developer\Vorks.

Using Microsoft .NET in WebSphere Message Broker
V8: Part 1: Using the .NETCompute node sample

Matthew Golby-Kirk December 21, 2011
Ben Thompson

This series of four tutorials demonstrates the new support for Microsoft .NET in WebSphere
Message Broker V8. Part 1 shows you how to use the .NETCompute node to filter, modify, and
create messages, and provides a sample scenario along with explanatory C# code snippets.
Readers should be familiar with either Microsoft .NET or WebSphere Message Broker but need
not be familiar with both.

View more content in this series

Before you start

IBM® WebSphere® Message Broker V8 (hereafter called Message Broker) provides the capability
to integrate with existing Microsoft® .NET® Framework (hereafter called .NET) applications. You
can do this integration by wiring the new Message Broker .NETCompute node into a message
flow, or by calling a .NET application from an ESQL Compute node.

WMB Execution Group
T o cihF feEe====me C#/ VB | F# etc.
NETCompute e
WhB Common Language Runtime Microsoft Visual

Toolkit Studio

About this tutorial series

This series of four tutorials shows you how to use the new Message Broker .NETCompute

node integration capability. Each tutorial shows you how to create C# code in Microsoft Visual
Studio 2010 using an embedded template, which is provided by an installation of the WebSphere
Message Broker Toolkit. The four tutorials explore the following topics:

1. Using the .NETCompute node sample

2. Using the .NETCompute node to integrate with Microsoft Word
3. Using the .NETCompute node to integrate with Microsoft Excel
4. Using the .NETCompute node for exception handling

© Copyright IBM Corporation 2011 Trademarks
Using Microsoft .NET in WebSphere Message Broker V8: Part 1: Page 1 of 24
Using the .NETCompute node sample

http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/developerworks/views/websphere/libraryview.jsp?search_by=Using+Microsoft+.NET+in+WebSphere+Message+Broker+V8

developerWorks® ibm.com/developerWorks/

About this tutorial

Youtube tutorial: Integrating Microsoft .NET code in a
WebSphere Message Broker message flow

This five-minute youtube tutorial shows you how simple it is to use WebSphere Message
Broker V8 to build a message flow that includes Microsoft .NET code. Microsoft Visual
Studio is used to build .NET code in C#, which is then integrated into a message flow using
Message Broker and an HTTP RESTful interface.

This .NETCompute Node sample filters, modifies, and transforms messages using code written
in C#. You can use the .NETCompute node on Microsoft Windows® brokers to construct output
messages and interact with the Microsoft .NET framework (.NET) or Component Object Model
(COM) applications.

WebSphere Message Broker enables you to host and run .NET code inside an execution group.
The new .NETCompute node routes or transforms messages by using any Common Language
Runtime (CLR) compliant .NET programming language, such as C#, Visual Basic (VB), F#, or C
++/Common Language Infrastructure (CLI). This tutorial describes the new .NET API provided by
WebSphere Message Broker, which enables .NET developers to interact with Message Broker's
logical tree.

Prerequisites and system requirements

This tutorial is written for WebSphere Message Broker programmers who want to learn about the
new .NETCompute node, and for .NET programmers who want to learn about using WebSphere
Message Broker. If you have a general familiarity with C# or with Message Broker, then you should
find the tutorial relatively easy to complete.

To build and execute the example in this tutorial, you will need:

* A Windows installation that includes Microsoft .NET Framework V4

* WebSphere Message Broker (Toolkit and Runtime) V8

» Microsoft Visual Studio 2010 (Express Edition or Professional Edition) to write and build the
required C# code

Sample files

You can import the message flow and test data for this tutorial from the Message Broker Samples
Gallery, which is available as part of your Message Broker installation. No further downloads are
required in order to complete this tutorial.

Introduction

The message flow for the tutorial is imported from the Message Broker Samples Gallery.
Instructions below then explain how to create the C# code required by the .NETCompute node,
and how to do deployment and testing. This tutorial provides more detailed explanations for
the sample than in the Message Broker documentation, and also uses a configurable service
in conjunction with the AppDomainName property of the .NETCompute node to reflect real-life
production use.

Using Microsoft .NET in WebSphere Message Broker V8: Part 1: Page 2 of 24
Using the .NETCompute node sample

http://www.youtube.com/watch_popup?v=gHFHbm9jhNU&hd=1

ibm.com/developerWorks/ developerWorks®

Scenario description

A retail company has several stores at separate locations within a city. The stores complete sales
transactions throughout the day, and each transaction generates an XML message that is routed to
an input queue at a central IT office:

IT Office
-
OOocCca0.d
| SHOP SHOP SHOP OOOO
L0] L] l==0

Sale Envelope
Messages

Loyalty Program —‘:’_

Messages

The stores are rolling out a customer loyalty program. For every customer who registers in the
loyalty program, an XML message in a different format containing the customer's personal details
is sent to the same input queue. The company has decided to use Message Broker to process the
messages. The routing and transformations used in the solution demonstrate the capabilities of the
Message Broker .NETCompute node.

Importing the .NETCompute sample message flow

1. If the Message Broker Toolkit has not yet been started, select Start => Programs => IBM
WebSphere Message Broker Toolkit => IBM WebSphere Message Broker Toolkit 8.0 =>
WebSphere Message Broker Toolkit 8.0. You will be asked for the location of a workspace
-- use C:\student\DOTNET\lab_sample\workspace.

2. Navigate to the Samples Gallery of the WebSphere Message Broker Toolkit from the Help
menu: Select Help => Samples and Tutorials => WebSphere Message Broker Toolkit
- Message Broker. \When the Samples and Tutorials page opens, scroll down and you
should see a section named Message Transformation, highlighted with the red box below.

