Maximo Federated Resource

V1 - Updated: 03/01/2016

Contents
) oo [V L1 d o] o OO U TP PRTP PP 2
OVEIVIBW ..ttt ettt e e e s b e e s b bt e s e e sba st e s sabb e e e saaba e e s sbbaeessabaeeesanbaeessanans 3
Oyt =] =1 (=T USROS 5
JSON RESOUICE TY PO iiiiiiiiiiiiiiiieieieteieteteeeitttreteteteteteteteteteteteteteteteteteeeeeeeeeeeetrereteeeteteeetereeetereeeeeteeeeereeeeeeeees 5
Creating @ JSON RESOUICE . ..ttt ettt et et et s sasasesebabebnbebebene 8
Example: Federated Resource using 2 Maximo enVirONMENTSccccveeiiieeeeeiieeeeciree e eciee e e eeveee e 15
Example: Federated RESOUICE = IMIBIEE.......uuiiiiiieee ettt ettt et e e et e e e eee e e e ate e e s e e e bae e e eeateeeesnteeesnnneeas 23
Federated RESOUICE CONCEPLS . .ciiuiiiiiieeee ettt et e e e e e ectrte e e e e s e e attreeeeaeeesastaaeesaaeaeeeeaanssraneeaeeessansrnsseaanns 30
Accessing Federated Resource via the Maximo JSON APluuiiiiiii it e e e escree e e 33

Introduction

Beginning Maximo 7.6.0.3, a new integration featured called Federated Resource (also
described as Federated MBO) was introduced and this included a new integration
application named JSON Resources. This feature can expose external data as a MBO
within Maximo without the need to replicate the data on an on-going basis to keep a
'fresh' copy in Maximo. Being represented as a MBO this data can be used by standard
Maximo components such as an application, a CRON task or a Workflow. The
implementation of the Federated Resource supports querying and updating of external
data (some limitations are noted below).

Overview

The Federated Resource concept, initial release in 7.6.0.3, can expose external data as
a MBO within Maximo, providing that the external data is supported through a RESTful
JSON API. When supported, the external data can be registered using the JSON
Resources application and then the data becomes available for MBO processing within
the Maximo Business Object framework. Having this feature provides a simpler
approach to sharing data with Maximo rather than requiring the external data being
replicated into the Maximo environment. When used, the Federated MBO will reach out
to the external application on-demand and retrieve the most up to date version of the
data that the external REST API provides. Using the Federated Resource to query
external and view within Maximo is the most common scenario. Using the Federated
Resource to perform updates to the external data is possible, however this likely will
require additional coding in the Processing Class of the Resource Type to enable
updates using the external JSON API.

A simple use case could be defining a JSON Resource for external weather data that
could be linked to a Maximo Location. When viewing a Work Order for the Asset at
that location, the weather data could be displayed using the JSON Resource that
supports weather data and that information could be used for work scheduling.
Additionally that weather data could be used by other Maximo processes such as a
Workflow or part of a Condition. External clients accessing Maximo data using the
Maximo JSON API could retrieve that weather data as well.

MY Work Order App

Conditions

Getting Started

Before attempting to use the Federated Resource you should determine whether this is
the best approach for your integration requirements. Consider these questions:

1. Do you need to have external data available in Maximo as a MBO or available
through Maximo's JSON API?

2. Would you prefer to not replicate that external data into Maximo on a recurring
basis?

3. Is that external data accessible using a RESTful JSON API?

If you answered Yes to all 3 questions then the Federated Resource should be
considered for your integration scenario.

Keep in mind that the use of Federated Resource is intended to support data that is
‘complementary’ to your Maximo data.

JSON Resource Type

To create a JSON Resource for your external data, you need to have a predefined
Resource Type that provides a common set of data and functionality specific to
interacting with the external api. It is possible that the Resource Type and its metadata
can be re-used with multiple JSON Resources.

Unfortunately, not all RESTful JSON APIs are equal. There are some cases where
APIs go beyond REST and/or JSON standards and some additional coding is required
in order to use the APl with a JSON Resource. The first step in creating a JSON
resource is to determine if one of the provided JSON Resource Types will work with
your external JSON API or if a new resource type needs to be defined.

Maximo provides 3 resource types out of the box. One is for the CLOUDANT REST
API, a second one is provided for the API from weather.com and the third is a generic
'REST' API resource type. In many cases the REST resource type will work with an
external JSON api, however if you determine it does not, then you may have to create
your own Resource Type which would include providing an Analyzer Class and a
Processing Class. These Java classes would have to be provided to handle the
'specialties' of the API that are not handled by the Maximo REST Resource type, similar
to what was done to create the CLOUDANT and weather.com resource types.

You should attempt to use the 'out of box' REST resource type provided with Maximo to
determine if works with your external JSON API. If it does not, then you will need to
create a new Resource Type and provide the necessary Java Classes.

