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Encryption and Key Management
Securing Data on z/TPF  
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• The z/TPF system uses many methods to protect data, centering on data encryption, data 
integrity and authentication.  
• Data Encryption :  Scrambles data making it unintelligible for unauthorized parties. 
• Data Integrity : Ensures the data has not been altered.  
• Authentication : Establishes that you are who you claim to be

• Protecting Data 
• Protecting Data In Flight  :  Data that is being transferred across the network

• Transport Layer Security, or TLS (also known as SSL)

• Protecting Data at Rest  :  Data that is being persisted (or stored) 
• Tape Encryption
• z/TPFDF Encryption
• Application encrypted using the secure keystore

• Protecting Data in Use  :  Data residing in z/TPF memory during a transaction
• Don’t want this sensitive data to be displayable (z-Commands, dumps, debugger, 

etc)
• Can use non-displayable storage to mark storage areas as non-displayable
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Symmetric vs Asymmetric Encryption
Symmetric Encryption
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• Same key is used for encrypting and decrypting
• Used for encrypting / decrypting large amounts of data

• For example, encrypting data across the network  
• Relatively inexpensive to do symmetric encryption

• The downfall is both sides need to exchange this secret key 

• z/TPF supports
• DES, TDES
• AES128, AES256

(recommended)
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Symmetric vs Asymmetric Encryption
Asymmetric Encryption
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• Public / Private key pair is used for encrypting  and decrypting
• Data encrypted with the public key can only be decrypted with 

the private key
• Primarily used in OpenSSL to transfer secret symmetric key
• Extremely expensive operations to perform

• z/TPF supports
• RSA1024 and 

RSA2048

z/TPF  |  October 29, 2020  |  © 2020 IBM Corporation



8

Agenda

• Securing Data on TPF
• Asymmetric vs Symmetric Encryption
• Cryptographic Hardware Acceleration
• Transport Layer Security (TLS)
• Shared SSL Support

• The z/TPF Keystore
• Secure Symmetric Cryptography
• Secure Public Key Cryptography

z/TPF  |  October 29, 2020  |  © 2020 IBM Corporation



Cryptographic Hardware Acceleration
Cryptographic Hardware Acceleration
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• There are two types of cryptographic hardware 

• Central Processor Assist for Cryptographic Function (CPACF) 
• Used for symmetric encryption and message digests (data integrity)

• Encryption algorithms – DES, TDES, AES128 and AES256
• Message Digests – SHA1, SHA256, SHA512
• Random number generation - DRNG, TRNG

• A co-processor that resides next to the main CPU
• Operations to CPACF are synchronous

• Meaning CPU waits for operation to complete

• CryptoExpress card
• Used for asymmetric encryption

• RSA1024 and RSA256
• Separate physical card that gets put in the processor 

• Can add more cards as load increases
• Operations to CryptoExpress are asynchronous

• Meaning CPU can do other work while operation is in progress 
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Transport Layer Security (TLS)
TLS Architecture
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Transport Layer Security (TLS)
z/TPF Support for TLS
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• The z/TPF system supports TLS (SSL) sessions by using standard OpenSSL (version 1.1.1)
• Transport Layer Security (TLS) version 1.0, TLS version 1.1, and TLS version 1.2
• Rivest-Shamir-Adelman (RSA) public key cryptography.
• AES128, AES256, and (Triple-DES) ciphers
• Message Digest Algorithm 5 (MD5), Secure Hash Algorithm (SHA-1, SHA-256) digest 

algorithms
• Client and server authentication

• z/TPF OpenSSL Cryptography Usage: 
• Uses asymmetric encryption (RSA) for SSL session startup

• Asymmetric encryption which is used to encrypt the symmetric key for this SSL session
• A new symmetric key is created for every SSL session

• z/TPF OpenSSL uses symmetric encryption (TDES or AES) for encrypting data across the 
wire. 

• z/TPF OpenSSL uses MD5, SHA1, SHA256 for data integrity

• Open source package has been updated to use the CPACF and CryptoExpress hardware 
acceleration when available. 
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Transport Layer Security (TLS)
TLS Handshake Flow
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SSL Context (CTX)
- TLS Version
- TLS Ciphers
- Certificate
- Private Key

SSL Context (CTX)
- TLS Version
- TLS Ciphers
- CA Certificate

Client Server

Ø Validates server 
certificate

Ø Uses public key in 
server certificate 
to encrypt secret 
symmetric key

Ø Decrypts secret 
symmetric key 
using private key

Ø Negotiates cipher
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Transport Layer Security (TLS)
z/TPF Support for TLS

14

• Specifying certificates and key files for applications is done programmatically in SSL

