
z/TPF Detailed Summary
Program Management
—
Dennis Fallon
z/TPF Development

z/TPF | October 13, 2020 | © 2020 IBM Corporation 1

Program Management

z/TPF | October 13, 2020 | © 2020 IBM Corporation

• What’s on the system ?

• How does it get there ?

• Images

• Loaders

• Application Programs

• Linkage

• Commands

• File System and Program Management

• Program Base Unique Files

• Common Deployment

2

Program Management
Components of a z/TPF Image

z/TPF | October 13, 2020 | © 2020 IBM Corporation 3

Keypoints
– Keypoint working area
– Keypoint staging area
– Keypoint backup area

Application program base components
– Program attribute table (IPAT)

- Loaded under @CIMR section in input file
– E-type programs and program base unique filesF | Oct 15-19, 2018

| © 2018 IBM Corporation

The image pointer record (CTKX)

IPL programs (IPLA and IPLB)

Core image restart (CIMR) area components
– Control program (CP)
– In-core dump formatter (ICDF) program
– Online component of the general file loader (ACPL)
– Global synchronization table (SIGT)
– Record ID attribute table (RIAT)
– File address compute program table (FCTB)
– User defined component (USR1)
– User defined component (USR2)

Program Management
System Components on DASD

z/TPF | October 13, 2020 | © 2020 IBM Corporation 4

CTKX
IPLA/B
CIMR
Keypoints

CTKX
IPLA/B
CIMR
Keypoints

CTKX
IPLA/B
CIMR
Keypoints

CTKX
IPLA/B
CIMR
Keypoints

IPLable (Not IPLable)

Program Data (Programs, Tables, Program Base Unique Files)

Keypoint Staging and Backup Areas

Everything Else …

Program Management
Data Resides in Records Mapped by File Address Computation Table (FCTB)

z/TPF | October 13, 2020 | © 2020 IBM Corporation 5

IPLable (Not IPLable)

Program Data (Programs, Tables, Program Base Unique Files)

Keypoint Staging and Backup Areas

CTKX

IPLA/B

CIMR

Keypoints

CTKX

IPLA/B

CIMR

Keypoints

CTKX

IPLA/B

CIMR

Keypoints

CTKX

IPLA/B

CIMR

Keypoints

Program Management
General File Loader (The “chicken and the egg” loader)

z/TPF | October 13, 2020 | © 2020 IBM Corporation

The problem:
System components and programs are built “offline” (on z/OS or z/Linux) and need to be written
to unique locations across multiple DASD using database mapping that only z/TPF understands !

z/OS
PDS

Run ALDR
to copy

LGF z/TPF

Online
Modules

IPL

ACPL runs
during IPL

to copy

ALDR: The offline portion of
the general file loader. Runs
on z/OS.
LGF: Loader General File. A
single DASD mod, IPLable,
mini-z/TPF system
designed to run …
ACPL: The online portion of
the general file loader.
Runs with a LGF is IPLed.

6

Program Management
General File Loader, cont’d

z/TPF | October 13, 2020 | © 2020 IBM Corporation 7

Used at system generation time, or for emergency load when no fallback image is available.

When building a new system, need to format both the Loader General File (LGF) and Online DASD
Modules.

ALDR is the program that places the binaries onto the LGF

Intention is for ALDR to be a boot strap loader
– Cannot load (file system) files using ALDR
– Not enough space on LGF to hold entire program base
– Load IBM programs and essential applications

When the LGF is IPLed, the binaries are copied to the Online DASD modules.
– The general file loader always overwrites image 1
– Must be defined to use program area 1 and IPL area 1

What’s an image ? (Or a program area or an IPL area ?)

Food for thought … If
ACPL runs FROM the
LGF, why is it loaded
TO the CIMR area on
the online DASD ?

Program Management
z/TPF Images

z/TPF | October 13, 2020 | © 2020 IBM Corporation 8

An image is a complete set of system components that can be IPLed
– Image selection is done at very beginning of IPL
– Each processor in a loosely coupled complex can be running on a different image

Up to 8 different images can be defined in the system - one image is marked as Primary
– The IPL area of the primary image is used on a hardware IPL

Each image has a unique Core Image Restart (CIMR) area

IPL and program base areas can be shared between images

There is only one working copy of Keypoints

ALDR (General File Loader) always loads to TPF01

Program Management
Why ? And additional info

z/TPF | October 13, 2020 | © 2020 IBM Corporation 9

TPF ZIMAG command allows you to define the contents of each image, change the primary image, and enable and
disable an image

Only an enabled image can be selected during IPL

An image must be disabled in order to modify its contents

CIMR components can be copied from one image to another
• Can be either a physical copy or a logical copy (reference)

Fallback:
• New code can be loaded to an image and then IPLed in order to begin using the new code
• If a problem is found with the code, the system can be re-IPLed using the previous image or another fallback

image
Test Systems:
• Can maintain multiple builds for users to choose from
Coexistence/Migration on loosely coupled systems
• Can IPL one processor on a new image while other processors handle traffic on existing image and migrate over

time

Program Management
ZIMAG Command

z/TPF | October 13, 2020 | © 2020 IBM Corporation 10

zimag disp all
IMAG0017I 15.00.46 IMAGE STATUS DISPLAY
IMAGE NAME NUM STATUS IPL PROG
TPF01 1 ENABLED IPL1 PROG1
ZSVTC 2 PRIMARY IPL2 PROG2
ZSVTP 3 ENABLED IPL3 PROG3
COMMIT 4 ENABLED IPL4 PROG4 _
TEST7 5 ENABLED IPL3 PROG5

6 EMPTY
ZCHRIS 7 ENABLED IPL4 PROG7
TST46 8 ENABLED IPL1 PROG8
END OF ZIMAG DISPLAY+

zimag disp image tpf01
IMAG0030I 15.00.52 IMAGE DISPLAY
NAME - TPF01 STATUS - ENABLED IPL - 1 PROG - 1 CTKX -
PAT CREATION TIME 09-03-19 09.17.07
COMP PHYSICAL COPY LOGICAL LOGICAL _

VC DATE TIME REF TO IMAGE REF FROM IMAGE
FCTB 09-03-19 14.32.09
ALTFCTB
CPS0 09-03-19 14.32.09
ICDF 09-03-19 14.32.09
ACPL 09-03-19 14.32.09 _
SIGT 08-06-19 15.26.59
RIAT 08-06-19 15.26.59
USR1 08-06-19 15.26.59
USR2 08-06-19 15.26.59
ALTERNATE FCTB ACTIVE ON PROCESSORS:
NOT APPLICABLE
END OF ZIMAG DISPLAY+

Logic References
• Allow one image to use the

component loaded to another
image.