Below is a screen shot of the provided 'REST' Resource type:

l Fddiodify JSON Fesource Types

o - TR
JEON Resource Ypes 1] R 1 --¥or 1 &
HELL.
LA DAAMT Ciziniysi T e el maeren dres Do o
REST SERT Sy i and mnaTE g ST ke
KEATHEAM Wimpirer A7 I a8 BT TG o i bk maeren iman FEE ThiaG e
o
Dhzbank
B
fizouns [Aafeler hemm
1 ArET NEET i iTTE
AT R = gy i R
= iz it mas i EEebn makee S0 Y shee
B TR ClaiE A By Pl
i e = Henll maarmn Fimbn FEST kot
CEBIT N [TODETTY Felch LiTHT
|
Do Foprmad ST Ak
tag. i
Ciyi= Pafsm il Formrae
Mem R

The Resource Type attributes are as follows:

Resource Type: Unique Name of the Resource Type - this has a related Description
and Long Description.

Analyzer Class - this Java class is used to interpret the sample JSON in order to
generate Maximo non-persistent objects (MBOs) that represent the external data. This
class must be included as part of the Maximo EAR file. This class would only be used
when the Resource Definition has the Usage set to Object (not API). The '‘Usage' will be
discussed in the section covering the creation of a JSON Resource.

Processing Class - this Java class would do any specific processing of data when
resource data is retrieved from the external source. This class must be included as part
of the Maximo EAR file. This class would only be used when the Resource Definition
has the Usage set to Object (not API). This class is registered for the MBO/Table in the
DB Configuration application and could be changed there as needed.

Collection Property - multi-noun identifier within the external JSON data when it
contains a collection of data rather than a single instance of data.

Date Format - choices are 1ISO8601, Milliseconds, Seconds or Custom - identifies the
date format in the external JSON data.

Date Pattern - only used when Date Format is Custom - sample date format could be
yyyymmdd.

Handler Name - the value must be an existing integration handler and it will be used to
create the End Point (if needed) during the JSON Resource creation. This Handler
would support accessing the external JSON data. The HTTP Handler is the most
common Handler for JSON Resources.

Paging Parameters - a comma separated list of 2 query parameter names used in the
End Point URL when retrieving the external data - the first name identifies the Page
starting count while the second parameter identifies the Page size (or limit). Two
parameter names must be provided. This value can be overridden in the configuration
of a Resource.

Fetch Limit - This is the value of page size (limit) that is assigned to the 2nd parameter
name from the Paging Parameters (above). This holds a limit on the number of rows to
select for the JSON resource and to maintain in a cache. This is intended to support
efficient retrieval (Paging) of external data. A value that is slightly higher than the
'normal’ amount of data to be retrieved most often, would be an appropriate value. A
value of 0 means no paging is supported. This value can be overridden in the
configuration of a Resource.

Order By Parameter - Identifies the name of the query parameter name in the End Point
URL that supports the ordering of external JSON data when queried. An example could
be: orderby

String Qualifier - Some external data sources require that string values provided as
query parameters be wrapped in a qualifier, such as a quote (') or double quotes (").
For any query parameter that is set using a Maximo field value (bind variable) and the
value is a String, it will be wrapped in the URL with the value provided in this property.
This value can be overridden in the configuration of a Resource.

Null Format - Some external data sources require that for any query parameters that do
not have a value, they must provide an explicit value (such as +null+) that denotes a
null value. For any query parameter that is set using a Maximo field value (attr bind
variable) and its value is null, it will be set in the URL with the value provided in this
property. This value can be overridden in the configuration of a Resource.

Creating a JSON Resource

To create a new JSON Resource using the JSON Resources application, the user will
proceed through a multi-dialog wizard providing the necessary data. Depending upon
which Resource Usage is selected will determine how many dialogs will be displayed.

Screen 1:

= J30OMN Resources Wike Wilicn

Craate J50MN Resourca

SR e Coliesiion progesty

Feararca Linsgw Do Foemat

Aesourod T Lot P
LIRL Cwisr By Fprpmeses
Ered sl Pagang Parsrrsdars
kil Foemgi Feich Limid
o
Sinrg Gaskler

e

The User needs to provide a unique Resource name, select a predefined Resource
Type and select a Resource Usage value of either OBJECT or API. The Resource

Type may provide default values for the rest of the fields in this dialog, excluding the
End Point and URL.

NOTE: if you are creating a resource with a Usage of OBJECT, you will need to provide
a sample JSON data in order to generate the corresponding MBOs and their attributes.
You should retrieve the sample json prior to starting the creation process.

Resource Usage

When the Usage is set to API, the creation of the resource is completed once this dialog
has been processed. When the Usage is set to Object, the creation process will
proceed through two additional dialogs (discussed further down in this document) to
complete the JSON Resource Definition.

