
App Connect Enterprise zCX

Wayne Swales
App Connect Offering Management

IBM App Connect Enterprise for zCX on z/OS, Ongoing Innovation

The integration solution of choice for z/OS

Resilience

CICSRequest node for simple CICS program integration using 2 phase commit and Hipersockets

Support for Mirror txns, for QoS, task priorities and more

HTTP. Rest, MQ, Web Services

Co-location

Integrate z/OS sub-systems with ACE close to the source and target, IMS, DB2, CICS, MQ etc Exploit event driven architectures by emitting data from CICS events & other z/OS systems formatted by ACE zCX collocated on z/OS

Cloud connectors

Integrate data from/to z/OS sub-systems with Cloud applications

Secure Callable integration flow capability across integration servers in different systems. Access to 100's of SaaS smart connectors enabling z/OS integration with Cloud solutions

Connect z/OS sub-systems with multi protocol support. Use ACE to connect, format & encode data from z/OS to Cloud based solutions such as analytics and any other SaaS solution

Notes

z/OS Container Extensions is an exciting new capability that is delivered as part of IBM z/OS

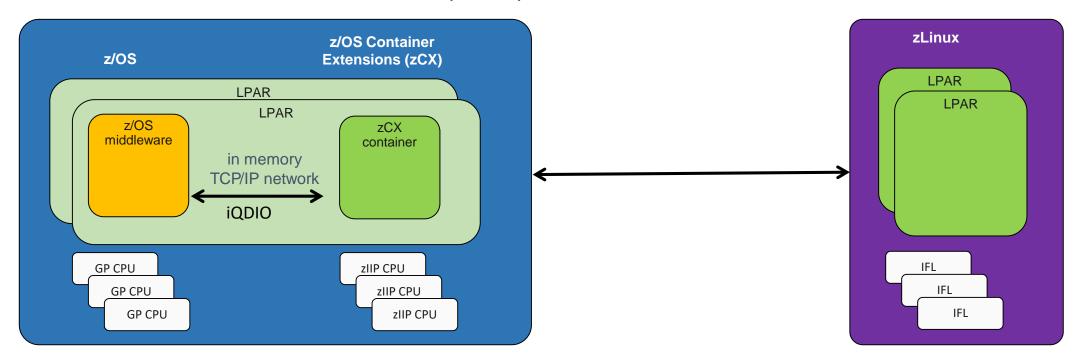
V2R4. It is designed to enable the ability to run almost any Docker container that can run on

Linux on IBM Z in a z/OS environment alongside existing z/OS applications and data without

a separate provisioned Linux server.

App Connect Enterprise is now available on an additional platform zCX.

Provides z/OS customers with the ability to deploy ACE integrations as micro-services on the z/OS operating environment.


Close proximity to z/OS sub-systems such as CICS, IMS, DB2, MQ, RACF and others.

Hyper-socket support across partitions, cross memory communications, no cabling.

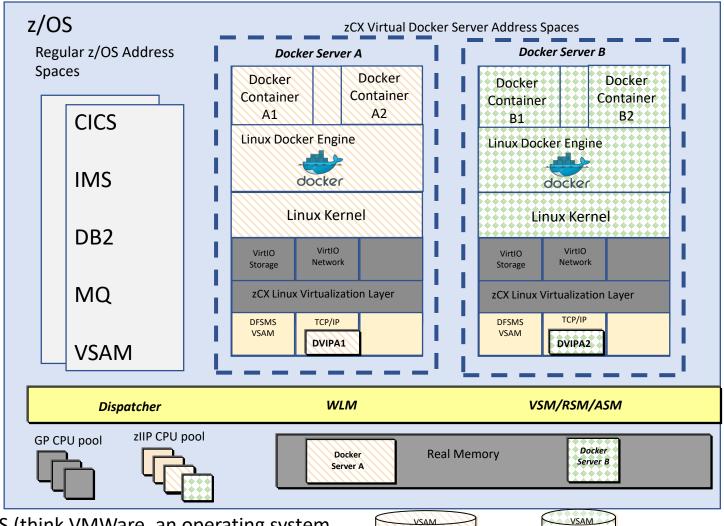
zCX enables clients to deploy Linux on Z applications as Docker containers in a z/OS system to directly support workloads that have an affinity to z/OS. This is done without the need to provision a separate Linux server. At the same time, operational control is maintained within z/OS and benefits of z/OS Qualities of Service (QoS) are retained.