• Can a new image for testing a
control program modification by
logically referencing all other
components from another image.

• When the referenced components in
that image change, they’re
automatically picked up.

• This means that in order to load a
change, images that logically
reference the image being loaded
also have to be disabled.

Program Management
ZIMAG Commands

z/TPF | October 13, 2020 | © 2020 IBM Corporation 11

DEFINE
Allows you to define (or redefine) as many as 8 images.

ENABLE
Allows you to enable an image for an IPL.

PRIMARY
Defines an enabled image as the primary image. The primary image is used during a hard IPL and is valid only on the basic subsystem (BSS).

DISABLE
Disables an enabled image so that it cannot be IPLed.

CLEAR
Deletes a disabled image.

COPY
Allows you to copy core image restart area (CIMR) components from one image to another by reference (logically) or physically.

UNREF
Deletes the logical references of CIMR components from a disabled image.

MAKEPHYS
Allows you to make all of your CIMR component references physical copies.

DISPLAY IMAGE
Displays the image name, status, associated IPL and program areas, CTKX version code (if physically loaded), and CIMR component.

DISPLAY PROG
Displays all of the program areas defined in the z/TPF system and identifies which (if any) images they are associated with.

DISPLAY IPL
Displays all the IPL areas that were loaded and identifies which (if any) images they are associated with. This option also displays IPLA and IPLB information
for each area.

DISPLAY PROCESSOR
Displays the image associated with each processor in the complex, as well as the status of the processor.

Program Management
Loading to an Image (or “the loader formerly knows as Tape Loader”)

z/TPF | October 13, 2020 | © 2020 IBM Corporation 12

First, the offline component of the “Image Loader” (TLDR) creates a loadfile and then an online
component (the ZTPLD command) processes the loadfile

There are multiple means (media) to transfer a loadfile to the online z/TPF system
– General Data Set (DASD shared between z/TPF and z/OS)
– Tape
– VRDR (when running under z/VM)
– Binary file (via FTP)

Based on the media, a data definition name is defined to z/TPF to identify the input
– ZDSMG DEF LOAD1 PATH='/usr/user1/load1' SAVE

Then the command to process the loadfile
– ZTPLD TPF02 LOAD1

Once the load completes, need to enable the image before IPLing
Linux
HFS

TLDR
creates

z/TPF

Online
Modules

ZTPLD
Loads to
disabled
image

IPL and
Select
image

FTP

Load
File

z/TPF

Program Management
Loading Keypoints

z/TPF | October 13, 2020 | © 2020 IBM Corporation 13

Control program keypoints are data records used to maintain system operations. These
records reflect the current status of the system and are essential to the startup/restart
process. They contain information about hardware (tape, DASD) and are shared between
images.

When keypoints are loaded to an image, they are put into a staging area made up of image
unique records
– #KSAx where x is the image number.

Once the load completes, and the image is enabled, the keypoints can be moved to the
working area
– #KEYPT
– All processors impacted by the move must be deactivated before the move completes in order to

avoid overwriting the newly moved keypoint with incorrect data

When moving a keypoint to the working area, the existing keypoint is copied to the backup
area first
– #KBA
– The backup area needs to be empty for a move to complete successfully
– Can restore keypoints from the backup area

Program Management
Updated view of z/TPF Images

z/TPF | October 13, 2020 | © 2020 IBM Corporation 14

IPL-1 IPL-2 IPL-3 IPL-4

Image 1
CTKX
CIMR
KSA

Image 2
CTKX
CIMR
KSA

Image 3
CTKX
CIMR
KSA

Image 4
CTKX
CIMR
KSA

Image 5
CTKX
CIMR
KSA

Image 6
CTKX
CIMR
KSA

Image 7
CTKX
CIMR
KSA

Image 8
CTKX
CIMR
KSA

Program
Base 1

Program
Base 2

Program
Base 3

Program
Base 4

Program
Base 5

Program
Base 6

Program
Base 7

Program
Base 8

Working Keypoint Area
Keypoint Backup Area

Program Management
Example ALDR Loader Input File

z/TPF | October 13, 2020 | © 2020 IBM Corporation 15

@KEYPOINT
CTKA.kpt %B, CTKA.kpt %C, CTKA.kpt %D,
CTKB.kpt %O, CTKC.kpt, CTKD.kpt,
CTKEPB.kpt %B, CTKEPC.kpt %C, CTKI.kpt

@INCLUDE /tpf/z11/build/bss_kpt.loadlist

@APPLICATION &APPATH
CISO.so, CLBM.so, CTIS.so, CTAL.so, COSY.so,
/tpf/z11/build/base/xml4c/load/CXML.so, CFIN.so

@INCLUDE /tpf/z11/build/bss_app.loadlist

@DEFINE
SYSID=BSS
IMGCLEAR=YES
CWD = /tpf/z11/build/bss/load/
&APPATH = /tpf/z11/build/opensource/stdload/:

/tpf/z11/build/base/stdload/:
/tpf/z11/build/bss/load/

@CTKX
CTKX.kpt

@CIMR
CPS0.so, ACPL.so, ICDF.so, SIGT.so, RIAT.so,
IPAT.so, USR1.so, USR2.so, FCTB.so

@IPL
IPLA.so, IPLB.so

@GFKEYPOINT
CTKAGF.kpt, CTKVGF.kpt
@@CTKV 8 000E /* patch x'000E' into keypoint at offset 8 */

@INCLUDE /tpf/z11/build/bss_gfk.loadlist

General File Keypoints:
- Loader General File is built from scratch with every

ALDR load
- Must contain ALL components necessary to IPL
- ACPL loads everything on the LGF to the online system
- LGF needs all keypoints, but not all keypoints should

be reloaded
- @GFKEYPOINT used to put keypoints on LGF that are

not to be loaded online

Program Management
Example TLDR Loader Input File

z/TPF | October 13, 2020 | © 2020 IBM Corporation 16

@DEFINE
OVERLAY_IPAT=YES
SYSID=BSS
PROGCLEAR=YES
ELDRCLEAR=YES
DEBUGFILES=YES
CWD = /tpf/z11/build/bss/load/
&APPATH =/tpf/z11/build/opensource/stdload/:

/tpf/z11/build/base/stdload/:
/tpf/z11/build/bss/load/

@CTKX
CTKX.kpt

@CIMR
CPS0.so, ACPL.so, ICDF.so,
SIGT.so, RIAT.so, IPAT.so,
USR1.so, USR2.so, FCTB.so

@IPL
IPLA.so, IPLB.so

@KEYPOINT
CTKA.kpt %B, CTKA.kpt %C, CTKA.kpt %D,
CTKB.kpt %O, CTKC.kpt, CTKD.kpt,
CTKEPB.kpt %B, CTKEPC.kpt %C,
CTKI.kpt @@CTKEPB %B 1E 11FF

/* patch x'11FF' into keypoint at offset x'1E' */

@APPLICATION &APPATH
CISO.so, CLBM.so, CTIS.so, CTAL.so,COSY.so,
/tpf/z11/build/base/xml4c/load/CXML.so,
CFIN.so

@INCLUDE /tpf/z11/build/bss_app.loadlist

@FILE
/tpf/files/data/datafile.txt

/sys/tpf_pbfiles/data/datafile.txt -p 755 -o
tpfdfltu

@VERIFY
IPAT.so

Program Management
Application Program Base

z/TPF | October 13, 2020 | © 2020 IBM Corporation 17

Each of 8 program bases consists of:

• Programs
Called “E-type” or “ECB-controlled” or “realtime” to distinguish them from the control
program, these are customer applications and utilities and IBM-supplied programs.

• Program Attribute Table (PAT or IPAT)
Built from “control files” and loaded using the general file loader or image loader,
contains attributes for each program and is used for program linkage and many other
functions and commands

• Entry Point Linkage Table (EPLT)
Built and maintained by program management, contains information used to link to
multiple entry points in assembly language programs

• Program Base Unique Files
Unique copies of the same file name. Allows an application to use a file and both the
application and file contents can be different across images.

Program Management
Program Base Unique Files

z/TPF | October 13, 2020 | © 2020 IBM Corporation 18

Program base unique files reside under /sys/tpf_pbfiles

• /sys/tpf_pbfiles is a special target that gets translated to /tpf_pbfiles/n where ‘n’ is the
program base number currently in use.

• Files can be loaded to /sys/tpf_pbfiles using the image loader and the E-type loader.

• A file, /sys/tpf_pbfiles/myApp/config.csv created in /sys/tpf_pbfiles on image IMAGE02
(running with program base 2) is actually created as /tpf_pbfiles/2/myApp/config.csv.

• The same file created on image IMAGE03 (running with program base 3) is created as
/tpf_pbfiles/3/myApp/config.csv.

• An application running on IMAGE02 that does an
fopen(“/sys/tpf_pbfiles/myApp/config.csv”) will see the program base 2 version of the file
while the same application running on IMAGE03 will see the program base 3 version of
the file.

• Allows you to update an application and a corresponding file and load both together,
while another image runs backlevel code and sees a corresponding backlevel file.

Program Management
E-Type or Online Loader (OLDR)

z/TPF | October 13, 2020 | © 2020 IBM Corporation 19

The E-Type or online loader provides for activation and control of different program and file
versions while the system is up and running.

To handle interface changes between programs, there is the concept of a loadset that acts
as a unit where all items in the loadset are acted upon at the same time.

Primary loadset operations are the following:
– Load - writes the binaries to the z/TPF system
– Activate - allows transactions to use the new versions
– Accept – overlays base versions of programs with versions in the loadset
– Deactivate - stops transactions from using the new versions
– Delete - removes the binaries from the z/TPF system

Program Management
E-Type or Online Loader (OLDR)

z/TPF | October 13, 2020 | © 2020 IBM Corporation 20

• Both ALDR (general file loader) and TLDR (image loader)
require IPLing the system in order to use new programs

• E-type loader (OLDR) designed to address the requirement for
loading application programs without requiring an IPL

• Also allows fallback to prior versions without an IPL

• For realtime programs ONLY

• Also limited support for files in TPF filesystem

Program Management
How Does It Work ?

z/TPF | October 13, 2020 | © 2020 IBM Corporation 21

• Several programs with interdependencies are loaded simultaneously in a “loadset”

• All programs in the loadset are written to fixed file records

• After the entire loadset has been written, the loadset can be “activated”

• Programs in the loadset are read into memory – this takes a small amount of time, but
many ECBs will be created during this process

• ECBs created before and during the process of loadset activation will not use any
programs in the loadset

• ECBs created after the last program is read in will be able to use the newly activated
versions

Program Management
Some E-type Loader Facts

z/TPF | October 13, 2020 | © 2020 IBM Corporation 22

• ZOLDR command manages loadsets

• Loadsets do nothing until activated

• Activated loadsets can be deactivated, then reactivated or deleted

• Loadsets can be “accepted”

