
servers to make meaningful comparison.

Higher DB-level workload during day time
Compare this chart to the next one

Same server, a different day. This chart indicates
somewhat higher workload of a day.

น. is Thai short for o’clock

Page 40

Higher DB-level workload
during night time

Another example

Page 41

Does performance tuning works?

Page 42

Start with PDI charts on Wait Overview and Wait by (Generic) Job or
Task and Wait by Subsystem.

Identify dominant wait component(s) with substantial to overwhelming
ration against Dispatched CPU Time.

Identify the cause of the dominant wait and how to address it. Then take
proper action(s) to attack dominant wait component(s).

Display wait charts again to check for the improvement.

Let’s look at a sample analysis.

Disk page fault time is the only dominant wait
component in the entire workload

Page 44

DB2i remote SQL jobs (QZDASOINIT) carry
almost all disk page fault wait component

Page 45

QZDASOINIT is DB2 for i job serving remote SQL from ODBC/JDBC.

This customer runs Java-based core business application in many Intel
servers that submit SQL via JDBC to DB2 for i. This is why all
QZDASOINIT jobs consume almost all of CPU times in the server as
seen in the previous chart.

Typically, SQL workload without sufficient number of useful indexes for
optimal SQL workload performance causes excessive memory faulting
rate which leads to Disk Page Faults Time wait as seen in the chart.
Here, memory faulting is mainly caused by excessive table scans made
by SQL engine.

Page 46

Useful tools are available in DB2 for i for use to identify and create
useful indexes to help reduce excessive memory faulting: Plan Cache
Snapshot Analyser, Visual Explain, Index Advisor, and Index Condenser.

After useful indexes are created, produce Wait charts again to see the
result. Look at the next chart.

Resulting performance improvement
after tuning action(s) taken.

Proof of performance improvement.

Page 48

IBM i Performance Data Investigator (PDI) tool

Page 49

Note: All charts in this presentation are from PDI tool
of heritage version of Navigator for i that relies on the
vulnerable Log4j. Readers are encouraged to move to
the new Navigator for i as soon as they can.

https://www.ibm.com/support/pages/node/6483299

https://www.youtube.com/watch?v=iVgrD8CMj9Q

Page 50

Thank You

Page 51

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