Linux on Z applications can run on z/OS, so you are able to use existing z/OS operations staff and reuse the existing z/OS environment.

z/OS Container Extensions (zCX)

zCX Customer Value:

- ✓ Aligned to z/OS customer skills
- ✓ Deploy Linux on Z software components as Docker Containers in a z/OS system, in direct support of z/OS workloads
- ✓ Close co-location without requiring a separately provisioned Linux server
- ✓ While maintaining overall solution operational control within z/OS and with z/OS Qualities of Service
- ✓ Requires IBM z14 (or later) based server with z/OS 2.4


IBM Hybrid Cloud solutions:

- ✓ There is no need for a recompile to run on zCX, if a product runs on zLinux it will work in zCX (zLinux plans for Base Pak in 3Q)
- ✓ Enables customers to grow their workloads without GP/MLC overheads leaving capacity for core applications; CICS, IMS etc.
- ✓ Enables customers to consolidate workloads and remove server farms of x86

zCX Virtual Docker Server Instances

- Multiple zCX instances can be deployed within a z/OS system:
 - Isolation of applications (containers)
 - Different business/performance priorities (i.e. unique WLM service classes)
 - Capping of resources allocated for related workload (CPU, memory, disk, etc.)
- Each zCX address space:
 - Has specific assigned storage, network and memory resources
 - Shares CPU resources with other address spaces
 - Can influence resource access via configuration and WLM policy controls
- A new Hypervisor built using existing z/OS capabilities
 - The z/OS Dispatcher, WLM and VSM/RSM components manage access to CPU and memory
 - The zCX virtualization layer manages Storage, Network and Console access
 - Using dedicated resources
 - There is no communications across z/OS Linux virtualization layer instances
- Integrated z/OS Capacity Provisioning and Management
 - WLM, CPM, adding/removing CPU and Memory resources

Performance: zCX performance is **on par** with running the same applications on zLinux under zVM

What is zCX: zCX is a type 2 hypervisor running under z/OS (think VMWare, an operating system running inside another operating system) in which Linux operating systems can run within a z/OS address space (process). Ubuntu, CoreOS, RHEL have all run inside this hypervisor, unchanged.

Integration Use Cases:

MQ

✓ Aspera FASP.IO gateway to accelerate MQ workloads for long distance messaging

- Gateway running in zCX plus MQ on z/OS running on same LPAR
- Included in zCX Redbook currently being developed (Chapter 3)

✓ Managing large numbers of client applications accessing the mainframe

- Use distributed MQ as a client concentrator to a z/OS queue manager (e.g. many MQ JMS apps deployed in cloud environments)
- Also covered in zCX Redbook (Chapter 4)

✓ Reducing cost of cluster management on z/OS

- Use MQ zCX as a cluster full repository to a z/OS only MQ cluster
- Separate full repository is best practice and CPU cost associated is now offloadable to zIIP

zCX Redbook:

http://www.redbooks.ibm.com/redpieces/pdfs/sg248471.pdf

ACE

✓ ACE Container deployments

- Run Integration Servers stand-alone in containers in zCX within z/OS in close proximity to other z/OS applications
- Enable clients to perform CPU intensive transformation on zIIP processors
- Included in zCX Redbook (Chapter 2)

✓ Host integration flows in close proximity to other z system applications

- Exploit cross-memory networking from ACE zCX deployed message flows calling mainframe applications using HiperSockets
- Higher levels of security using hardware cypto cards

✓ CI/CD integration on z/OS container deployments

- Update and deploy new integration flows as micro-services using common CI/CD pipelines
- Move the same code from test to dev with simple CI/CD processes
- Highly suitable for integration and messages that change frequently

✓ Common callable micro-services

Create common callable services deployed as micro-services in containers from CICS, IMS. IIB z/OS and other z/OS subsystems in the same z/OS computing environment

Achieve unparalleled performance on System Z & LinuxONE Full range to suit every business size