• Programs in an accepted loadset overwrite the base versions (that may have been loaded by ALDR or
TLDR)

• Loadsets are associated with the program base of the active image on whatever processor the command
is run

• Several loadsets can contain different versions of a single program

• Even after a loadset is deactivated or accepted, multiple versions of the program may persist until all
ECBs that can potentially use the obsolete version finish processing

Program Management
E-Type or Online Loader (OLDR)

z/TPF | October 13, 2020 | © 2020 IBM Corporation 23

Similar to the Image Loader, the Online Loader has an offline component that creates a
loadfile and then an online component processes the loadfile

There are multiple means (media) to transfer a loadfile to the online z/TPF system
– General Data Set (DASD shared between z/TPF and z/OS)
– Tape
– VRDR (when running under z/VM)
– Binary file (via FTP)

Based on the media, a data definition name is defined to z/TPF to identify the input
– ZDSMG DEF LOAD1 PATH='/usr/user1/load1' SAVE

Then the command to process the loadfile, with option to process a single loadset
– ZOLDR LOAD LOAD1

Once the load completes, need to activate the loadset
Linux
HFS

OLDR
creates

FTP

z/TPF

Online
Modules

Load
File

ZOLDR
Load & activate

Program Management
E-type Loader ZOLDR Command

z/TPF | October 13, 2020 | © 2020 IBM Corporation 24

ZOLDR LOAD – move loadsets from OLDR output medium to fixed file records

ZOLDR ACTIVATE – activate a loadset on one or more processors

ZOLDR DEACTIVATE – deactivate a loadset on one or more processors
• ECBs currently using the loadset continue to use it until they exit
• EXIT and FORCE options are used to cause existing ECBs to stop using the loadset in

case of problems

ZOLDR EXCLUDE – exclude a specific program from an active loadset

ZOLDR REINCLUDE – reinclude a previously excluded program in a loadset

Program Management
E-type Loader ZOLDR Command, cont’d

z/TPF | October 13, 2020 | © 2020 IBM Corporation 25

ZOLDR ACCEPT – Replace base versions of programs with versions in an active loadsets

ZOLDR DELETE – Delete a deactivated loadset from the system
• Delayed until all ECBs still using the deactivated loadset exit

ZOLDR DISPLAY – almost anything imaginable related to loadsets

Program Management
E-type Loader and Files

z/TPF | October 13, 2020 | © 2020 IBM Corporation 26

A loadset can contain program base unique files alongside programs.

• When the loadset is activated, new ECBs will start using the new programs and the
new files.

A loadset can* also contain programs that reside outside of /sys/tpf_pbfiles.

• *A user exit, UELK, must be updated in order to permit such files.
• Even though those files are shared by all program bases, the new version is only

visible to processors running on the same program base.
• Because those files are shared by all program bases, accepting the loadset will

overwrite a file that can potentially impact another processor. To prevent problems, a
loadset containing files that are not program base unique can be accepted only if all of
the processors in the z/TPF complex are running on the same program base.

Program Management
Example !LDR Loader Input File

z/TPF | October 13, 2020 | © 2020 IBM Corporation 27

@DEFINE
SYSID=BSS
DEBUGFILES=YES
&APPATH = /tpf/z11/build/opensource/stdload/:

/tpf/z11/build/base/stdload/:
/tpf/z11/build/bss/load/

@LOADSET TEST1 &APPATH
CISO.so, CLBM.so, CTIS.so

@FILE /tpf/files/data/datafile.txt
/sys/tpf_pbfiles/data/datafile.txt -p 755 -o tpfdfltu

@LOADSET TEST2 &APPATH
CFIN.so, CXML.so, CTAL.so

@LOADSET TEST#
XNEE.so, XXAA.so

@VERIFY /tpf/z11/build/bss/load/IPAT.so

@VERIFY:
- Specifies a Program Attribute Table that will be used to

verify that all programs in the loadset are in that PAT
table

- The E-type loader can load programs that are not in the
table (see next slide) with limitations

Program Management
E-type Loader and “Unallocated Programs”

z/TPF | October 13, 2020 | © 2020 IBM Corporation 28

When a program is loaded by ZTPLD, there must be
an entry in the PAT so ZTPLD knows where to write
the program.

The E-type loader only overlays the base program
location if/when the loadset is accepted. Before that,
the program resides in temporary file storage.

A program that does not have an entry in the PAT can
be loaded using the E-type loader. However, it cannot be accepted.

When z/TPF is IPLed, a fixed number of spare PAT slots are allocated and
the ZAPAT ADD command can use those to add (that number of) programs
to the PAT without requiring an IPL.

Once ZAPAT ADD is done, a loadset containing the program can be accepted.

The PAT was originally the “Program Allocation Table”
- It was built by a program called the “allocator” and

provided a “slot” for each program in the system.
- There was (and still is) a 1:1 correspondence between

a PAT slot index and the ordinal number of the primary
record for the program.

- When a program was no longer needed, it was marked
“SPARE” to keep entries in order.

- The allocator tables were replaced by the control files
with z/TPF and programs are listed in build order.

- To ensure the order of entries is maintained online, the
loaders “merge” a new PAT with the existing PAT.

The @VERIFY option in the
E-type loader might be
useful to ensure that
programs have been added
to the PAT before promoting
them to production.