Using Microsoft .NET in WebSphere Message Broker V8: Part 1: Page 3 of 24
Using the .NETCompute node sample

developerWorks® ibm.com/developerWorks/

Expand the Message Transformation section and click on the .NETCompute Node sample:

Poduct: |Websanere Message Bioker Toali - Message Broker |

L1 e sample S pRCatians. and TRaral Foliuions demorsliate the wse of Wediphers Metiage Broker Tookit - Message Broker

b Learn Bagic Candupts

Mere samphes
 Bemieve. ¥ Updabe. ¥ Bemeve.,
» @4 ppplication Samples
The Applicalioe samples ae smal end-to-end WeaSphers Message Broker 20 pEcatons thal were reatad using The Message Baoker Tookit The Applicatice sa
+ @4 Contral and Reaiting
The Cantrod 2 Roulivg samales demongligle how 1o use WabSghaie Mesiape Bioker b conlndd % roule messapes
+ §45 File Processing
The File Processing sanphes demanstrate how 10 proces Tiles using WebSphere Mesiage Broker,
4 Industry
The Inchuiry samples peovice WebSphere Mecage Droker aets 10 help developers warking in speciic mdustries,
+ @4 Message Formats

The Meszsge Farmats ssmples demanstrate how 10 process messages with differsm farmats using WebSohere Message Braker.

- @14+ Message Transformation
The Meszsge Trarsloomation samples demanstrabe sHemstive ways 1o devslip Webhphere Metzsqe Broker spplications ba ransfarm messages.

JMETCemaute Hade zample Graphical Diata Mapping Retail zample

This sample shaws haw 1o Tilker, modify, and oeabe messages by usng the This sample shaws haw 1o use 2 grashical data map on a Mapping node to

NETCompune node in a messsqe faw. trarsfoem messages snd enrich them with csta from a databass, within a
smphe retad scenaria,

lawalompute Mode sample EHPCompute Mode sampde

This sample shawves Baw 1o us= the vaCampube nocs 1o perfoom 1asks such as This sample shaws kaw 1o uss the PHACompane nede in a messsge flaw 1o

calling an sxbernal servios and propagating 2 new message based on the translorm an XML message.

results af the caf,

E5L Transform samale:

This sampbe shaws haw 1o use 3 message flow ta ransfarm an XML message
1o anather farm of XML message accarding 1o the nues pravided by an XS0
shybeshest

3. A window opens and displays the introduction to the .NETCompute node sample, as shown

below. Read the page and click on Import the sample to import the sample files into your
workspace in the Broker Toolkit:

(B} WebsSinere Message Broker Toaket - [. THEE. T s i
(%) |WEsEmsas] somwars Infermation cemter

Searry] soops a0 opics

Caments &~ | - 2 [El o = flged @0

U WenSphere Mitsage Brakir infoemation o b hose

= Zamples Galery > Techoology samples > Mesmage Transformation
% Edipe decumentstian

= W Gl
B e b .NETCompute Node sample
g
= B Sampler Gailery The METCompute Mode sample is a message fow samgple applicatian that shows how o message fiow can be used
LT Py —— to Iansfiorm messiges using code which has been mmtien in G2
E LA Techaoloegy samples.
¥ [Contrel and Routing Suppoit for the NETComEte nooke is avalabibe on Windows only. The foe s assembies ol ans execined in he
X R Prnonssing Mmool MET Framework Cormon Languape Rusiime. You can wiile coce for ihe HETCompule node in O, WE
A [incintry Fa, SosTl o J2ciipl
L Whssag Fonnats
5 I hesage Transhormton Tre sampis specilcaly damonstralas

» e
[Graphica Dty Mappéag Reisd

a How e NETCompute node is used in message fow crestiion
% I FHPCompe Hode

& How prebuil MET lamewerk: sssemblies can be daploed 1o the broker

L v covgite Mode
5 o Transleem ik the folmming knks 1 And ou mare abou th sampke and how o gel he prebul sampk o nn by using fe
U wardaring wizards
L secury
_\“_i:':'b"; e femy. & Impart and deploy: 5 mindes
© % Trausleshanting and seppar:
5 Wsing the g 0 Red aloul the Samok:

B Yol CAn SEt D i SAmE In o5 of T Inkwng s
Impeoi and depicy the sampke
Thes aption impors tha sampke Nlies mlo e workspace and deploys the sample bo the Braker. This eplion
ako sefs up addhonal resounces for the sampks, fer eample, WebSphane MO gueues. Thera 15 also a

[marral slep requred imvohang the MET Assembly il and the oeaton of 2 configurable serace. This is
disiribed in the Seclion rirwy [I M U o A

This BRLGN IMaaNs tha sampk fies o your waksRach. AGINnnl manual seps MIght be eouind 1
canfigure the: sampde for besting

. The "Prepare the Samples" wizard will launch. Click Next, wait a few seconds for projects to
be imported, click Next again, and the final page of the wizard should indicate that the import
has been successful. Click Finish and you will be returned to the Samples window:

Using Microsoft .NET in WebSphere Message Broker V8: Part 1: Page 4 of 24
Using the .NETCompute node sample

ibm.com/developerWorks/

developerWorks®

(%) Prepare the Samples L [Sl

Import summary =

To complete the following tasks, click "Next™ EHE

}Eummary of tasks: Message Broker NETCompute Node Sample -

Create the following projects in the workspace:

DotMetApplication

DotMetLibrary

4 |

Warning: This will overwrite any existing resources that have the same names.

5. At this point, if you are experienced with Message Broker, you may want to expand the
sample menus and explore the rest of the sample on your own. You will see topics named
"Introduction,” "Preparing the sample,” "Running the sample,” and "C# code for the sample”

to guide you. Alternatively, the following sections will walk you through the C# development in
more detail.

Using Microsoft .NET in WebSphere Message Broker V8: Part 1: Page 5 of 24
Using the .NETCompute node sample

developerWorks® ibm.com/developerWorks/

@ WebSphere Message Broker Toolkit - Message Broker

f@ WebSphere software Information center
|| Search: scope: All topics
||| contents G- - B O |

| # ¥ WebSphere Message Broker information center home
| # € Eclipse documentation
5 e Glossary
| =@ Property Editor
@ Reference
= B samples Gallery
4 application samples
= 4 Technology samples
24 Control and Routing
= [File Processing
& ndustry
4 Message Formats
B [Message Transformation
Blx NETCompute Node |
B introduction
E Preparing the sample
E Running the sample
B c# code for the sample
[Graphical Data Mapping Retail
[PHPCompute Node
[JavaCompute Node
[%5SL Transform
4 Monitoring
i security
[Transparts and Connectivity
® [web Service
| @ Troubleshooting and support
| = Using the help

The next section of the tutorial explores the imported Message Broker artifacts.