ACE fully supported on z/Linux and LinuxONE offers unparallel Vertical Scaling, Workload consolidation, removes server farms and adds high levels of security

zCX Supported at ACE 11.0.0.8

Containers on z/OS

ACE enhancements Sept 18th 2020

JCL to manage

SMP/E install option

ACE bip messages sent to the MVS

console

/p stop, /s start /f modify

New redbook coming

Value

Integration close to z/OS sub-systems

Security, consolidation, scale up

In-Memory networking using high-speed

TCP communications between partitions

(Hiper-sockets, iQDIO)

z/OS Workload manager policies

Customers rely on z/OS and directions ahead

IIB 10.x (SoD)

- Let's make it easy for customers on Systems Z
- Deliver IIB 10.x on z/OS
- Update binaries and pre-req levels
- Extend support to 2030 and beyond
- Simple migration, less disruption

Small/Medium/Large LinuxONE III

The z15 single frame system requires 75 percent less floor space than x86 servers 1 trillion secure web transactions per day 2M+ containers tested

190 configurable cores and up to 40 TB memory

Scale with up to 2.4M containers on a single system

Secure container /
Kubernetes based
solutions on IBM Z
or LinuxONE private
and hybrid clouds

Small/Medium/Large z15

ACE additional entitlements

For every VPC of ACE purchased, get 500K iPaaS flows per month to connect SaaS systems to your mainframes. Up to a maximum of 10M flow runs per month for free.

Docker on zCX vs distributed platforms

Sample JCL

- **BIPXBLD** Sample job to build a Docker image to run an integration server..
- **BIPXCLIS** Sample job to run the console listener program.
- BIPXDBG Sample job to debug the integration server Docker container.
- **BIPXDLI** Sample job to load a Docker image from a .tar archive on z/OS UNIX System Services.
- BIPXDSP Sample job to run a Docker system purge to clear space on the zCX instance.
- BIPXGET Sample job to copy or move a file from a running integration server Docker container to UNIX System Services.
- BIPXIS Sample job to run an integration server in zCX and display its logs.
- BIPXISCM Sample job to run an integration server runtime command.
- **BIPXISTP** Sample job to stop the integration server or to stop and remove its container, or remove the container without stopping it.
- **BIPXPUT** Sample job to copy a file from UNIX System Services to a running integration server Docker container.

- zCX docker images need to be built for s390x architecture
 - Most products already available
- With zCX operational control is maintained within z/OS and containers run with z/OS qualities of service e.g.
 - TCP/IP communication via high speed SAMEHOST networking to processes running on same LPAR
 - All the capabilities z/OS provides through VSAM and the TCP/IP stack to enable encryption, disaster recovery, and dynamic workload relocation available to zCX
 - Workloads in zCX can benefit from high availability and DR planning via features like IBM HyperSwap, storage replication, and IBM GDPS
 - zIIP eligible
 - No IFL like for zLinux
 - Removes x86 server farms

Integration vendors questions

Other Integration Vendors:

Other vendors may well be good at initial projects by focusing on simpler integration scenarios

A typical scenario may be integrating Web Services or JSON API's across HTTP with a data base, showing intuitive tools.

However they may struggle with:

Performance without a lot of additional servers and services

This matters for cost, management, flexibility, Hardware etc

Extend to more complex integration points

May not be able to extend, meaning additional product requirements May need custom code, unproven, high risk, potential lock-in Often coding vs configuration

May not have flexible deployment options

Cannot easily move from an On-prem to a Cloud or move to a container deployment

No flexibility of operating systems and hardware choices No option for Hybrid integration

Initial Project costs

May look a cheaper solution but is it when S&S is added over a term, is it when extended to other projects

Reliance on 3rd party adapters

Is the integration solution reliant on additional adapters or other plug-in technology not IBMOWINE CLIPPORTIES DIVISION INTEGRATION FOR INTEGRAL DIVISION INTEGRAL DIVISIONI DI PROPRIMI DIVISIONI DIVISION

Trusted partner in enterprise integration around the world and across all industries