8

The Usage identifies whether the external data is going to be accessed only as
JSON data (using the Maximo JSON API) and does not need to be converted to a
Maximo Business Object (MBO). When accessing the external data using the
JSON API (no MBO needed), the processing of the external JSON data can be
done more efficiently without representing the external data using a MBO.

When using the Maximo JSON API to query external JSON data represented as a
MBO in Maximo (through a JSON Resource with a Usage of Object), the
processing of the external data would be as follows:

1. Retrieve external JSON data
2. Convert the JSON data to MBO data
3. Convert MBO data to the response format data (JSON)

In the case of accessing the data using the Maximo JSON API, the conversion of
data through a MBO is costly in terms of performance and provides no value if the
MBO data is not being leveraged for other reasons.

With this in mind, setting JSON Resource with a Usage of API (rather than Object)
would result in this processing:

1. Retrieve external JSON data

2. Provide external JSON data in response (note that the response data
would have any related Maximo data in the Maximo JSON format and
the federated resource data in the JSON format provided by that
external application, not converted to the Maximo JSON format)

NOTE: The querying of external JSON data in this manner is supported only
through the Maximo OSLC/JSON API and is not supported by other MIF
integration options such as Web Services, REST api or XML/HTTP. This feature
using the Maximo JSON API supports only querying of external JSON data, not
updating.

URL and End Point

The URL, entered or provided by the End Point, provides access to the external JSON
data. There are 3 scenarios regarding the entry of a URL and End Point.

When just a URL to the external data is provided, processing will create an End
Point using the URL and the Handler specified in selected the Resource Type. If
the Resource Type has no Handler defined, then the default HTTP Handler will
be used.

¢ An existing integration End Point can be selected without a URL being entered.
The End Point selected will be used to retrieve the external data

e When a URL and End Point are both entered, the URL is saved with the
Resource and acts as an override to the End Point URL parameter when the
external data is accessed. This allows one End Point to be shared across
multiple resources where one, or more resources, have a different URL. This
allows the parameters of the End Point, such as login credentials, to be shared
across multiple resources.

The remaining fields on this initial creation dialog can have defaults from the Resource
Type and can be overridden here for the specific resource. Some of these properties
are used in the processing of the external data while others are used to support query
parameters in the URL when accessing the external data.

NULL Format

Described under Resource Type

String Qualifier

Described under Resource Type

Collection Property

Described under Resource Type

Data Format and Pattern

Described under Resource Type

Order By Parameter

Described under Resource Type

Paging Parameters

Described under Resource Type

Fetch Limit

Described under Resource Type
10

If the selected Usage is API, then the JSON Resource creation ends with the first
dialog. If the Usage is OBJECT, then the second dialog below will appear:

Cresiba JE0N R

W R
-

e e e
i a
Ewnia. . on e e

i 50N coourmend

TAreTTT

In this dialog you can configure:

e Parent Object - select a parent object (MBO) that will be related to your JSON
Resource MBO. For example if you were using a Service Address to provide
data to your URL then you could select the SERVICEADDRESS MBO as the
Parent Object. This will allow you to use the zip code (for example) in the
request for weather data. Processing will create a Maximo Relationship from the
selected parent object and the root MBO (non-persistent) of your Federated
Resource.

e Optimize Resource - The Optimize Resource checkbox will merge multiple levels
of the resource (JSON) data per the rules below:

1. all JSON objects that have 1:1 relation with the parent object will be merged to
the parent object. All property names for that merged object will have to be
checked for unique names (update to have unique names if necessary) in the
newly defined scope of parent object.

2. if the root object is a wrapper element (a JSON object that has no simple
properties, rather it has only JSON objects and arrays as its properties is called a

11

wrapper element), and there is a single child which is an array - that child would
be merged to the parent.

For these 2 rules - the merge is virtual to the designer - as it will still show the
JSON in its true form. The merge will only impact the MBO generation.

e JSON Data - this is the sample data from the external JSON API. This data will

be parsed in order to support the creation of non-persistent MBOs that represent
this data within Maximo.

Note: when copying and pasting JSON data from a browser, it is recommended
that you do View Source/View Page Source in the browser and then copy the
data to avoid capturing extraneous characters that can cause errors during
parsing of the JSON data.

When you hit Next on the dialog above, the processing will parse the JSON data and
present the following dialog which will list the JSON objects and their properties. The
information presented is dictated by the structure of the data provided in the sample
JSON.