Exploring the message flow

1. Minimize the window with the documentation for the sample, and return to the Message
Broker Toolkit. You should see that the import has created some projects, as shown below.
Expand the projects and you will see that they contain several prepared files:

Using Microsoft .NET in WebSphere Message Broker V8: Part 1: Page 6 of 24

Using the .NETCompute node sample

ibm.com/developerWorks/ developerWorks®

', Broker Development 31 &L Patterns Explorer| e
-

Application Development Hew...

[E DotNetApplication
£ Flows
& DotNetmsgflow
(Flow Tests
[E DotMetApplication_LoyaltyProgram.mbtest
E DotMetApplication_SaleEnvelope.mbtest
= BARs
=i DotMet.bar
B Library References
=, DotMetLibrary
= DotNetlibrary
i3 Schema Definitions
& (default namespace)
11 CSV_DFDL_Schema.xsd
 httpy/fwwaibm.com/didl/CommaSeparatedFormat
0] CommaSeparatedFormatxsd
|5l BARs

The application project named DotNetApplication contains a single message flow
(DotNet.msgflow), two files with the extension .mbtest, which are used to send test messages
through the message flow using the built-in Broker Test Client, and the Broker Archive (BAR)
file botNet.bar, which contains compiled copies of the resources that you will deploy to the
runtime broker below. There is also a library project named DotNetLibrary that contains
DFDL schema definitions for a comma separated style of output message. This library will be
used for one of the output branches in the message flow. Next, examine the message flow
DotNet .msgflow, which should already be open:

N o
e af

= g~ :
u Modify WriteLoyaltyProgramMessage
ReadMessages Filter |F

Create \WriteStoreTransactionMessage

* The ReadMessages MQInput node takes messages from an input queue named
DOTNET.IN.

» The Filter NETCompute node routes each message down one of the two flow branches,
depending on its format.

* The Modify .NETCompute node adds some XML elements to the message.

* The Create .NETCompute node transforms the input message into a new output
message, which uses a comma separated format. Both branches of the message flow
result in a message being written to the same output queue, named DOTNET.OUT.

* The WriteLoyaltyProgramMessage node has the output queue name of DOTNET.OUT
hard-coded as its queue name property

» The WriteStoreTransactionMessage node has its output queue controlled dynamically
using a DestinationList, which is set up by the preceding Create node. The sample
chooses to set the DestinationList to point at the queue DOTNET.OUT as well.

Using Microsoft .NET in WebSphere Message Broker V8: Part 1: Page 7 of 24
Using the .NETCompute node sample

developerWorks® ibm.com/developerWorks/

2. Examine the properties of the Filter .NETCompute node:

& Properties 2 [Problem:ﬂ F Deployment Logﬂ s
% .NETCompute Node Properties - Filter

Description

Basic Assembly name* SampleDotNetProject.dll
M Class name FilterNode

Advanced

Validation

Monitoring

When you create a .NETCompute node, you associate it with a .Net assembly file.
By default, the sample flow has been configured with the name of an assembly file
SampleDotNetProject.dll.

3. You will create a C# Project, add C# source code, and then build it in order to create this
assembly file in subsequent steps, then return to the configuration of the message flow after
you have created this transformation code in Microsoft Visual Studio. Right click on the Filter

~ Undo Ctrl+Z
Redo Ctrl+Y
Create Connection
Add Output Terminal
Remove Output Terminal
Rename Output Terminal

I Open Microsoft Visual Studio I

o Cut Crl+X
& Copy Ctrl+C
B Delete Delete

node and select Open Microsoft Visual Studio: = :napwocrd

Rotate *
Rename..
Promote Property...

Test..
Add Breakpoints After Mode
Add Breakpoints Before Node

Properties... Alt+Enter
Pattemn 5

¥, Add Note
Hide Motes

Once a .NETCompute node has been associated with a particular Microsoft Visual Studio
solution using the Node property on the Visual Studio tab, it will launch with the solution files
open. You are yet to create the .NET solution, so the Visual Studio opens with its splash page
showing. The next section explains how to write the C# code.

Creating the .NET solution in Microsoft Visual Studio

The following images were taken with Microsoft Visual Studio Professional Edition, but you can
also use Microsoft Visual Studio Express Edition.

Using Microsoft .NET in WebSphere Message Broker V8: Part 1: Page 8 of 24
Using the .NETCompute node sample

ibm.com/developerWorks/ developerWorks®

1. Once Microsoft Visual Studio has launched, you will see the Start Page below. Select New
Project, as highlighted in the red box:
90 Star Page - irosoh Visus S e = |]

File FEdi Wiew Debug Team Data Took Test Window Help

[A-cd-Sud s Rl -o-8-5r) [naser g e e N 3

OB Vistal Studio 2010 Professionsl

o et Started Guidanoe and Resowrces Lafiest Maws
| Connect To Team Foundation Sanar
Welcome Windows Web Cloud Office SharePaint Data

Tiprmrmamma D0 What's Wew in Visual Studio 2010

| Open Fraped i — r—
- = = Learn about the new features induded in thes release.
Vislad Studio 2010 Craerdien
Recent Projects WEL'S Misw i PET Framesert 4

2. The New Project wizard offers you the three types of Project templates. Select the one named
Project to filter a Message Broker message. Specify the properties at the bottom of the
window as follows and Click OK:

Name = sampleDotNetProject
Location = C:\student\DOTNET\lab_sample\visual studio 2010\Projects
Solution Name = sampleDotNetProject

M'I-' Framewodcs, :]Sq'thr.[-Dela.il '] T Seanh Installed Templares o
Installed Templates 3
|E‘ Praject io reaie a Messape Brcker message Vigaal C# Types-Vinakoh
gt A preject hal contaifes 3 C¥ ¢lass 16 (e
Windomws 3 ’ the incaming message.
Praject 1o filner a M Biroker ma & Wisaal CF
e | ® e~ -
Oy ID Praject a0l Ptz Eroker Wi i
et 30 modify & age Broker message il O
Cloud d R B .
Rapoeting
SrarePoing
Sawerlight
Test
WOF
Warkllow
b Languages
I Crher Progect Typses
b Danabate
I Test Prajecls
1 Mame: SampleDoterfrojec
Location CAstacerd DOTHE T 3D _samplevaisual soudio 20100 Prajects - Browse.. |
Solution name: SamplaDotbetPrajec: [Creste directony foe salution
" Addd 30 spurce control

If the WebSphere Message Broker Toolkit is installed after Microsoft Visual Studio, then

the Message Broker project templates will be automatically installed ready for you to use.
However, if the Broker Toolkit is installed first, then you will need to manually install the
templates by executing the file I1BM.Broker.DotNet.vsix and stepping through the wizard. If
you have used the default installation location, you will find this file at

C:\Program Files (x86)\IBM\WMBT800\wmbt.