~2000

customers in production

600+

Healthcare & Life Sciences companies

21

of the top 25 insurance companies

50

of the top 50 global banks

23

of the top 25 US Retailers

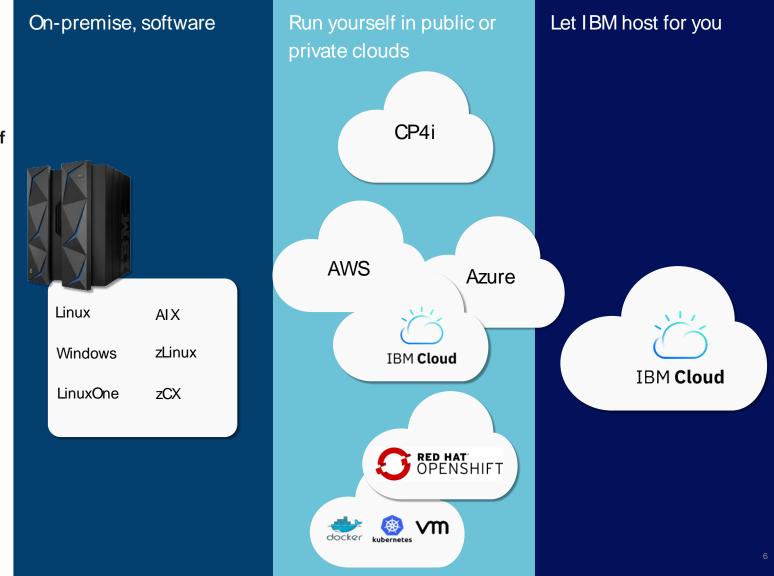
20

of top 20 global comm service providers

90%

of global credit card transactions

80%


of all worldwide airline reservations

IBM ACE is optimized for multi/hybrid deployment

Run in any location or cloud, exactly as you need it

- 1. Customer managed
 Licenses from IBM can be installed in any environment of
 the customers' choosing
- 2. Public Service
 Multi-tenant, fully managed service (including hybrid license)
- 3. Reserved Instance
 Single tenant, fully managed service
- 4. Red Hat OpenShift Kubernetes Services (ROKS) provided as a managed platform on all cloud vendors with simple container-based deployment
- 5.IBM Satellite
 extends IBM Cloud services to other hybrid and multicloud locations delivered as a service from a single pane
 of glass controlled through the public cloud

Built and Optimized - for Non-Intrusive Integration

Fastest Performing Integration Flow Engine

High-Performance optimized parsing and transformation technology

Built in Messaging Integration

Built in Accelerators

High Availability across processes, servers, systems and hardware Built-in optimized caching.
Workload Management and Transaction Monitoring.
No need for JEE infrastructure

including highperformance graphical
mapper.
Graphical DFDL parser
creation including
interactive testing.
C based parsers for high
performance and
memory optimisation

Includes IBM MQ Native JMS and Kafka / **Event Streams** Extensive Sync, Async and Transaction (XA) support. Queues, Topics, Events, Streams. MQTT and IoT. Plus all of the out of the box protocol support by configuration, high performance parsing

Patterns, Templates and over 70 Samples and **Tutorials** Wizard-driven pattern integration generation. Optimized integration language (ESQL) Multi-Language Support e.g. Java, C, .net.. **DFDL Optimized Parsing** and OffLine Interactive Data testing DB Schema discovery

zCX supported from ACE Fixpack 8.

Key zCX use cases from an ACE perspective:

✓ ACE Container deployments

- Run Integration Servers stand-alone in containers in zCX within z/OS in close proximity to other z/OS applications
 Enable clients to perform CPU intensive transformation activities on zIIP processors
- Included in zCX Redbook (Chapter 2)

✓ Host integration flows in close proximity to other z system applications

- Exploit cross-memory networking from ACE zCX deployed message flows calling mainframe applications using HiperSockets
- Higher levels of security using hardware cypto cards

√ CI/CD integration on z/OS container deployments

- Update and deploy new integration flows as micro-services using common CI/CD pipelines
- Move the same integration code from test to dev with simple CI/CD processes

✓ Common callable micro-services

Create common callable services deployed as micro-services in containers from CICS, IMS and other z/OS subsystems in the same z/OS computing environment