Program Management
Application Processing, Code to Executable

z/TPF | October 13, 2020 | © 2020 IBM Corporation 29

prog.asm assembler prog.goff goff2elf prog.o

linker prog.so
prog.c complier prog.o

tpfobjpp

prog.so

Offline
loader

Online
loader Fetch Program

in
memory

Output media
Online DASD

Offline (zOS or Linux)

Online (zTPF)

Program Management
Program Types

z/TPF | October 13, 2020 | © 2020 IBM Corporation 30

All programs are packaged as Shared Object (.so)
libraries
• Consistent with z/TPF programming model where any program

can call any other program
• Exception is Java - packaged as .jar files

BSO:
• BAL (Basic Assembly Language) Shared Object
• Made up of one or more assembly language source files written using

legacy BEGIN/FINIS macros and ENTER/BACK linkage

• CSO:
C Shared Object

• Made up of one or more source files written in C, C++ and/or assembly
language that uses macros that are compatible with C linkage

Format of the Shared Object is Executable and Linkable Format (ELF)

Early versions of TPF supported applications written in
Basic Assembly Language (BAL) only.
These programs needed to fit in a single 4K file record
when assembled.
As a result, legacy applications consist of hundreds of
small programs and complex nested paths through them.

Program Management
Program-to-program calls

z/TPF | October 13, 2020 | © 2020 IBM Corporation 31

There are two primary mechanisms for one program to get to another in z/TPF.

Entry Point

1. An entry point is a 4-character program name. It is invoked using assembly
language ENTxC macros and from C using explicit functions (entrc()) or by
simply coding the 4-character program name as a function call (ABCD()).

2. BSOs contain an entry point for each BEGIN macro (each BAL source file will
contains a BEGIN macro)

3. CSOs can optionally specify an entry point. This is coded in the make file for
the program (APP_ENTRY := main)

Entry points are maintained by Program Management through the Entry Point Linkage
Table (EPLT).

While the 4K restriction on early BAL
programs was restrictive in some cases, it
was a waste of storage space in others.
As a result, multiple small functions might be
coded in a single BAL source file using
“transfer vectors” – multiple entry points on
a single BEGIN macro call, with a branch
table at the top of the code to transfter
processing to the correct entry point.
These transfer vectors are still supported for
legacy applications.

Program Management
Program-to-program calls, cont’d

z/TPF | October 13, 2020 | © 2020 IBM Corporation 32

Library Function

• CSOs can have externally visible functions (with or without an entry point).

• To call a library function, library (CSO) must appear on the “NEEDED list” of the
calling program. This means the library must be listed when the caller is linked.

• Standard libraries are included by the z/TPF build tools automatically. Additional
libraries (including customer application libraries) are specified in each caller’s
make file:
LIBS := CFVZ
LIBS += CFVN

Program Management
Getting Clean Links

z/TPF | October 13, 2020 | © 2020 IBM Corporation 33

When a CSO is built using the z/TPF build tools, the linker will report any unresolved references. This occurs when a symbol
(function or data item) cannot be found in the list of libraries given to the linker.

In the case of a library function, if the unresoved reference occurs because of a missing library, then the function call will fail
on z/TPF because online linkage will not look in the needed library.

It is also possible that the link was performed offline against a copy of the library that did not contain the symbol. In this
case, it is possible that the symbol will be found when the program is loaded online (if the online version of the library differs
from the copy that the link was performed against).

Entry points are found using the EPLT online, so the program containing the entry point does not need to be listed in the
make file. However, the linker needs to know what entry points are in the EPLT. A pair of dummy libraries, TPFSTUB.so (for
IBM programs) and USRSTUB.so (for customer applications), contain symbols for every entry listed in the control files that
specifies a STUB is needed. Maintain the STUB fields in the control files to ensure clean and accurate links.

Program Management
Executable and Linkable Format (ELF)

z/TPF | October 13, 2020 | © 2020 IBM Corporation 34

• Executable and Linking Format
Describes the object files created by the compiler as well as the executables created
by the linker

• Describes binary file format used by LINUX and documented as part of System V
Application Binary Interface

• System V ABI consists of Generic ABI (gABI) that must be used in conjuunction with a
processor-specific ABI supplement
Linux for zSeries Supplement

Program Management
Types of ELF Files

z/TPF | October 13, 2020 | © 2020 IBM Corporation 35

• Relocatable file
Holds code and data suitable for linking with other object files to create an executable or a shared
object file.
Output of compiler/assembler.

• Executable file
Holds a program suitable for execution.
Output of linker.
Not used by TPF.

• Shared object
Holds code and data suitable for linking with executable files.
Used for all application programs by TPF.

• CIMR Components built as ELF Shared Objects
Offline Loader strips out text as in 4.1

On Linux, a process loads an application
program into a fixed (virtual) memory
address. That application calls any number of
libraries (shared objects) that can be loaded
into memory at any address. Generally, all
applications (executables) are loaded to the
same memory address and this address is
known at link time.

On z/TPF, all programs* reside in memory
simultaneously and ECBs are able to enter
any program anywhere in memory. Process
startup cost is minimized because programs
are loaded once per IPL.

Program Management
ELF Utilities (on Linux)

z/TPF | October 13, 2020 | © 2020 IBM Corporation 36

readelf
– Formatted display of ELF file contents with many options

objdump
– Semi-formatted display
– Lower level than readelf

nm
– Display symbols
– Can display long symbol names that are truncated by readelf

c++filt
– Demangle c++ function names

Program Management
ELF Segments

z/TPF | October 13, 2020 | © 2020 IBM Corporation 37

Readelf display using –l option to see program headers (segments)

Program Headers:
Type Offset VirtAddr PhysAddr

FileSiz MemSiz Flags Align
LOAD 0x0000000000000000 0x0000000000000000 0x0000000000000000

0x000000000000accc 0x000000000000accc R E 0x1000
LOAD 0x000000000000b000 0x000000000000b000 0x000000000000b000

0x0000000000002200 0x0000000000002280 RW 0x1000
DYNAMIC 0x000000000000d000 0x000000000000d000 0x000000000000d000

0x0000000000000200 0x0000000000000200 RW 0x8
GNU_EH_FRAME 0x000000000000ac10 0x000000000000ac10 0x000000000000ac10