3. Once the project is created, expand the Solution Explorer view at top right. You should see
that the FilterNode.cs file has been created to contain the C# class, and that a reference to
IBM.Broker.Plugin has been added. This assembly contains the API provided by Message
Broker to transform messages in a .NETCompute node.

Using Microsoft .NET in WebSphere Message Broker V8: Part 1: Page 9 of 24
Using the .NETCompute node sample

developerWorks® ibm.com/developerWorks/

Solution Explarer ~ I X

2| 2 E &
[-4 Solution 'SampleDotNetProject’ (1 project)
4 | 5] SampleDotNetProject |
> [Ed Properties
4 | References
IJCI IBM.Broker.PluginI
<3 Microsoft.CSharp
<3 System

<3 System.Core

-3 system.Data

-3 System.Data.DataSetExtensions
<3 System.Xml

-3 System.Xml.Ling
|ﬁ£| FilterMode.cs
'5_? Solution Explorer

4. In the main window, FilterNode.cs has been created with a few lines of template code,
which you will add to in the next step. The code is created within a namespace (highlighted
below with a red box) that corresponds to the name of the project, SampleDotNetProject.
The main entry point for .NET code executed in a .NETCompute is the Evaluate method,
which contains a UserCode region where a flow developer typically adds their code. When
the Propagate method is invoked, the message assembly leaves the .NETCompute node
down the nominated terminal. When you edit this code in the next step, you will change
the Evaluate method so that it creates an extra output terminal, and invokes the Propagate
method against a chosen output terminal, depending on the content of the message data.

Using Microsoft .NET in WebSphere Message Broker V8: Part 1: Page 10 of 24
Using the .NETCompute node sample

ibm.com/developerWorks/

developerWorks®

“15 sampleDothetPraject Filteriode -] ¥ Evaluste(Mideszagestssembly inputissembly) -
—lusing System; =+
using System.Collections.Generic; al
using System.Ling;
using System.Text;
using IBM.Broker.Plugin;
Anamespace SampleDotNetProject]
k
=] fIf <summarys 3
/! FilterMode Class 3
rEr, ".." CLIMmAry >
= public class FilterNode : NEComputelode
R
= f1f <summary>
I/ Ewaluate Method
{ff </ summary:
f//f <param name="inputAssembly"”></param>
- public override void Evaluate(NBMessagefssembly inputAssembly)
{
NEDutputTerminal outTerminal = OutputTerminal(“Out™);
MEMezzaze inputMessage = inputAssembly.Massape;
NeElement root = inputMessage.RootElement;
= #region Userlode
// Add user code in this region to filter the message
fendregion UserCode
/f Change the following if not propagating message to the 'Out’ terminal
outTerminal.Propagate(inputissembly);
I
}
} -
100% = « i] "

5. Replace the contents of the Evaluate method in FilterNode.cs (shown by the red box in the
above image) with the sample code provided below. Remember to delete the existing call to
the Propagate method from the template that was generated in the previous step. This call

is the line of code outTerminal.Propagate(inputAssembly); Also, when you do the copy, be
sure to include the definitions for the Alternate and Failure terminals, which appear in the first
few lines of the code shown below:

Listing 1. Sample code for Evaluate method of FilterNode.cs

NBOutputTerminal outTerminal = OutputTerminal("Out");
NBOutputTerminal altTerminal = OutputTerminal("Alternate");
NBOutputTerminal failureTerminal = OutputTerminal("Failure");

NBMessage inputMessage = inputAssembly.Message;
NBElement root = inputMessage.RootElement;

#region UserCode
// Add user code in this region to filter the message
// The following expression deliberately uses LastChild in
// preference to FirstChild in case an XML Declaration is present!
switch(root[NBParsers.XMLNSC.ParserName].LastChild.Name)
{
case "LoyaltyProgram":
outTerminal.Propagate(inputAssembly);
break;
case "SaleEnvelope":
altTerminal.Propagate(inputAssembly);

Using Microsoft .NET in WebSphere Message Broker V8: Part 1: Page 11 of 24
Using the .NETCompute node sample

developerWorks® ibm.com/developerWorks/

break;

default:
failureTerminal.Propagate(inputAssembly);
break;

#endregion UserCode

Save the edited file FilterNode.cs" Press Ctrl-S or use the option from the File menu.

6. Add a new class to modify a Message Broker message from Solution Explorer: Right click
the Project level of the hierarchy (SampleDotNetProject) and select Add => Class. In the
resulting Add New Item dialog, select Class to modify a Message Broker message, and
make sure that you specify the name ModifyNode.cs by default, the wizard suggests a name
of ModifyNode1.cs). Click Add:

Ak New Item - SampdeDicaMetPraject -l i Pe—— |
Tritalled Teamplates Sullty:b:[aulL = [k szarch kstailed Tempiates =l |
A Vil ©F Kems
e B) Coassno reste 3 msessags Breker massage Vel 05 hems Tyt ViU o Do

A CF dass to moddy the inoami
Data ¥]

Genaral ‘m' Class to filber 2 Message Broker message Wimal O# Kems Message Dioker message.
Wt

S [() Ctass o mesdity a Message Braker message wisual 5 ems |

WEF

Message Broker

Repoeting

Warkllow

Oinline Tampiates

Mamre: oy oo o
| edo |
7. Edit the ModifyNode.cs file using the code below to populate the UserCode region of the
template:

Listing 2. Sample code for UserCode region of ModifyNode.cs

#region UserCode
NBElement xmlRoot = outputRoot[NBParsers.XMLNSC.ParserName];
NBElement xmlDecl = xmlRoot[NBParsers.XMLNSC.XmlDeclaration, "XmlDeclaration"];
if (xmlDecl == null)