IBM z/OS Container Extensions (zCX) use cases

Chapter 2. IBM App Connect Enterprise	33
2.1 Technical and architectural concepts of ACE	34
2.1.1 Key concepts of ACE	
2.1.2 Runtime Components of ACE	36
2.1.3 ACE runtime in zCX 8	37
2.1.4 Reasons to run ACE on zCX	39
2.2 Installing IBM App Connect Enterprise	39
2.2.1 Create an intermediate image to pull data from GitHub	39
2.2.2 Get the ACE installation binaries) 4
2.2.3 Build the ACE docker image	96
2.3 Configuration details	98
2.4 Deploying an application to ACE to integrate with CICS	98
2.4.1 Deploy to ACE runtime in zCX)1
2.4.2 Using the Web UI to test deployed REST API's)5

http://www.redbooks.ibm.com/redpieces/pdfs/sg248471.pdf

ACE additional entitlements

For every VPC of ACE purchased, entitlement to 500K iPaaS flows per month to connect SaaS systems to your mainframes. Up to a maximum of 10M flow runs per month for no extra licence cost

Connectivity & Transformations Powering the Innovations in an Enterprise

Content Services Platform

χχ

Box

IBM FileNet

MS SharePoint

CMIS

MS One Drive

Confluence

Dropbox

Google Drive

Google Sheets

Salesforce Files Salesforce Libraries

WordPress

Cloud Storage

IBM Cloud Object Store

Technology Endpoints

HTTP

SOAP

LDAP

MS Active Directory Website Crawler

SFTP

Open API

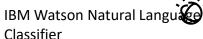
IBM Maximo

Siemens Teamcenter

Â

 \bigoplus

Cognitive & AI


IBM Weather Data

IBM Watson Language

Translator

IBM Watson Discovery

IBM Watson Tone Analyzer

IBM Watson Visual

Recognition

Databases

ORACLE

IBM Db2

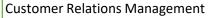
MS SQL Server

IBM Cloudant

Redis

Human Capital Management

Workday workday.


Kronos

NetSuite Suitepeople HCM

Peoplesoft

IBM Cloudant

Redis

Salesforce

MS Dynamics 365 for Sales

Sugar CRM

NetSuite CRM

Oracle Sales Cloud

Zoho CRM

Intactt

HubSpot

Infusionsoft

Apttus

T Service Management & Project Management

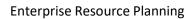
Service Now

Salesforce Service Cloud

Jira

Oracle Service Cloud

Zendesk


Fresh desk

Act-on

Asana

Trello

IBM Food Trust

Banking & Finance

SAP

Workday

NetSuite ERP Coupa

Zuora

Shopify

Magento

SAP Commerce Cloud

Salesforce Commerce Cloud

Salesforce Marketing Cloud

Salesforce Pardot

Eventbrite

Infusionsoft

Mailchimp

Wufoo

Enterprise Messaging

MS Dynamics F&O

NetSuite Finance

QuickBooks Online

Yapily

Stripe

SAP Concur

IBM MQ

Kafka

Amazon SQS

Amazon SNS

5 **Big Commerce**

E-Commerce

Marketing

Marketo

Google Analytics Google

Acoustic Campaign

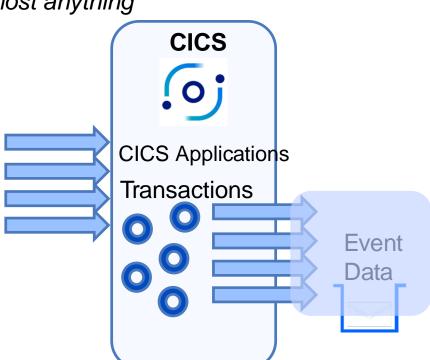
Collaboration & Communication Azure

MS Exchange

MS Office 365 Domino

Cisco WebEx Teams

Slack


Gmail

Twilio, Twitter

Email

What are Events

A call to a help desk
A sale is made
A pin number is changed
A delivery is made
An inquiry is made on a product
A customer's address is changed
An ATM event happens
Almost anything