• Middleware that supports SSL in z/TPF generally uses SSL configuration files to define the SSL 
configuration for applications
• Allows for administrative control over SSL configuration
• For example, INETD model SSL inputs the SSL configuration in 

/etc/ssl/inetd/servername.conf

• SSL configuration generally includes
• TLS Version (1.0, 1.1, 1.2) 
• Ciphers (ie. AES256-SHA256)
• Certificates and Keys

• Required for servers
• Only required for clients when “Client Authentication” is enabled on the server

• Certificate Authority
• Generally required for clients (at times can be disabled for test)
• Only required for server if “Client Authentication” is enabled. 

z/TPF  |  October 29, 2020  |  © 2020 IBM Corporation



15

Agenda

• Securing Data on TPF
• Asymmetric vs Symmetric Encryption
• Cryptographic Hardware Acceleration
• Transport Layer Security (TLS)
• Shared SSL Support

• The z/TPF Keystore
• Secure Symmetric Cryptography
• Secure Public Key Cryptography

z/TPF  |  October 29, 2020  |  © 2020 IBM Corporation



Transport Layer Security (TLS)
z/TPF Shared SSL Support
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• Shared SSL increase the scalability and usability by allowing SSL sessions to be shared by ECBs 
on the z/TPF system

• The opensource OpenSSL library is heavily tied to a specific process (ECB)
• When the process exits, the session is cleaned up (process scoped sockets)

• z/TPF Shared SSL Support
• A system managed configurable set of long running processes and threads that own the 

SSL sessions on behalf of z/TPF applications. 
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Transport Layer Security (TLS)
z/TPF Shared SSL Daemons
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Transport Layer Security (TLS)
z/TPF Shared SSL Support
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Transport Layer Security (TLS)
z/TPF Shared SSL - Application

19

• An SSL application must first establish a context (CTX).  
• The CTX assigned holds things like certificates, session options, etc.
• One or more SSL sessions can be created against the same CTX
• SSL_CTX_new creates the CTX for an SSL process.  

• For z/TPF Shared SSL, you issue SSL_CTX_new_shared
• This assigns the CTX to one of the SSL daemon threads.
• The application still gets a CTX, but its really acting as a token for TPF to assign requests to 

the shared SSL processes.  
• SSL sessions created against that CTX are also tokenized and assigned to a shared SSL 

process.  

• You can load balance sessions for specific CTXs across multiple daemon processes:
• Code and loading the /etc/sslshared.txt defines the balance for specific CTX structures

• The SSL_CTX_new_shared takes in an optional name used in this file. 
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Transport Layer Security (TLS)
z/TPF Shared SSL CTX – Not Balanced
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Transport Layer Security (TLS)
z/TPF Shared SSL Daemons – Not Balanced
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• Not ideal for applications 
that can create large 
amounts of sessions with a 
single CTX (ie. HTTP Server)
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Transport Layer Security (TLS)
z/TPF Shared SSL CTX – Balanced Sessions
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Transport Layer Security (TLS)
z/TPF Shared SSL CTX – Balanced Sessions

23

SSLPROC 2

Shared SSL Daemons

SSLPROC 1

SSLPROC 3

SSLTHRD 1
SSLTHRD 2

SSLTHRD 3

SSLTHRD 1
SSLTHRD 2

SSLTHRD 3

SSLTHRD 1
SSLTHRD 2

SSLTHRD 3

Rem
ote TLS Endpoints

z/TPF 
Applications

CTX 
Token

Real CTX
• If the application is 

balanced, a real CTX is 
assigned to each SSL 
process

Real CTX

Real CTX

SSL Session 
Tokens

Real SSL Session

Real SSL Session

Real SSL Session

z/TPF  |  October 29, 2020  |  © 2020 IBM Corporation



Transport Layer Security (TLS)
z/TPF Shared SSL – Balancing Sessions
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• Balancing Sessions
• The default action when balancing sessions is to assign the CTX to the daemon with the 

least sessions
• Fine for a 1:1 CTX to session ratio
• But when the CTX to session ratio is 1:many, balancing sessions is important

• Why do you want to balance work across daemons?
• Memory – each session takes up memory and you don’t want to run a shared SSL 

process out of memory. 
• Overloading worker threads on a particular process which could effect response time.
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Transport Layer Security (TLS)
z/TPF Shared SSL – Daemon Processes and Threads
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• The number of shared SSL processes and the threads per process is defined in keypoint 2
• SSLPROC and SSLTHRD

• Tuning the number of SSLPROC
• Dependent on memory usage for SSL sessions.