// Create an XML Declaration if required
NBParsers.XMLNSC.CreateXmlDeclaration(xmlRoot, "1.0", "UTF-8", "yes");

}
string notarget = "";
string ns = "http://www.example.org/store";

NBElement storeDetails = xmlRoot[notarget, "LoyaltyProgram"][ns, "StoreDetails"];
string storeName = "";
string storeStreet = "";
string storeTown = "Happyville";
switch ((string)storeDetails[ns, "StoreID"])
{
case "001":
storeName = "Broker Brothers Central";
storeStreet = "Exuberant Avenue";

Using Microsoft .NET in WebSphere Message Broker V8: Part 1: Page 12 of 24
Using the .NETCompute node sample

ibm.com/developerWorks/

break;
case "002":

storeName = "Broker Brothers Mall";

storeStreet = "Enthusiastic Crescent";

break;
case "0O3":

storeName = "Broker Brothers District";
storeStreet = "Peaceful Road";

break;

}

storeDetails.CreatelLastChild(ns,
storeDetails.CreatelLastChild(ns,
storeDetails.CreatelLastChild(ns,

#endregion UserCode

"StoreName", storeName);
"StoreStreet", storeStreet);
"StoreTown", storeTown);

developerWorks®

Save the edited file ModifyNode.cs" Press Ctrl-S or use the option from the File menu.

8. Add a new class to create a Message Broker message using the Solution Explorer: Right-
click the Project level of the hierarchy (SampleDotNetProject) and select Add => Class. In
the Add New Item dialog, select Class to create a Message Broker message, and make
sure that you specify the name createNode.cs by default, the wizard suggests a name of

CreateNodel.cs). Click Add:

At Mew [tem - SampleDathiesiroject

1-_'—m

SR e S

4 Wigual C# lams
Coda @ Chass 1o Create a Message Broker message Vsl 2 [eirs
Data
General @ Class to fitter a Message Braker message Visual C# [berrs
Wk
Windows Farms @ Class 10 Fdfity 8 Meszade Broker message Visusl CF [tams
WPE
Message Broker
Fogpsariing
Wierellos

[Biame: Createtiadess |

| Seacch Installed Templates

Type: Wisal CF Tiems

A DF class io oeaie a Mesage Broker
mEssage. A methad bo copy the message
haatars trom Thes RCOmMInG Message is

also proveded.

2|

9. Edit the createNode.cs file using the code below to populate the UserCode region of the

template:

Using Microsoft .NET in WebSphere Message Broker V8: Part 1:

Using the .NETCompute node sample

Page 13 of 24

developerWorks® ibm.com/developerWorks/

Listing 3. Sample code for UserCode region of CreateNode.cs

#region UserCode
outputRoot["Properties"]["MessageSet"].SetValue("DotNetLibrary");
outputRoot["Properties"]["MessageType"].SetValue("File");
outputRoot.CreateLastChildUsingNewParser (NBParsers.DFDL.ParserName);
NBElement File =

outputRoot[NBParsers.DFDL.ParserName].CreateFirstChild(null, "File");
NBElement inxmlRoot = inputRoot[NBParsers.XMLNSC.ParserName];
IEnumerable<NBElement> invoices =
inxmlRoot["SaleEnvelope"]["SaleList"].Children("Invoice");
foreach (NBElement invoice in invoices)

{
3

// Define Local Environment override to dynamically control the MQOutput node
NBElement outLE = outAssembly.LocalEnvironment.RootElement;
NBElement mqlLE =
outLE.CreateFirstChild(null, "Destination").CreateFirstChild(null, "MQ");
mgLE = mqLE.CreateFirstChild(null, "DestinationData");
mqLE.CreateFirstChild(null, "queueName", "DOTNET.OUT");
#endregion UserCode

10. Add a new method named Transforminvoice to the createNode.cs file using the code
provided below. Be sure to copy it to the correct position in the file. In the hierarchy of the file,
this method should be a sibling of the CopyMessageHeaders method.

Listing 4. Sample code for the Transforminvoice method of CreateNode.cs

TransformInvoice(File, invoice);

private static void TransformInvoice(NBElement outFileEl, NBElement inInvil)

{
// This method creates a structure based on
// the Invoice Element in the input message
IEnumerable<NBElement> items = inInvEl.Children("Item");
foreach (NBElement item in items)
{
NBElement record = outFileEl.CreatelLastChild(null, "Record");
string notgt = "";
record.CreatelLastChild(notgt, "Codel", (string)item["Code", 0]);
record.CreatelLastChild(notgt, "Code2", (string)item["Code", 1]);
record.CreatelLastChild(notgt, "Code3", (string)item["Code", 2]);
record.CreateLastChild(notgt, "Description", (string)item["Description"]);
record.CreatelLastChild(notgt, "Category", (string)item["Category"]);
record.CreateLastChild(notgt, "Price", (decimal)item["Price"]);
record.CreatelLastChild(notgt, "Quantity", (Int32)item["Quantity"]);
}
}

You can leave the CopyMessageHeaders method (which was provided as part of the template
when you added createNode.cs) unchanged. Save the edited file createNode.cs: Press Ctrl-S
or use the option from the File menu.

11. From the Solution Explorer, right-click on the Solution and select Build (or use the F6
shortcut):

Using Microsoft .NET in WebSphere Message Broker V8: Part 1: Page 14 of 24
Using the .NETCompute node sample

ibm.com/developerWorks/ developerWorks®

Solution Explorer

(2 | 2 E R

_; Solution 'SampleDotMetProject’ (1 project)
4 .ESampleDo'INethmcl

» |z Properties Lil Build
4 | 7 References

-3 IBM.Broker, hebid

-3 Microsoft.d Clean

<3 System

<3 System.Cor el g
-3 System.Dat| Add Reference...

“3 System.Dat Add Service Reference...

-3 System.Xml

-3 System.Xml 6?4 View Class Diagram
#] CreateMode.c2
#] FilterMode.cs
#] ModifyNode.c| Debug 3

Set as StartUp Project

How to open the Output window in Microsoft Visual
Studio

If the Output window is not visible and you are using Microsoft Visual Studio
Professional Edition, you can open it using Debug => Windows => Output. If the
Output window is not visible and you are using Microsoft Visual Studio Express
Edition, you can open it using View => Output.