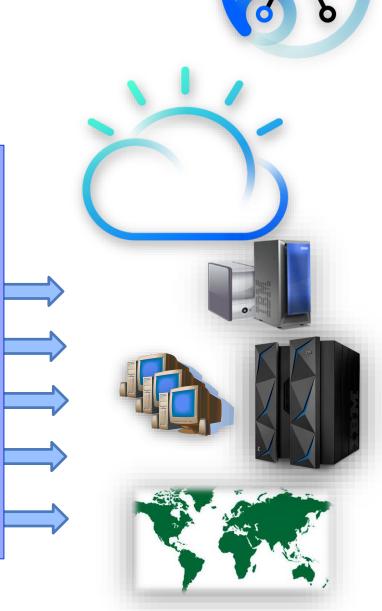
Security
Scale
Reliability
Agility
Transactions

Events scenario

zCX

App Connect

Enterprise

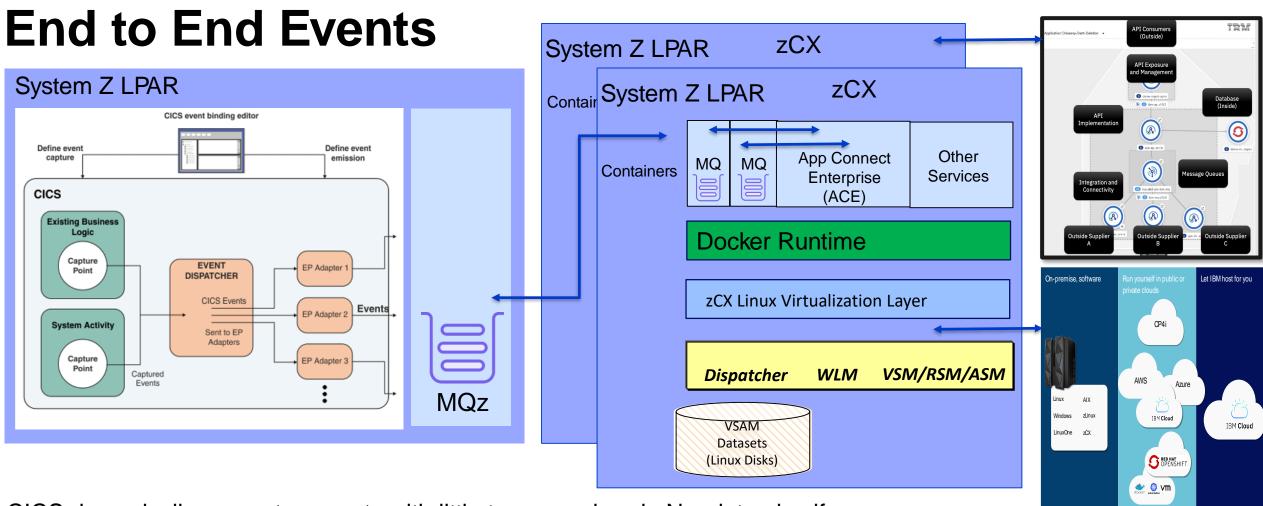

(ACE)

zCX Linux Virtualization Layer

Dispatcher WLM VSM/RSM/ASM

Other

Services


zCX

Docker Runtime

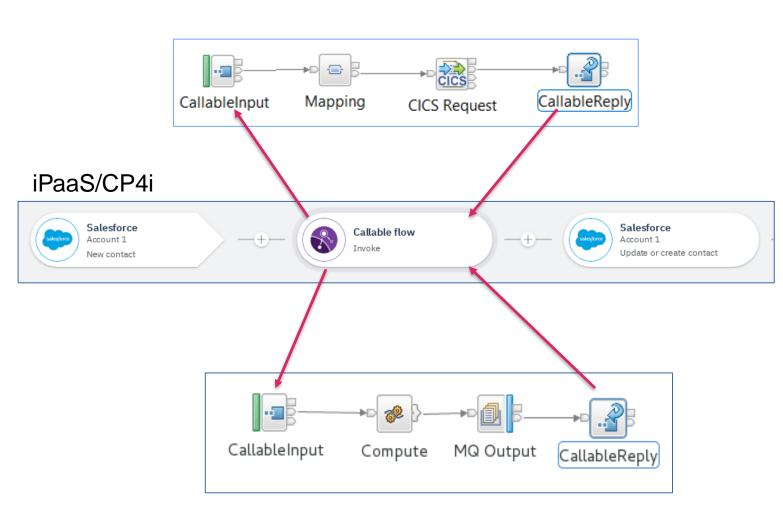
VSAM
Datasets
(Linux Disks)

System Z LPAR

Containers MQ MQ

CICS dynamically generates events with little to no overhead. Non-intrusive if EXEC CICS interface used.