0x00000000000000bc 0x00000000000000bc R 0x4

Section to Segment mapping:
Segment Sections...
00 .hash .dynsym .dynstr .rela.dyn .rela.data .rela.got .rela.plt .init

.plt .text .fini .rodata .eh_frame_hdr
01 .data .jcr .eh_frame .gcc_except_table .ctors .dtors .got .dynamic .bss
02 .dynamic
03 .eh_frame_hdr

Program Management
ELF Sections

z/TPF | October 13, 2020 | © 2020 IBM Corporation 38

Section Headers:
[Nr] Name Type Address Offset

Size EntSize Flags Link Info Align
[0] NULL 0000000000000000 00000000

0000000000000000 0000000000000000 0 0 0
[1] .hash HASH 0000000000000120 00000120

00000000000006b0 0000000000000008 A 2 0 8
[2] .dynsym DYNSYM 00000000000007d0 000007d0

0000000000000ac8 0000000000000018 A 3 13 8
[3] .dynstr STRTAB 0000000000001298 00001298

00000000000006e2 0000000000000000 A 0 0 1
. . .
[6] .rela.got RELA 0000000000001c20 00001c20

0000000000000120 0000000000000018 A 2 20 8
[7] .rela.plt RELA 0000000000001d40 00001d40

0000000000000708 0000000000000018 A 2 9 8
[8] .init PROGBITS 0000000000002448 00002448

000000000000000c 0000000000000000 AX 0 0 1
[9] .plt PROGBITS 0000000000002454 00002454

0000000000000980 0000000000000020 AX 0 0 4
[10] .text PROGBITS 0000000000003000 00003000

00000000000071c4 0000000000000000 AX 0 0 4096
. . .
[12] .rodata PROGBITS 000000000000a1d0 0000a1d0

0000000000000a40 0000000000000000 A 0 0 8
. . .
[14] .data PROGBITS 000000000000b000 0000b000

0000000000000010 0000000000000000 WA 0 0 8
. . .

Readelf display using
–S option to see section
headers

Program Management
ELF Header

z/TPF | October 13, 2020 | © 2020 IBM Corporation 39

ELF Header:
Magic: 7f 45 4c 46 02 02 01 00 00 00 00 00 00 00 00 00
Class: ELF64
Data: 2's complement, big endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: DYN (Shared object file)
Machine: IBM S/390
Version: 0x1
Entry point address: 0x0
Start of program headers: 64 (bytes into file)
Start of section headers: 424704 (bytes into file)
Flags: 0x0
Size of this header: 64 (bytes)
Size of program headers: 56 (bytes)
Number of program headers: 4
Size of section headers: 64 (bytes)
Number of section headers: 31
Section header string table index: 28

Program Management
ELF Needed List

z/TPF | October 13, 2020 | © 2020 IBM Corporation 40

Dynamic section at offset 0x12000 contains 20 entries:
Tag Type Name/Value

0x0000000000000001 (NEEDED) Shared library: [CTIS]
0x0000000000000001 (NEEDED) Shared library: [CISO]
0x0000000000000001 (NEEDED) Shared library: [CTAL]
0x0000000000000001 (NEEDED) Shared library: [CFVS]
0x0000000000000001 (NEEDED) Shared library: [COMX]
0x0000000000000001 (NEEDED) Shared library: [COMS]
0x000000000000000e (SONAME) Library soname: [CMQI]
0x0000000000000004 (HASH) 0x120
0x0000000000000005 (STRTAB) 0xf48
0x0000000000000006 (SYMTAB) 0x648
0x000000000000000a (STRSZ) 784 (bytes)
0x000000000000000b (SYMENT) 24 (bytes)
0x0000000000000003 (PLTGOT) 0x11000
0x0000000000000002 (PLTRELSZ) 1440 (bytes)
0x0000000000000014 (PLTREL) RELA
0x0000000000000017 (JMPREL) 0x1a20
0x0000000000000007 (RELA) 0x1258
0x0000000000000008 (RELASZ) 1992 (bytes)
0x0000000000000009 (RELAENT) 24 (bytes)
0x0000000000000000 (NULL) 0x0

Program Management
ELF Symbol Table and Relocation Section

z/TPF | October 13, 2020 | © 2020 IBM Corporation 41

Symbol table '.symtab' contains 168 entries:
Num: Value Size Type Bind Vis Ndx Name

0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
. . .

126: 0000000000000000 214 FUNC GLOBAL DEFAULT UND seteuid
127: 00000000000043d8 92 FUNC GLOBAL DEFAULT 10 cngh_create_proc_line
128: 00000000000047c0 876 FUNC GLOBAL DEFAULT 10 createDirectories
129: 0000000000000000 106 FUNC GLOBAL DEFAULT UND defrc
130: 0000000000000000 126 FUNC GLOBAL DEFAULT UND sprintf
131: 00000000000073d4 1156 FUNC GLOBAL DEFAULT 10 _Z19tpf_cfg_process_cfghj
132: 0000000000005fc4 3894 FUNC GLOBAL DEFAULT 10 _Z17tpf_cfg_parse_cfghjP1

. . .

Relocation section '.rela.plt' at offset 0x1d40 contains 75 entries:
Offset Info Type Sym. Value Sym. Name + Addend

. . .
00000000c188 004b0000000b R_390_JMP_SLOT 00000000000047c0 createDirectories + 0
. . .