& = J30N Resources
Create JSON Resource
Arsauinne CRdATETS (ST
HYIES] Clrmmid it
Himasarze Tpjm
u PEATHZAAR Vempiter AR hor wealte or | T L
L Reaaurcs Obacts for Resource T] & of 4 i -
- Haldion Py hams Fiopmity Mall
q b
] ¥ el inveradala
» R N ETvaLie
» Sperial U AT
Fraperlies For meladaksa * L-&aolH8] =
Miopaity Nams Allsiaide Rams sigh
[sizhis_rods ETATUE CODE STATUE_CODE IHTEGER
B oot _gmi EXPRE_TRWE_CMT EXPRE_TiWE_GuiT mTEEER i3
b Uspiage L G LEE LAMILAIEE AL &

12

The 'Resource Objects for Resource' lists the JSON Objects and their path. Below is
snippet of the sample JSON used for this resource creation (some data was removed
for easier viewing of the sample):

{

"metadata":

"language": "en-US",
"expire_time_gmt": 1453478889,
"status_code": 200
b
"observation™:
{
"class": "observation",
"obs_time_local": "2016-01-22T10:45:00-0500",
"sunrise": "2016-01-22T07:06:55-0500",
"sunset": "2016-01-22T16:45:05-0500",
"day_ind": "D",
"dow": "Friday",
"wdir_cardinal": "NW",
"sky_cover": "Partly Cloudy",
"imperial™:
{
"wspd": 15,
"gust": null,
"temp": 25,
"temp_change_24hour": -2,

"precip_24hour": 0.00,

Beyond the root there are 3 JSON objects
/ (root)
metadata
observation
imperial

13

Using this data and with the Optimize Resource flag checked, only 1 non-persistent
MBO, MYTEST, will be created and the properties for all JSON objects will become
attributes of the MYTEST MBO (per the Optimization rules mentioned above).

If SERVICEADDRESS was entered as the Parent Object, a relationship would be
created to link SERVICEADDRESS to MYTEST.

With the Optimize Resource flag unchecked, 4 non-persistent MBOs will be created,
MYTEST, METADATA, OBSERVATION and IMPERIAL. Maximo Relationships will also
be created to support this hierarchical structure:

MYTEST
METDATA
OBSERVATION
IMPERIAL

Use of the Optimize Resource processing is dependent upon the structure of the
external JSON data and which objects and properties you need to use in Maximo. If
data is needed from an object that is an array then you cannot optimize since there
would be a 1 to many relationship from the parent object (which could be the root) and
the child object.

The user can control the number of JSON Objects and Properties created by adjusting
the content of the JSON sample data. In the dialog above, the default names, types
and lengths for the MBO attributes can be changed prior to the creation. Once MBOs
are created, attributes can only be updated using the DB Configuration application (as it
would be for other Maximo objects).

14

Example: Federated Resource using 2 Maximo environments

Set up

For the examples below we will use two Maximo environments where one environment
(MX A) has just locations the other environment (MX B) has locations with location
meters. MX B will act as the 'external' data source and MX A wants visibility to the
location meters without replicating that meter information. To do this:

A. MX B will expose location meters through the Maximo JSON API.

B. MX A will create a Federated Resource for location meters using MX B's JSON
API to access that data on demand.

In MX B, a new Integration object structure, FEDLOCMETER, was created with the
Locations and Locationmeter objects. The system property, mxe.oslc.webappurl, was
updated to reflect the actual host:port of Maximo to enable access using REST/JSON.

A sample JSON data was captured by retrieving a single location that contained at
least 1 meter:

First a request for a collection of Locations:
http://MX B Host:Port/maximo/osic/os/fedlocmeter

From which a single Location URL was used:
http://MX B Host:Port/maximo/osic/os/fedlocmeter/ UFQxMDAvQkVERKISRA--

where _UFQxMDAvQkVERKI9SRA-- is the resource ID of the location. The following is a
snippet of the JSON data (not the entire content):

{

"changedate":"2011-02-15T15:19:23-05:00",

"pluscpmextdate":false,

"status_description":"Operating",

"location":"PT100",

"children":false,

"type":"OPERATING",

"autowogen":false,

"_rowstamp":"[0 000 0-114 124 -113]",

"haschildren":false,

"orgid":"EAGLENA",

"description":"PT100",

"type_description":"Operating Location",

"siteid":"BEDFORD",

"href":"http://host:port/maximo/oslic/os/fedlocmeter/ UFQxMDAvQkVERKISRA--",
15

16

"isrepairfacility”:false,

"isdefault":false,

"locationsid":359,

"pluscloop":false,

"changeby":"WILSON",
"status":"OPERATING",
"statusdate™:"2011-02-15T15:19:23-05:00",

"locationmeter_collectionref":"http://host:port/maximo/osic/os/fedlocmeter/ _UFQxMDAvQkVERK9
SRA--/int_locationmeter”,

"useinpopr":false,
"hasparent":false,
"statusiface":false,
"disabled":false,

"locationmeter":

"avgcalcmethod_description":"Average not recalculated",
"avgcalcmethod™:"STATIC",
"changedate":"2016-01-25T10:10:39-05:00",
"locationmeterid":202,

"sincelastrepair":0.0,
"measureunitid":"HOURS",
"sincelastoverhaul":0.0,
"changeby":"WILSON",