If not then can insert SIGNAL EVENT a minor intrusion.


Pushed to MQz for high speed secure asynchronous deposit of data.

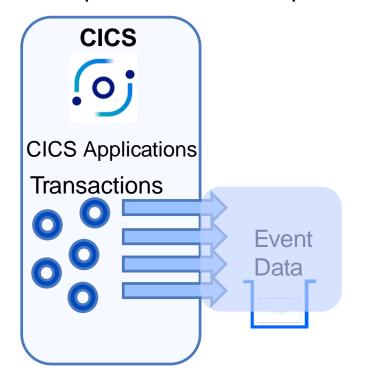
MQ on zCX used as a channel for draining the queue, ACE zCX reads the queue data, formats the data for the destination system

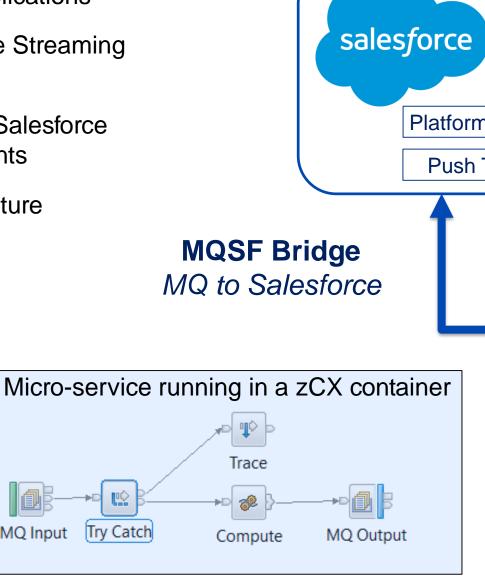
Persisted and encrypted for no data loss and secure end to end

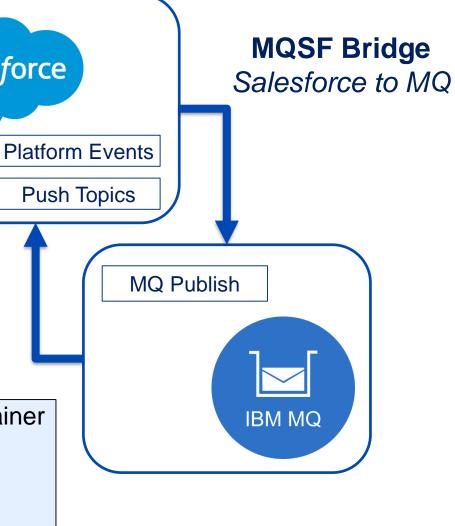
Use custom written app: Could increase MIPS causing costs of 3rd party s/w to increase. Hard to maintain, reliant on developers.

New records created in Salesforce and need to update CICS via an MQ queue or CICS node using custom formats

- 2 types of integration flows can be used to integrate Salesforce with CICS, one requires MQ one doesn't.
- Salesforce passes messages from Salesforce to ACE, appropriate formatting of the data in ACE, ACE then calls CICS via the ACE supplied CICS node & sends the data to CICS.
- 2. Salesforce passes messages from Salesforce to ACE, appropriate formatting of the data in ACE, ACE then sends to MQ either via MQ server channels or via MQ Client channels. CICS consumes the data via the CICS MQ "adapter".