• Tuning the number of threads is based on the number of istreams
• When large amount of connections are received (SSL_accept or SSL_connect)

• Half the threads are used to service connection requests (and are blocked)
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z/TPF Keystore
What is it?
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• Enables you to create and manage symmetric encryption keys in a secure manner (ie AES)
• Applications can use the support to protect sensitive data 

• stored on tape or disk (data at rest) 
• flowing over the network (data in flight)

• Enables you to create and manage public-private keypairs in a secure manner (RSA Keys)
• Applications can use private keys from the z/TPF keystore (never in the clear) 

• High performance designed for mainline application use

• Secure backup and restore capability 
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z/TPF Keystore
Component View
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CPACF / CryptoExpress
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z/TPF Keystore
Secure Key Components
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• Master Keystore
• Persistent copy of encryption/decryption keys on DASD
• Shared by all processors in the complex

• Memory Keystore
• Copy of the master keystore information in memory on each CPU
• Exists for performance reasons

• Operator Interface
• Commands to create/activate/change keys, display keystore information, backup/restore keystore

information

• Application Interface
• APIs to encrypt and decrypt data using secure keys
• API to add a key to the keystore

• User Exits
• Control and log key usage (encrypt/decrypt data APIs)
• Control and log keystore adds (add key API) 
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Secure Symmetric Cryptography
What is it? 
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• Create / Import Symmetric Keys 
• AES128, AES256, TDES, DES

• Secret keys are assigned names
• Encryption key name – used to encrypt data
• Decryption key name

• Returned from encrypt operations to be used for decrypt
• Allows for changing keys without application changes
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Secure Symmetric Cryptography
Defining Resources 
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• Determine how many secure keys you will need 
• Master Keystore

• Define #IKEYS fixed file records in the FACE table (FCTB) 
• Formula for how many records are needed based on the number of keys is in 

the z/TPF documentation 
• Load the new FCTB 

• Memory Keystore
• Define the size (number of entries) in Keypoint C (CTKC) KEYSENT parameter 

on the SKEYS macro in SIP CTKC is processor shared 

• Defining the keystore enables secure key management support - sizes of the master 
keystore and memory keystore can be different 

• Memory keystore must be large enough to hold all the keys defined in the master 
keystore

z/TPF  |  October 29, 2020  |  © 2020 IBM Corporation



Secure Symmetric Cryptography
Creating and Activating Keys
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ZKEYS GENERATE ENC-MYKEY DEC-MYDKEY1 CIPHER-AES256 NEW 
KEYS0002I 08:14:31 KEY ENC-MYKEY DEC-MYDKEY1 GENERATED AND ADDED TO MASTER KEYSTORE 
KEYS0003I 08:14:31 KEY ENC-MYKEY DEC-MYDKEY1 ADDED TO MEMORY KEYSTORE ON ALL PROCESSORS 

Keystore entry exists with the following information: 

Encryption Key Name Decryption Key Name Active Cipher       Secret Key 
------------------- ------------------- ------ ------ -----------
MYKEY               MYDKEY1              YES   AES256       “KEY1”

ZKEYS ACTIVATE ENC-MYKEY DEC-MYDKEY1 
KEYS0006I 08:19:31 KEY ENC-MYKEY DEC-MYDKEY1 IS NOW ACTIVE IN MASTER KEYSTORE KEYS0007I 
08:19:31 KEY ENC-MYKEY DEC-MYDKEY1 IS NOW ACTIVE IN MEMORY KEYSTORE ON ALL PROCESSORS 
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Secure Symmetric Cryptography
Data Encryption Example
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Secure Symmetric Cryptography
Secure Key Encrypt APIs
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char* encrypt_key_name = malloc(8); 
char* data = malloc(sizeof (“Place Your Bets”)); 
int data_length = sizeof(data); 
strcpy (encrypt_key_name,“MYKEY"); 
strcpy (data,“Place Your Bets"); 
rc = tpf_encrypt_data(encrypt_key_name, data,  

data_length, data, NULL,   
decrypt_key_name); 

if (rc != 0) 
printf("Encrypt Failed\n"); 

!"#$#%&'(")*+%#',-#-.)/-*$0(")*+%#'1(+'"-2(3$
)/-*$0,-#-3$!"#$,-#-'4("5#/3$
)/-*$0(")*+%#'67&&(*3$
)/-*$0!)8'%#*3$)/-*$0,()*+%#'1(+'"-2(9:

!"#$#%&',()*+%#',-#-.)/-*$0,()*+%#'1(+'"-2(3$
)/-*$0,-#-3$!"#$,-#-'4("5#/3$
)/-*$0,()*+%#'67&&(*3$
)/-*$0!)8'%#*9:
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Secure Symmetric Cryptography
Changing Keys Example – Decrypting Data Example
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Secure Symmetric Cryptography
Changing Keys
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• Data was encrypted using "KEY1" in the previous example