12. The Output window shows you where the built assembly file has been saved
on your file system. Depending on how you have Microsoft Visual Studio
configured, the Build Output window may not be immediately visible, in which
case you should follow the instructions in the sidebar to open the Output window.

O « B
Shiw SR ITOATE | Gk -2 =
- Build ytarted: Project: u-plmoﬂ-w afact, Lo FI3| ation: Dabug foy (Pl —meeee
h;J I'lmll"ruj et -3f Loy student :\mhlil’\ln ssmpleyvisal stedio 28léyPro jH xS anp ledatiet Proes £ \Sans LeDettint P roject pdn ez ugh Sanp ledati et Prof e .mi

------------ l\mldNM-: - bt aflui!nuaus

If you have used the default naming suggested throughout the tutorial, then you should find

that the assembly file has been saved at:

C:\student\DOTNET\1lab_sample\visual studio 2010\Projects\SampleDotNetProject\
SampleDotNetProject\bin\Debug\SampleDotNetProject.dll

The next section of the tutorial shows you how to unite the message flow development and the C#
assembly and deploy to Message Broker.

Deploying to Message Broker

Having built an assembly file from the C# code, it is possible to drag and drop the assembly file
from a Windows Explorer window directly onto a .NETCompute node in a message flow in order
to associate the node with the code. This technique results in a hard-coded absolute location
for the assembly, and it is useful when developing, testing, and hot swapping the .NET code

Using Microsoft .NET in WebSphere Message Broker V8: Part 1: Page 15 of 24
Using the .NETCompute node sample

developerWorks® ibm.com/developerWorks/

that the Broker is executing. However, for production situations, a better approach is to define a
Message Broker Configurable Service that specifies a .NETCompute node to locate the assembly
file. This method is much more dynamic and better suited when moving a deployment between
environments during development, test, and production. The diagram below shows that the

same message flow can be used in multiple environments, with the configurable service in each
environment defining the location of the assembly file, which may be at a different location on the
file system for each environment.

~

2]

T
JEI° [} Configurable | _ [C:\dirt\Assembly.dll J

L Development

Service

Production
L

P
ﬂq I Configurable di
Afigurable | — | Cadir2\Assembly.dil |
Test
.
»
[I' } *CLMETE Configurable | ___ [Cdir3\Assembly.dll]

Service

Use this approach and define a configurable service using the following steps:

1. Using a Windows Explorer window, make a copy of the assembly and debug files, which are

named SampleDotNetProject.dll and SampleDotNetProject.pdb:

Copy both files from the directory:
C:\student\DOTNET\1lab_sample\visual studio 2010\Projects\
SampleDotNetProject\SampleDotNetProject\bin\Debug

To the directory:
C:\student\DOTNET\lab_sample\AssemblyFile

2. Define the required configurable service for the message flow using Message Broker
Explorer, which is a graphical user interface for administering your brokers based on the
Eclipse platform. Message Broker Explorer is an extension to WebSphere MQ Explorer.
Open Message Broker Explorer: Select Start => IBM WebSphere Message Broker 8.0.0.0
=> Message Broker Explorer. Right-click the Configurable Services folder for the runtime
broker you are using and select New => Configurable Service.

%1MQ Explorer - Navigater i3 Beo|edT =0
- {2 IBM WebSphere MG
4 = Queue Managers
« Bl MBEQMGR
= Queue Manager Clusters
= IMS Administered Objects
= Service Definition Repositaries
4 d& Brokers
4 8 MBBBROKER
v g5, default
»|% Configurable Services
I Administrati MNew 4 I Configurable Service... I
+ €5 Broker Archive Fil¢ 5, Import *.configurableservice..
Show IBM Predefined Templates
Using Microsoft .NET in WebSphere Message Broker V8: Part 1: Page 16 of 24

Using the .NETCompute node sample

ibm.com/developerWorks/ developerWorks®

3. Set the following parameters:
Name: DotNetAppConfigService
Type: DotNetDomain
ApplicationBase: C:\student\DOTNET\lab_sample\AssemblyFile
Click Finish.

€3 Configurable Service =]

Configurable Service

Create a new Configurable Service and set its attributes

*Name I DotMetAppConfigService I
“Type IDmN&LAppDomain I V|

Template |Appl}nmainT!mprate

Key Value

AllowHotSwapDepl.. true

ApplicationBase IC:\student’\DOTNET\,Iah_sampEemssemblyFile |
ConfigurationFile

DisallowCodeDown... true

PrivateBinPath

PrivateBinPathProbe

ShadowCopyFiles true

UseBrokerWorkpat.. false

Add Praoperty Delete Property
mgsicreateconfigurableservice MBEBROKER -c DotiNetAppDomain -o DothNetAppConfigService -n *
\AllowHotSwapDeployy”, \"ApplicationBase\”, \"ConfigurationFiley,”, \"DisallowCodeDownload\”,
\'PrivateBinPath\", \"PrivateBinPathProbe',”, \"ShadowCopyFiles\", \"UseBrokerWorkpathForShadowCopyCache,” *
= "\ truey”, \ Chstudent\DOTNET ab_sampletAssemblyFiley”, 4%, YVitrueh™, VA Vruel”, Vo falsel™ =

@ [Fmsn || cance |

4. Return to the WebSphere Message Broker Toolkit and navigate to the properties of
the .NETCompute node named Filter. Switch to the Advanced tab and set the AppDomain

name to be botNetAppConfigService:
[0 Properties &2 . [2 Pmblems-| & Deployment Lag =

W .NETCompute Node Properties - Filter

Description
Basic AppDomain name DotNetAppConfigServiceI
Visual Studia | Assembly Identity

Advanced I Version .

Validation Culture
Manitoring

Public key token

5. Repeat the last step for the other two .NETCompute nodes in the message flow, named
Modify and Create. Each of these nodes uses a class defined inside the same assembly,

Using Microsoft .NET in WebSphere Message Broker V8: Part 1: Page 17 of 24

Using the .NETCompute node sample

developerWorks®

ibm.com/developerWorks/

and each of the nodes will locate the assembly at runtime using the configurable service you

defined above.