"lifetodate":0.0,

"sincelastinspect":0.0,
"readingtype":"DELTA",

"localref":"http://host:port/maximo/oslic/os/fedlocmeter/ UFQxMDAvQkVERKI9SRA--
/int_locationmeter/0-202",

"metername":"FLTHRS",
"readingtype_description":"Incremental usage",
"_rowstamp":"[0 000 0-114 124 -112]",
"orgid":"EAGLENA",

"sinceinstall":0.0,

"active":true,

"href":"http://host:port/maximo/oslic/os/fedlocmeter/ UFQxMDAvVQkVERK9SRA--
#TE9DQVRJTO5TLOXPQOFUSU90OTUVURVIVUFQxMDAVRkxUSFJTLOJFREZPUkQ-",

"average":4.0

This JSON data will be used as input when creating the JSON resource in MX A. What
is provided will be the basis for the non-persistent objects and attributes that will be
created to represent the external data (from MX B) in Maximo. Before pasting the
above sample JSON data into the JSON Resource definition you can choose to remove
any content that you have no plans to use. For our example, we will use the following
as the sample JSON:

{
"location":"PT100",
"siteid":"BEDFORD",

"locationmeter":

"avgcalcmethod_description":"Average not recalculated"”,
"avgcalcmethod™:"STATIC",

"measureunitid":"HOURS",

"changeby":"WILSON",

"lifetodate":0.0,

"readingtype":"DELTA",

"metername":"FLTHRS",
"readingtype_description":"Incremental usage",

"active":true

At the Location level, only the location number and site ID is needed along with a
handful of properties of the locationmeter data.

17

This smaller JSON data is pasted in during the JSON Resource creation below:

| Craahs JSOMN Rassuren _

Hpaasy wwrd iyt
WRLTCMED Lacwdon-blsber data e b B

Aawrance Typs
_—

FBOH Dt

bk ™1 1
“ramrgEoe T CELTE
TaRrETE TITHAL

= Frevas ear

No Parent object is assigned and the Optimize Resource was left unchecked since the
data contains an array, locationmeterf].

The next screen shows the objects and attributes that will be created in Maximo. The
root object (Path = /) will take on the Resource Name, MXBLOCMETER, as its object
name and the child object name will be LOCATIONMETER. In cases where the object

name might already exist in Maximo, the processing will append a sequence number to
reach a unique name.

18

| Craate J5OMN Resoirca _

Fmaciame Cipfirer e smaniroa
MEABLOCKET Locid iwt-ldgiar dala o kX S

Mascuris 1ypsa

REST SERT

af 0

_ = | RS Ulancarin Ly LIk
Hasource Ubjects far Rasalrece v 1 2 af] b

ek P
jresa. Evee
¥ o putios
i ool
7] [iedr Lipiald] e L LTE
Propertias For + L - 3 ofF 3 i
ety Mare Ahide Hams Pt Tl Ty Largll
B mooobierka P sSCRORIECTID P SlanBIECTID ALM
] LOCAT N PR AT BLH i

| RITEID STED L

(=L AR Progieas

Depending upon how you plan to use the external data, you may need to create a
relationship between an existing Maximo object and the new MBO you created for the
Federated Resource. If the Federated Resource is a stand-alone object that you plan to
create a new application for then a relationship is not required.

For our example we plan to display this data when viewing locations in MX A, to do this
requires a relationship from the LOCATIONS object to the MXBLOCMETER object.
What this relationship enables is the ability to provide Location data to the external
resource URL so that it can be used for retrieving data. For example, when viewing
location PT100 in sited BEDFORD in MX A, we want to retrieve the location meters
from MX B. To do this requires that the Federated Resource URL include parameters
that identify the location and site in order to select the correct data from the external
resource (MX B). To enable this capability:

e Provide a Parent Object (LOCATIONS) during the creation process and the
application will automatically generate a relationship between the parent and the
Federated Resource objects

OR

Manually create a relationship between the objects using the DB Configuration
application.

Note that the relationship does not require a 'where' clause since the purpose is
to allow the passing of the parent object data to Federated Resource's URL,
which was saved as an Integration End Point (using same name as the resource)
during the resource creation.

19

20

With the relationship created, you may need to revisit the integration end point for
the resource if the one entered during the creation process did not include bind
variables for the parent object data (assuming its needed).

In our example, to access the Federated Resource data in MX B while viewing a
location in MX A, the URL would be as follows:

http://MX B
Host:Port/maximo/oslc/os/fedlocmeter?lean=1&oslc.where=location=attr:locatio
n and siteid=attr:siteid&oslc.select="*

example:

http://MX B
Host:Port/maximo/oslc/os/fedlocmeter?lean=1&oslc.where=location=attr:"PT100
" and siteid=attr:"BEDFORD"&oslc.select="*

the attr: identifies that the bind variables are attributes of the parent object (there
are other 'types' of bind values available - discussed further down in this
document). In this case the fields being used from the parent object are location
and sited of the Location that is being viewed in MX A.