Note: There are other options such as using Web Services or REST API's both into CICS from ACE

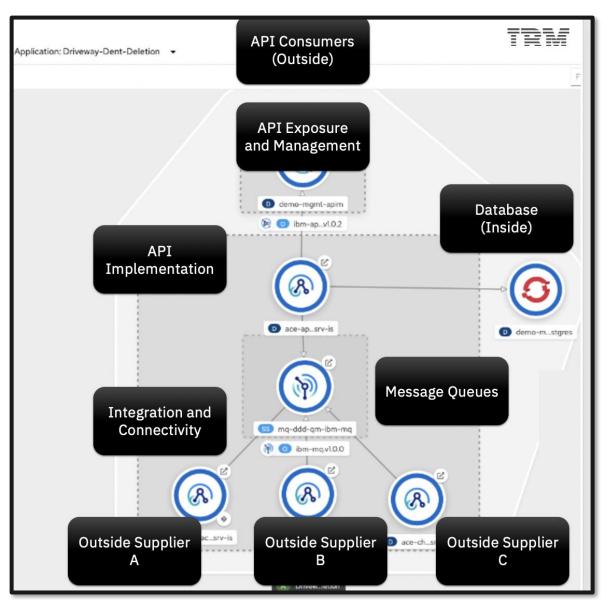

Using Streaming events with MQSF


MQ Input

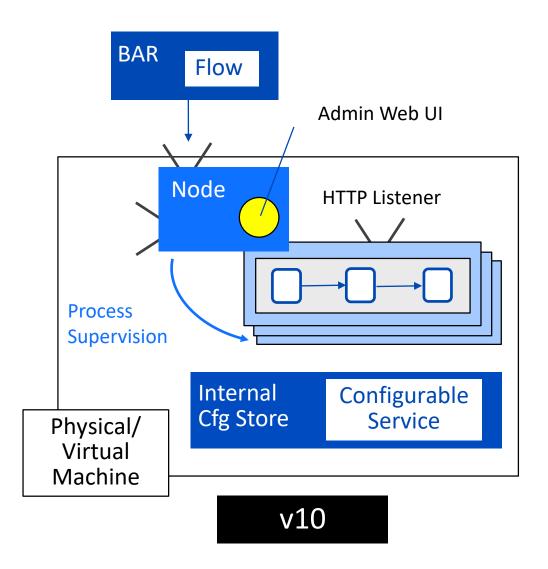
IBM MQ Provides bi directional bridge capability to connect your MQ applications

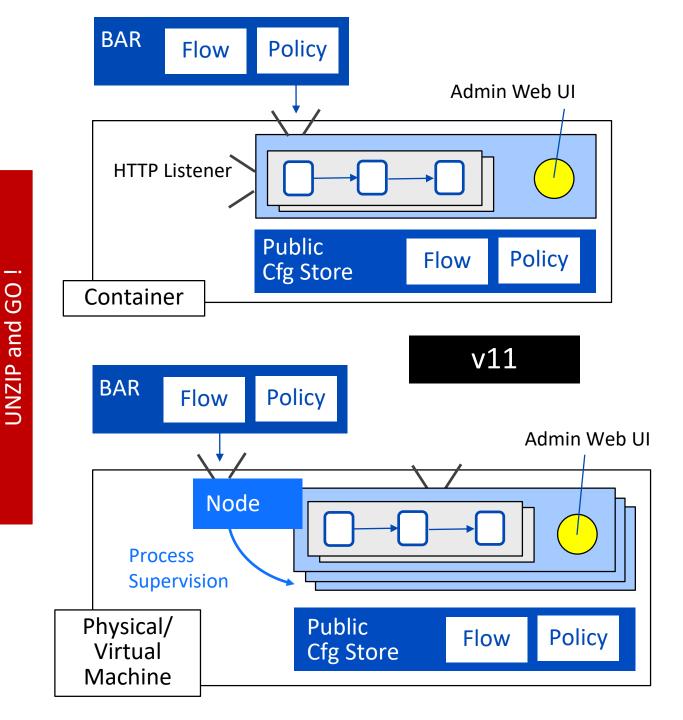
- Directly connects to Salesforce Streaming API
- Subscribes and publishes on Salesforce **Push Topics and Platform Events**
- Maps events to MQ topic structure

Understanding unique characteristics of an integration application


Integration Application

Today is about more than just the integration scripts, the source code written in Java, OpenAPI, or NodeJs or the associated configuration...


Connected INSIDE and
OUTSIDE - bring disparate data
together in new and unique ways.


Productized - commercially sensible via exposing their own APIs and events.

Unique Route to Live

How the IIB / ACE architecture has evolved to embrace containers