>c++filt _Z19tpf_cfg_process_cfghj
tpf_cfg_process_cfg(unsigned char, unsigned int)

z/TPF | October 13, 2020 | © 2020 IBM Corporation 42

Program Management
Program in Memory

LIBVEC

Imported Data Table

Function Pointer Call Stubs

Program on File

4K TPF Header (aka “Fetch Block”)

Read-Only Segment (from ELF shared object)

Writeable Segment (from ELF shared object)

.tpfzdmap section (from ELF shared object, created by tpfobjpp)

.symtab and .strtab sections (from ELF shared object)

z/TPF | October 13, 2020 | © 2020 IBM Corporation 43

Program Management
Core Resident Program Areas

64-bit Standard CRPA
(some C programs)

Program 1

Program 2

Program 3

…

31-bit Standard CRPA
(assembly language programs)

Program 1

Program 2

Program 3

…

64-bit Copy On Write (COW) CRPA
(some C programs)

Program 1

Program 2

Program 3

…

31-bit Copy On Write (COW) CRPA
(few C programs)

Program 1

Program 2

Program 3

…

Copy-on-Write

If a program in COW
CRPA writes into its
own memory, the 4K
page containing the
modified storage is
copied and translation
tables are modified so
only that the ECB that
modified the storage
sees the new copy.
This is expensive and
should be avoided
when possible.

If a program in STD
CRPA writes into its
own memory, a
system error (dump)
occurs.

Program Management
Fetch Processing

z/TPF | October 13, 2020 | © 2020 IBM Corporation 44

Fetch (phase 1 of 2) loads program into memory and performs local
relocations
- At this point, the program is not ready to run, but other programs can
resolve their references to it.

Dynamic Linkage (phase 2) resolves external references.
- At this point, the program is ready to run.

Program attribute defines when fetch processing is performed
– Preload – fetches program serially early in system restart
– On demand – fetches program on first call
– Default – on demand on a test system or in parallel during system restart

CRPA Sweeper
– Can be used to periodically remove infrequently used programs from memory

Program Management
Function Linkage – Linux Model

z/TPF | October 13, 2020 | © 2020 IBM Corporation 45

function();

.text
linkage setup
brasl %r14,function@PLT

.plt
Piece of stub code that looks up function address
in .got section and branches to it

.got
8-byte address of function() initially points to code to
resolve function address

.rela.plt
R_390_JMP_SLOT 0000000000000000 function + 0

.dynamic
(NEEDED) Shared library: [CNG0]
(NEEDED) Shared library: [CUDA]
(NEEDED) Shared library: [CABC]

:

The Linux model supports “lazy
binding”. The address of each called
function is not resolved until the first
time it is called. This is efficient for the
process model, where executables are
read into memory on every process
startup, and many function calls may
not be performed during the life of any
given process.

Program Management
Function Linkage – z/TPF Model

z/TPF | October 13, 2020 | © 2020 IBM Corporation 46

function();
.text

linkage setup
brasl %r14,function@PLT

.plt
compiler generated code modified by TPF
Load register with LIBVEC offset from
LBV3
Load register with address of PAT
stub from .got
LBV3 DS F

.got
8-byte address of PAT stub

.rela.plt
R_390_JMP_SLOT 0000000000000000 function + 0

.dynamic
(NEEDED) Shared library: [CNG0]
(NEEDED) Shared library: [CUDA]
(NEEDED) Shared library: [CABC]

:

z/TPF has no need for lazy binding. The
cost of resolving relocations for all
function calls is trivial when done once
per program per IPL.
The linkage code generated by the
compiler and linker provides z/TPF with
a mechanism for intercepting function
calls and allowing z/TPF to redirect
them to the correct version when
multiple versions of a program have
been loaded using the E-type loader.

Program Attribute Table
(PAT)

…
MLIB
…
LIBVEC pointer
…
C-to-C Stub Code

…

Program Management

z/TPF | October 13, 2020 | © 2020 IBM Corporation 47

foo {

infoo();
bar();

}

infoo {

…

}

Internal
linkage
resolved at
link time

MYCO - CSO

Program Linkage Table
(PLT)
Dynamic Linkage sets PAT
Stub pointer and offset to
LIBVEC

bar {

exfoo();

}

Global Offset Table
(GOT)

Function LIBVEC

bar1

fun2

exfoo

.

.

MLIB - CSO

Several entry points in
control program for
passing to control to
another program

exfoo {}

Program Attribute Table
(PAT) for Base Program

…
MLIB
…
LIBVEC pointer
…
C-to-C Stub Code

…

Program Management

z/TPF | October 13, 2020 | © 2020 IBM Corporation 48

foo {

infoo();
bar();

}infoo {

…

}bar {

exfoo();

}

Several entry points in
control program for
passing to control to
another program

exfoo {}

Loadset NEWPROG
Function LIBVEC

bar1

<DUMP>

exfoo

.

.

exfoo {}

Base Program
Function LIBVEC

bar1

fun2

exfoo

.

.
Program Attribute Table
(PAT) for Loadset
NEWPROG

…
MLIB
…
LIBVEC pointer

…

Global Offset Table
(GOT)
Program Linkage Table
(PLT)
Dynamic Linkage sets PAT
Stub pointer and offset to
LIBVEC

How LIBVECs
handle multiple
versions loaded
via E-type loader

Program Management

z/TPF | October 13, 2020 | © 2020 IBM Corporation 49

Internal
linkage
resolved at
link time

Function call stub in FINIS
macro expansion
Dynamic Linkage sets PAT
Stub pointer and offset to
LIBVEC

Function LIBVEC

XYZ1

Program Attribute Table
(PAT)

…
XYZ1
…
LIBVEC pointer
…
A-to-A Stub Code

…

XYZ1 - BSO

Several entry points in
control program for
passing to control to
another program

BEGIN XYZ1

BEGIN AB01
.
ENTRC AB02
.
EXITC
FINIS AB01

BEGIN AB02
.
ENTNC AB03
FINIS AB02

BEGIN AB03
.
ENTRC XYZ1
BACKC
.
FINIS AB03

AB01 - BSO

Program Management
Enter/Back Assembler Macros

z/TPF | October 13, 2020 | © 2020 IBM Corporation 50

z/TPF programs are invoked through one of the create macros or through one of the
following enter macros:
– ENTNC

• Enter with no return. The calling program does not expect a return of control.
– ENTRC

• Encountered during entry processing, BACKC returns control to the last program that issued an
ENTRC.