In addition to the where clause there is an oslc.select to select all properties of
the resource, without this the Maximo JSON API will return just a URL to the
resource.

String Qualifier

The Maximo JSON API (being used in MX B) requires that the string variables
(PT100 & BEDFORD) passed in the URL be wrapped with double quotes. Given
that, the Resource definition (or the Resource Type) should have " (double
quote) configured as the String Qualifier value.

Collection Property

If you used the above URL to retrieve Location PT100 in MX B, the resulting
JSON will be a collection of locations that contains one location (PT100). The
collection is identified by the array called member]] :

{

"member":

[
{

"location": "PT100",
"siteid": "BEDFORD",

"locationmeter":

[

21

"avgcalcmethod_description":"Average not recalculated"”,
"avgcalcmethod":"STATIC",

"measureunitid":"HOURS",

"changeby":"WILSON",

"lifetodate":0.0,

"readingtype":"DELTA",

"metername":"FLTHRS",
"readingtype_description":"Incremental usage",

"active":true
}
]
]
}

In order for the processing to parse this data properly, the collection
property defined on the JSON Resource should be configured with the
value of member.

Keep in mind that this Federated Resource/End Point could be used from other
parent objects/applications (besides locations) providing that the parent object
has the same attributes. For example, a work order contains the location and
siteid attributes, therefore this Federated Resource could be used from the Work
Order application if a relationship from WORKORDER to MXBLOCMETER is
created.

Once the Federated Resource is fully configured it can be used for view location
meters. The screen shot below shows a Locations application with a new tab
named, MX B Meters, and it displays the location and related meter data that
was retrieved using the Federated Resource MBOs (MXBLOCATION &
LOCATIONMETERA4).

To support the Ul changes below, within application designer a new tab was
created in the Locations application and the relationship (from LOCATIONS)
MXBLOCMETER was specified for the tab to access the Federated Resource
data.

22

m £ E 5 ! 1] 'i'-u'l'l'i.'l
Za Tu by . ;
R]

WX 8 Localios bala B 08 -

Pl e s G

| cE— e

orw By

Fetch Limit

In the screen above a list of meters from MX B is being displayed. If the table
view (configured as part of the application in Application Designer) limits to
showing 3 meters at a time, the configuration of the resource should make sure
Fetch Limit is at least 3 (or higher) so that it takes only a single request to fill the

table.

Example: Federated Resource - Merge

Set up

Similar to the example above, we will use two Maximo environments where one
environment (MX A) wants to display data from the other environment (MX B). In this
example each Maximo has a common set of locations and these locations have meters
however the meters are not the same in each system. In this example, we will use a
Federated MBO to retrieve the meters from MX B Locations and merge that list of
meters with list of meters that currently exist for the location in MX A. So when the user
is viewing a single list of meters for a location the source of those meters will be a
consolidated list from MX A and MX B.

To support the Merge feature, the federated resource must be a single level structure
(not a hierarchy). In the prior example we created an object structure (in MX B) that
contained a hierarchy of:

Location
Locationmeter

For the merge feature we cannot use this object structure so will create a new object
structure (FEDMETER) with just the locationmeter object within MX B

A sample JSON data was captured by retrieving a single locationmeter:
http://MX B Host:Port /maximo/osic/os/fedmeter/ UFQxMDAvVRIVFTC1HLOJFREZPUkQ-?lean=1

where _UFQxMDAVRIVFTC1HLOJFREZPUKQ- is the resource ID of the locationmeter.
The following is the JSON data:

{

"avgcalcmethod description": "Average not recalculated",
"avgcalcmethod": "STATIC",

"changedate": "2016-01-27T11:50:24-05:00",
"locationmeterid": 215,

"sincelastrepair": 0.0,

"measureunitid": "GALS",

"sincelastoverhaul": 0.0,

23

"changeby": "WILSON",

"location": "PT100",

"lifetodate": 0.0,

"sincelastinspect": 0.0,

"readingtype": "DELTA",

"metername": "FUEL-G",

"readingtype description": "Incremental usage",
" rowstamp": "[00 00 0-100 105 -30]",
"orgid": "EAGLENA",

"sinceinstall": 0.0,

"active": true,

"siteid": "BEDFORD",

"href": "http://host:port/maximo/oslc/os/fedmeter/ UFQxMDAVRIVFTCIHLOJFREZPUkQ-",

"average": 1.0

}

This JSON data will be used during the JSON Resource creation. When creating the
resource we will use the REST resource type, set the String Qualifier to " and set the
Collection Property to member, as was done in the prior example. The URL will be set
to http://MX B Host:Port /maximo/osic/os/fedmeter and we will update with the bind
variables further down.