6. The rest of the tutorial assumes that you have created a queue manager named MB8QMGR
and a runtime broker named MB8BROKER, which are known as the Default Configuration.
For more information, see Creating the Default Configuration in the Message Broker

information center.

7. The message flow requires the creation of two MQ queues, DOTNET.IN and DOTNET.OUT.
Return to Message Broker Explorer and right-click the Queues folder underneath your Queue
Manager (in the screenshot below the queue manager is named MB8QMGR) and choose

New => Local Queue:

%2 MQ Explorer - Navigator &

[~ =5)

4 3 IBM WebSphere MQ
4 = Queue Managers

Lif

+ Bl MBEQMGR
& Queues!
&= Topid MNew 3 !
& Subsg Status... Alias Queue..
v & Adval » Model Queue..
S MEHH Object Authorities v Remote Queue Definition...
= Queue Ma o T

= JMS Administered Objects
= Service Definition Repositories
4 518 Brokers
4 M MBBEROKER
v g default
I & Configurable Services
|l Administration Queue
I @ Broker Archive Files

8. Specify the Name DOTNET. IN and click Finish:

Mew Local Queus ==l

Create a Local Queus

Enter the details of the object you wish to create

Y

MName:

DOTNETIN
Select an existing object from which to copy the attributes for the new object.

SYSTEM.DEFAULT.LOCAL QUEUE rSeIecT.-
When this wizard completes, another wizard can be started automatically to create a matching object,

| Start wizard to create a matching JMS Queue X

® <gack | nme> N[Finisn ||| cance |

9. Repeat the last two steps to create a queue named DOTNET. OUT.

10. Return to Message Broker Toolkit and open the BAR file named DotNet.bar, located inside

DotNetApplication. Click Rebuild and Save:

Using Microsoft .NET in WebSphere Message Broker V8: Part 1:
Using the .NETCompute node sample

Page 18 of 24

http://publib.boulder.ibm.com/infocenter/wmbhelp/v8r0m0/topic/com.ibm.etools.mft.doc/be68210_.htm

ibm.com/developerWorks/ developerWorks®

"Iy—‘E ! I E‘ER = [

Manage

Rebuild, remove, edit, add resources to broker archive and configure

IT = 4 Filter'b:.l:_-cType filter text> -

Mame Type Modified Size Path
[E DotMetApplication Application 06-Dec-2011 20:35:38 6309

4 I | 3
F'repare|Manage| User Lag Service Log|

11. Deploy the BAR file DotNet.bar by dragging and dropping it onto the execution group:

= -
Application Development Mew..

f&] DotNetApplication
= Flows
#2 DotMetmsgflow
2 Flow Tests
El DotNetApplication_LoyaltyProgram.mbtest
El DotNetApplication_SaleEnvelope.mbtest
(™ BARs
(B DotNethar
B Library[References
Bz DotpletLibrary
. DotMetLijrary
[BARs

%5 Brokers & | 5% Outline| ¥ Data § | & Tasks|

Igi ”
=0

&2 Brokers

4 MBEWKER
&5 default

The next section of the tutorial shows you how to test the scenario.
Testing the scenario

This final section of the tutorial shows you how to test the entire scenario directly from the
Message Broker Toolkit using its built-in Test Client.

1. In order to test the top branch of the message flow, within the DotNetApplication, expand the
Flow Tests folder and open the file named DotNetApplication_LoyaltyProgram.mbtest.
The input data contained in the test file is shown below :

Using Microsoft .NET in WebSphere Message Broker V8: Part 1: Page 19 of 24
Using the .NETCompute node sample

developerWorks® ibm.com/developerWorks/

Listing 5. LoyaltyProgram message sample input data

<LoyaltyProgram

xmlns:applicant="http://www.example.org/applicant"
xmlns:store="http://www.example.org/store">
<applicant:ApplicantDetails>
<applicant:FirstName>Ben</applicant:FirstName>
<applicant:LastName>Thompson</applicant:LastName>
<applicant:HouseNo>1</applicant:HouseNo>
<applicant:Street>Happiness Avenue</applicant:Street>
<applicant:Town>Grumpyville</applicant:Town>
</applicant:ApplicantDetails>
<store:StoreDetails>
<store:StoreID>001</store:StoreID>
</store:StoreDetails>
</LoyaltyProgram>

Click the Send Message button in the bottom right corner:

E] Dot ication LeyaltyProgram [=0
Evenls

1 Select the message Mlow you wauld like 10 test. Click Send Message 10 run
Message Flow Test Events » General Propertics

B PREFIERBEHE - Detailed Properties

ET Invoke Message Flow Maszags flove /DotMetspplication/ Dothetmsgfiow

Inpui ode: ReadMessages
Message
* Header

Hody: | BNt as e ']

<LoyalTyFrogram

http:/Swew, example. crg/epplicant”
Fwww example. orgfstore s

Events | Canfiguration

. Once the test has run, you should see that the StoreDetails section of the message has been
enriched with a StoreName, StoreStreet, and StoreTown, as shown below in the red box:

Using Microsoft .NET in WebSphere Message Broker V8: Part 1: Page 20 of 24
Using the .NETCompute node sample

ibm.com/developerWorks/ developerWorks®

El *Dethletipplication LoyaltyProgram 2 =

Evenls
Message Flaw Test Events » General Properties
rEE DB - Detaied Properties
m 1
ET Invoke Message Flow Host: localhost
+" Message Tiows deployme
% Starting Port a
£ Sending Messape to M Queue manager MBBQMGR
r?, M Guewe Monitor "0 Dl DOTNET.OUT
. Stopped listening far r
¥ swopped Message
+ Header
Baody: | Wiew as XML structure: =z
Name Value
LoyaltyProgram
wminssione httpyfenewexample.ongistore
umilnsagplicant htipy e eample.ongsapplicant
applicant:AgplicantDetails
applicantFirstName Ben
apglicantlastMame TROMpEon
applicantHousen 1
apglicantStreet Happiness Avenue
applicantTown Grumpyille
storecStoreCetails
storeStocel D 0J1
e
storeStoneName Broker Brothers Central
SI0reSIonESIreet Exberant Avenis
storeStoneTown Happyville
1 {1} L}
Events | Canfiguration

Here is a listing of the output message:
Listing 6. LoyaltyProgram message sample output data