– ENTDC
• Enter and drop previous programs. An ECB-controlled program is called and the Enter-Back macro

control information that was saved is reinitialized to remove linkages to all previous programs.
– SWISC TYPE=ENTER

• Transfer the ECB to another I-stream and drop previous programs. This macro performs the function of
ENTDC while transferring the ECB to another I-stream.

C language APIs for each of these macros exist.

Program Management
Commands

z/TPF | October 13, 2020 | © 2020 IBM Corporation 51

ZDMAP
– displays the link map information given a program name or an address in

memory

ZDPAT / ZAPAT
– displays or alters the attributes of a given program with option for in

memory, on file, or both

ZDPGM / ZAPGM
– displays or alters the contents of a given program with option for in

memory, on file, or both

ZDPLT
– display linkage type of a given program, or displays names of programs

given linkage type

Program Management
Active Program Detection

z/TPF | October 13, 2020 | © 2020 IBM Corporation 52

Records what programs are actively called / used on
a production system

Collected on each processor by CPUID

Some programs have special characteristics that
prevent detection
– Shown as “other”

Active Program Detection Report Version 1.0
Creation Date 08/14/2017

Active Program Detection Start Times
CPUID, Date
B, 04/27/2017
C, 06/30/2017
D, 08/12/2017

Active Program Detection Status
Program Name, Type, Any, B, C, D
ABCD, BSO, YES, YES, NO, NO
ABCE, BSO, YES, YES, YES, YES
ABCF, BSO, YES, YES, YES, NO
ABCG, BSO, NO, NO, NO, NO
ABD0, DATA, OTHER, OTHER, OTHER
.
.
.

Program Management
Common Deployment

z/TPF | October 13, 2020 | © 2020 IBM Corporation 53

Common Deployment - make Deployment Descriptors available for use.

Deployment Descriptor - an XML file that describes the capabilities and options for a specific function or component.
This XML file must be deployed on the z/TPF system before it can be used. When a deployment descriptor is deployed, the XML file is
parsed and the results are placed in memory. This process reduces processor usage for subsequent uses of this information.

Examples: REST, DFDL, MongoDB, ADBI

Parsing the descriptor file and creating the memory structure are tasks that are unique to each function.

Common Deployment performs common tasks:

• Maintains the status of which files are deployed

• Deploys the file again after an IPL

• Provides a mechanism to find the in-memory structure

• Handles any changes to the file; that is, handles a file in a loadset that was activated or deactivated.

• During restart, common deployment initializes the memory structures and calls function-unique processing for each deployment
descriptor. Additionally, if a file is deployed, the in-memory structure is marked as available for use.

yyy.srvc.json

{
"swagger" : "2.0",
"info" : {
"description" :

“Does something …

Program Management
Common Deployment, Cont’d

z/TPF | October 13, 2020 | © 2020 IBM Corporation 54

fdes-config.csv

.swagger.json,CSWG
,NO,NO

.srvc.json,CSVC,YES
,NO

Configuration File

CSWG CSVC

other …

xxx.swagger.json

{
"swagger" : "2.0",
"info" : {
"description" :

“Does something …

myFile.swagger.json

{
"swagger" : "2.0",
"info" : {
"description" :

“Does something …

Common
Deployment

Common Deployment
Hash Table

…

…
Data for
myFile.swagger.json

…

…

…

…

Application
uses REST

service

REST
calls

tpf_fdes
_find() to
retrieve

data

Data for
myFile.swagger.json

in Loadset

Program Management
Common Deployment, Cont’d

z/TPF | October 13, 2020 | © 2020 IBM Corporation 55

fdes-config.csv

.swagger.json,CSWG
,NO,NO

.srvc.json,CSVC,YES
,NO

Configuration File

CSWG CSVC

other …

myFile.swagger.json
in Loadset

{
"swagger" : "2.0",
"info" : {
"description" :

“Does something …

myFile.swagger.json

{
"swagger" : "2.0",
"info" : {
"description" :

“Does something …

Common
Deployment

Common Deployment
Hash Table

…

…
Data for
myFile.swagger.json

…

…

…

…

Application
uses REST

service

REST
calls

tpf_fdes
_find() to
retrieve

data

Program Management
Common Deployment – Deleting a descriptor file

z/TPF | October 13, 2020 | © 2020 IBM Corporation 56

Files under /sys/tpf_pbfiles (including common deployment descriptor files) should be deleted through
the loaders.
– If you delete a descriptor file using ‘zfile rm’ the file is deleted, but memory structures remain in the common

deployment hash table.
– It can also prevent you from loading another file that defines some of the same configuration data.

Instead, add an @@DELETE statement to your loader input file.
– You can delete a file as part of a loadset.
– The file will appear as missing if a new ECB tries to access it, while old versions of the file continue to be available to

ECBs created before the loadset was activated.
– Common deployment structures will also appear as missing to new ECBs, while they continue to be available to

older ECBs.

Thank You!

z/TPF | October 13, 2020 | © 2020 IBM Corporation 57

Questions or Comments?

z/TPF | October 13, 2020 | © 2020 IBM Corporation 58

BACKUP

z/TPF | October 13, 2020 | © 2020 IBM Corporation 59

IBM, the IBM logo, ibm.com and Rational are trademarks or registered trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM
trademarks is available on the Web at “Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.
Notes
Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a
controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount
of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no
assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.
All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have
used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary
depending on individual customer configurations and conditions.
This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in
other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on
the product or services available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and
objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not
tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.
Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your
geography.
This presentation and the claims outlined in it were reviewed for compliance with US law. Adaptations of these claims for use in other
geographies must be reviewed by the local country counsel for compliance with local laws.

Trademarks

z/TPF | October 13, 2020 | © 2020 IBM Corporation 60