Below are screen shots of the creation of the JSON resource:

24

py re— e i
FEDWETER | [Faceramd Resouron o ccamon mewen e |
Rescama Lisagn Dty Formal:

[oaser a f';E [K-
P Type i Frftirn

AEST L, KEBT o |
WAL ey By Pasameter

IR LAY Lar) o 3 s pakiomc |
Ene o Fasprsg Paramesian.

L= = |
Pl Forad: Palch Limil

Biring Gy

Above shoes the collection property and string qualifier being set

Above shows the parent object being LOCATIONMETER, this will drive the creation of a
Maximo relationship from LOCATIONMETER to FEDMETER (fed resource mbo).

25

The next two screens show the object (single object) and the properties information
based on the JSON data provided.

i

Fantres Crlreun s
FEDHETER FeterannT Rtsouns for ooaon metn
Resoume Tige:
RETIEET & ®
Resource Objects for Rescurce | 4 1-1efi =1 =

¥]
Propesties Far ¢ &+ 1 - 10 af 32 o B =

b _morchuia P_ORORECTID P_ISONDIUECTED | aam | 0l

26

When completed the JSON Resource definition looks like this:

. a @

L Jep——

Smmarmy

...... — T
B i e Searsrn et _— - -
[u e U awrin
[1 an
& cumm naas Flns f— Prampp—
" LTI % P
LERER ES T
i
Fsairn Ctjects fie Resqunos FEDWETER. F e §-1af i T
" i -
» IR IT AT
Wip Allelail For Mropaily Pdh L 1 i ef 108§ W -
[ran ¥
Fow i T8
¥ = 4 i WFrA
P = Aa 1Y
¥ A e A - -k
F e T 1Y
B cham [T T

Now that the JSON Resource is created we will select the Merge JSON Resource
Action which opens this dialog:

i Eee Emamy Roreee PR

E b i
[« ."I_-'HF_‘_'I-\.-..-' ——Ea -_—'hq-r.- ol ¢] Hsssssa. 5 s BiawmdR o — -
+ vr & @ & & 4 @ & - B

PRI - L rTT— P | o

m berga Resourca _
Bryoaty Hemserm T pe
FEDETER P aderwir Smaay by laoehon reany . AZET
g W Tl TR [T

7 e To apmmi LA HRIE FECRAE T

b Map Cbjscls 1-L1uofl i L]

A Rewrn Eamapcca biere o Joeg G Ceag Ccftasa’

- 10 LGar ORUETER FEDVETER ® A

.]ﬂ_-.l_- Hea Him

H [

ﬂ Wi AeRia Map Artilubeds ' 5 L -4 of d i

Flege TEE Srenren WIEL38 |5 SETRLF TLiTE aiw ST

Sad ko Booeruwris AFTNAGE | SITRILTE LAt

- DEATICOR TELTE LICZATIOM = s =
L T &R T

Fepmaiid Tejds + ks Pl

FIDVETEN

27

In Map Obijects table there is a single row since the federated resource data is from a
single object. In the Map attributes section, this is where the properties of the
Federated Resource (the Source) are mapped to the attributes of the
LOCATIONMETER object (the Merge to Attribute). As an implementer you can choose
which source properties map to the merged object (not required to map all).

Note: since this example is using the same underlying table (locationmeter) in two
Maximo environments the Source properties and Attributes have the same names by
default.

With the Merge action completed, as we did in the prior example we will change the
URL on the End Point to include the bind variables to find the correct location using the
Federated Resource.

http://MX B
Host:Port/maximo/oslc/os/fedmeter?lean=1&oslc.where=location=attr:location
and siteid=attr:siteid&oslc.select="*

Again we are using the location and siteid as attribute bind variables in the
URL with the values coming from the configured parent object,
LOCATIONMETER.

In addition to the bind variables there is also an oslc.select clause to
select all columns. This is needed as the Maximo JSON API will return on
the resource URL by default, so the select is needed to retrieve the
columns that being mapped as part of the Merge.

Presentation XML

The plan is to view the Federated Resource data when a user is in the Locations
application on the Meters tab, the list of meters displayed will be a combinations of
meters stored in LOCATIONMETER of MX A and meters obtained from FEDMETER
which are retrieved from MX B. To do this requires a configuration step needed to
render the JSON Resource data in an application User Interface (Ul) along with the
Maximo MBO identified as the 'Merge to Object'. This configuration must be done by
manually updating the Ul Presentation XML (not available to configure in Application
Designer).

Opening the Locations application in the Application Designer application, we exported

the presentation XML to a local file. When the presentation XML is opened, we

searched for the display of data for the 'Merge to Object' data (LOCATIONMETER).

Add a new property called ‘federatedresources' where the object is specified.
</section>

28

<table id="1453816261183" label="Meters" orderby="sequence"
relationship="LOCATIONMETER" federatedresources="FEDMETER">

<tablebody displayrowsperpage="16" filterable="true" id="1453816261186">
After making the presentation change and importing the presentation xml, when you

select a location in the Locations application and navigate to the Meters Tab, the list will
be a combination of meters from MX A and MX B.