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<LoyaltyProgram
xmlns:applicant="http://www.example.org/applicant"
xmlns:store="http://www.example.org/store">
<applicant:ApplicantDetails>
<applicant:FirstName>Ben</applicant:FirstName>
<applicant:LastName>Thompson</applicant:LastName>
<applicant:HouseNo>1</applicant:HouseNo>
<applicant:Street>Happiness Avenue</applicant:Street>
<applicant:Town>Grumpyville</applicant:Town>
</applicant:ApplicantDetails>
<store:StoreDetails>
<store:StoreID>001</store:StoreID>
<store:StoreName>Broker Brothers Central</store:StoreName>
<store:StoreStreet>Exuberant Avenue</store:StoreStreet>
<store:StoreTown>Happyville</store:StoreTown>
</store:StoreDetails>
</LoyaltyProgram>

3. In order to test the bottom branch of the message flow, within the DotNetApplication

, expand

the Flow Tests folder and open the file DotNetApplication_SaleEnvelope.mbtest. The input

data contained in the test file is shown below:
Listing 7. SaleEnvelope message sample input data

<SaleEnvelope>
<Header>
<SalelListCount>1</SalelListCount>
</Header>
<SalelList>
<Invoice>
<Initial>K</Initial>
<Initial>A</Initial>

Using Microsoft .NET in WebSphere Message Broker V8: Part 1:
Using the .NETCompute node sample

Page 21 of 24

developerWorks® ibm.com/developerWorks/

<Surname>Braithwaite</Surname>
<Item>
<Code>00</Code>
<Code>01</Code>
<Code>02</Code>
<Description>Twister</Description>
<Category>Games</Category>
<Price>00.30</Price>
<Quantity>01</Quantity>
</Item>
<Item>
<Code>02</Code>
<Code>03</Code>
<Code>01</Code>
<Description>The Times Newspaper</Description>
<Category>Books and Media</Category>
<Price>00.20</Price>
<Quantity>01</Quantity>
</Item>
<Balance>00.50</Balance>
<Currency>Sterling</Currency>
</Invoice>
<Invoice>
<Initial>T</Initial>
<Initial>J</Initial>
<Surname>Dunnwin</Surname>
<Item>
<Code>04</Code>
<Code>05</Code>
<Code>01</Code>
<Description>The Origin of Species</Description>
<Category>Books and Media</Category>
<Price>22.34</Price>
<Quantity>02</Quantity>
</Item>
<Item>
<Code>06</Code>
<Code>07</Code>
<Code>01</Code>
<Description>Microscope</Description>
<Category>Miscellaneous</Category>
<Price>36.20</Price>
<Quantity>01</Quantity>
</Item>
<Balance>81.84</Balance>
<Currency>Euros</Currency>
</Invoice>
</SalelList>
<Trailer>
<CompletionTime>12.00.00</CompletionTime>
</Trailer>
</SaleEnvelope>

Click the Send Message button in the bottom right corner:

Using Microsoft .NET in WebSphere Message Broker V8: Part 1: Page 22 of 24
Using the .NETCompute node sample

ibm.com/developerWorks/ developerWorks®

[E Dothetapplication SaleEruelnpe 5 =N
Evenls
I Select the message Naw you waukd like 1o best, Click Send Meisage b
Message Flaw Test Events v General Properties
L PREEI mEH ~ Detailled Properties
s
El Invoke Message Flow Mesiage flow, | /Dothetapplication/Dothet magilaw -
lnput ogde; | Readbessages i
Massagpe
¢ Header
Body: [Enn.as text =

ial=Ke/Inicial>
itialxR</Inicialy>
erBraithwaite</Surnames

01</Code>
02</Code>
cripticn>Twister</[
ry>Games</Cat
ce>00.30</Price>

ECEIPLian>
e

Events | Canfiguratian
4. Once the test has run, you should see the output message displayed with a comma-
separated format, as shown below in the red box:

r =0
Events
Message Flew Test Events r General Praperties
P E(AP MBH - Detailed Properties
EF [rwoke Message Flow Host: Iocalhast
~ Message Mows deplayment successTully camplete
% Starting ort: Q
| £ Sending Message to M3 Gueus "DOTNETIN® Quéus manager | MEBQMGR
[I?L WG Queue Manitar “DOTNET.OUT Cnitis DOTRET.OUT
| K Stopped listening for response
® Siopped Message
+ Header
Bady: :\r-ew a5 SOUFCe -]

|| Show in hexadecimal viewer [Read Only)

00,0102, Twster, Games 0301 -
02,03,01, The Times Newspaper Boaks and Media0.20,1
04,0501, The Originof Species,Books and Meadia, 22.34.2
Da.00 0L Microscope Miscellaneous, 35201

EurE W d »

Events Configuratian|

Here is a listing of the output message:
Listing 8. SaleEnvelope message sample output data

00,01,02, Twister, Games, 0.30, 1

02,03,01, The Times Newspaper,Books and Media,0.20,1
04,05,01,The Origin of Species,Books and Media,22.34,2
06,07,01,Microscope, Miscellaneous, 36.20,1

Using Microsoft .NET in WebSphere Message Broker V8: Part 1: Page 23 of 24
Using the .NETCompute node sample

developerWorks® ibm.com/developerWorks/

This is the end of the task steps for Part 1 of this tutorial series. You can continue on to the
resource links and author information by clicking Next below, or you can go on to Part 2 of the
tutorial series.

© Copyright IBM Corporation 2011
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

Using Microsoft .NET in WebSphere Message Broker V8: Part 1: Page 24 of 24
Using the .NETCompute node sample

http://www.ibm.com/developerworks/views/websphere/libraryview.jsp?search_by=Using+Microsoft+.NET+in+WebSphere+Message+Broker+V8
http://www.ibm.com/developerworks/views/websphere/libraryview.jsp?search_by=Using+Microsoft+.NET+in+WebSphere+Message+Broker+V8
http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Before you start
	About this tutorial series
	About this tutorial
	Prerequisites and system requirements
	Sample files

	Introduction
	Scenario description

	Importing the .NETCompute sample message flow
	Exploring the message flow
	Creating the .NET solution in Microsoft Visual Studio
	Deploying to Message Broker
	Testing the scenario
	Resources
	Trademarks