• A new key is created and activated that changes the key value used to
encrypt data with encryption key name MYKEY from "KEY1" to "KEY2“

• The keystore now contains two entries:

Encryption Key Name Decryption Key Name Active Cipher       Secret Key 
------------------- ------------------- ------ ------ -----------
MYKEY               MYDKEY1              NO    AES256       “KEY1”
MYKEY               MYDKEY2              YES   AES256    “KEY2”
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Secure Symmetric Cryptography
Changing Keys Example

38

z/TPF  |  October 29, 2020  |  © 2020 IBM Corporation



39

Agenda

• Securing Data on TPF
• Asymmetric vs Symmetric Encryption
• Cryptographic Hardware Acceleration
• Transport Layer Security (TLS)
• Shared SSL Support

• The z/TPF Keystore
• Secure Symmetric Cryptography
• Secure Public Key Cryptography

z/TPF  |  October 29, 2020  |  © 2020 IBM Corporation



Secure Public Key Cryptography
Secure PKI Keystore
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• Allows you to create, manage, and use RSA key pairs in a secure manner

• Extends z/TPF secure key management support 

• Supports 1024-bit and 2048-bit RSA key pairs

• Key pair is referenced by name

• Private key value is secured – not visible to operators, applications, 
coverage, and so on

• Public key value is available to anyone
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Secure Public Key Cryptography
Defining Resources 

41

• Determine how many PKI keys you will need 
• Master Keystore

• Define #IPKI fixed file records in the FACE table (FCTB) 
• Formula for how many records are needed based on the number of keys is in the z/TPF 

documentation 
• Load the new FCTB 

• Memory Keystore
• Define the size (number of entries) in Keypoint C (CTKC) PUBKENT parameter on the PKEYS 

macro in SIP CTKC is processor shared 

• Defining the PKI keystore requires the Secure Symmetric Keystore is enabled (KEYSENT)

• PKI key management supports Sizes of the master keystore and memory keystore can be different 
• Memory keystore must be large enough to hold all the keys defined in the master keystore
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Secure Public Key Cryptography
Generating Secure PKI Keys
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• Use the ZPUBK GENERATE command

• Specify the name of the key pair (for example, KEYPAIR1) which is 
how subsequent operator commands and APIs will reference/use 
this key pair

• Specify the key length (1024-bit or 2048-bit) 

• RSA key pair is created and added to the PKI keystore

• Issue additional operator commands to backup the keystore and 
activate the key pair making it available for use
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Secure Public Key Cryptography
Creating Certificates
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1. z/TPF operator creates an RSA key pair called KEYPAIR1
2. Create a file (called myinfo.cfg in this example) containing the subject 

information needed to create a certificate request
3. Issue the ZPUBK REQCERT command.  Input includes:   

– Key pair name (KEYPAIR1) that says which public key to use 
– Name of the file (myinfo.cfg) containing the subject information 
– Name of the file (mycert.fil) into which to build the certificate 

request (PKCS #10 format)   
4. Send (FTP) the certificate request to the CA who will create the 

digital certificate
5. From the CA, send (FTP) the certificate to your z/TPF system  

*Ability to create self signed certificates for testing
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Secure Public Key Cryptography
Solving OpenSSL Private Key Concern
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• OpenSSL programming model cannot be changed

• Would break lots of middleware built on top of OpenSSL

• SSL applications will be able to use an RSA key pair 
generated by z/TPF

• Application program still uses standard OpenSSL APIs to 
indicate the name of the file that contains the private key
• If the file name path starts with a special prefix (/tpfpubk), 

this tells z/TPF that the name that follows is really the name 
of the RSA key pair to use and not to try and open/use a file in 
the file system  
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Secure Public Key Cryptography
Using Secure PKI Keys In SSL
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• z/TPF operator creates an RSA key pair called KEYPAIR1

• To use this RSA key pair, an SSL application on z/TPF issues 
the SSL_CTX_use_PrivateKey_file API with the private key 
file name set to:
– /tpfpubk/keypair1.pem 

• The private key value is not copied into the application 
program’s memory space

• Only the key pair name (KEYPAIR1) is saved in the SSL 
structure in the application’s memory space
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Secure Public Key Cryptography
Secure PKI Summary
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• The Secure PKI Keystore allows for

• Securely start OpenSSL Sessions

• Import Symmetric Keys Securely

– tpf_secure_key_import

• User can encrypt / decrypt data using RSA keys

– tpf_RSA_encrypt_data

– tpf_RSA_decrypt_data

• User can create / verify digital signatures 

– tpf_RSA_sign

– tpf_RSA_verify
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