29

Federated Resource Concepts

Bind Variables

30

Earlier in this document, the attribute (attr) bind variable was covered in how it can
be used to provide dynamic values to the URL of the Federated Resource. In
addition to attr there are 3 other bind variables:

prop - a Maximo system property value

A system property can be used to provide a configurable value to a
URL. If you look one of the weather related end points provided with
Maximo you will see the apikey parameter populated by a system
property (weatherapi.apikey):

http://api.weather.com/v1/geocode/attr:latitudey/attr:longitudex/observations/c
urrent.json?apiKey=prop:weatherapi.apikey&language=en-US&units=e

script - a Maximo script name

A Maximo script, with no launch point, can be provided to derive the
value for a URL parameter if a calculation or business logic is required.
The output value from the script must be named 'token'.

rel - a Maximo relationship name

The request of data using a Federated Resource would often come
through a parent object leveraging a Maximo relationship. To provide
flexibility in the assignment of the bind variable value from different
fields of a parent object or from different parent objects, the
relationship can be used to assign the variable.

For example, let's assume the federated resource was retrieving
information based on a GL Account provided by the parent object.
Assume the parent object is Asset and it has two GL Account fields,
GLCREDITACCT and GLDEBITACCT. In the Maximo Asset
application, two tables are created to display Federated GL data for
each of these accounts. The URL for the Federated Resource
requires a bind variable that contains the GL Account Number. Using
the 'attr' bind variable would allow the use of a single field in Asset
which would require two federated resources, one for the debit account
and one for the credit account.

Using a relationship bind variable will enable one Federated Resource
URL make use of two fields from ASSET to provide values. When the
Ul changes are done in application designer, each table would identify
a relationship name, RELCREDIT for the GL Credit Account and

Date Formatting

RELDEBIT for the GL Debit Account. As described earlier in this
document the table would also identify the federated resource name.
The Ul Changes would look something like this:

<table id="1453816261183" label="GL Account" orderby="sequence"
relationship="RELCREDIT" federatedresources="FEDACCT">

The URL for the federated resource would be something similar to this:
http://host:port/ GLSYSTEM/rel:acct

Since the parent object in our example is ASSET, a relationship would
be created from ASSET to FEDACCT (federated resource name) with
the name RELCREDIT and the 'where clause' would be
acct=glcreditacct.

From the URL, rel: identifies that a relationship bind variable is being
used and 'acct' identifies the variable name that will identify the actual
column name (GLCREDITACCT) from the parent object (ASSET).
The MBO framework makes use of the relationship name
(RELCREDIT) that is provided by the Ul presentation layer for the
Federated Resource (FEDACCT).

Likewise, for the Debit account, the Ul presentation would identify
RELDEBIT as the relationship name and it would have a where clause
of acct=gldebitacct.

This allows one URL:
http://host:port/GLSYSTEM/rel:acct

to display federated resource data for two GL Account fields in the
Asset application.

One additional capability is that if the URL requires multiple bind
values, the relationship can specify more than 1 using an & separator:

acct=glcreditacct&date=changedate&id=assetnum

The Resource (and Resource Type) can identify the date format that an external
api will provide, such as ISO8601. Some external REST APIs may not be able to
provide a consistent date format for all of the data provided through the API. In
cases there are isolated dates that are different than what is defined in on the
JSON resource and those values are used in the URL, the format for those can
be provided as follows:

31

http://api.weather.com/v1/geocode/attr:latitudey/attr:longitudex/observa
tions/historical.json?apiKey=prop:weatherapi.apikey&units=e&startDat

e=attr:&OWNER&.startdate*YYYYMMDD”&endDate=attr: & OWNER&.
enddate*rYYYYMMDDA”

Custom date formats can be assigned during the MBO mapping step as well to
convert dates in the response data.

Order By

If there is a need to retrieve the Federated Resource data in a sorted order you
can configure the 'Order by' parameter name as part of your resource definition.

For example, if the Federated resource data, represented as a MBO in Maximo,
is being displayed in table in a Maximo application, the user may be able to click
on a column to direct the MBO to sort the data based on that column. When that
occurs, the Federated Resource URL will be re-executed and added to the URL
is an 'order by' clause that is formatted using the order by parameter named
defined on the JSON Resource definition and the column name selected by the
user. If the JSON Resource Order By value is Sort and the column selected is
changedate the url parameter would be:

&Sort=changedate asc (or desc)

Where Clause

Following the example used in the Order By (above), if the user is viewing a table
of federated resource date and chooses to filter the data by entering a value in a
column, the Federated Resource URL will be re-executed and added to the URL
will be the oslc.where with the column name and the value entered.

&oslc.where=fieldname=fieldvalue

'Out of Box' Resources

Maximo provides 4 'out of the box' JSON Resources that work with weather data
from weather.com. A weather-specific resource type is also provided.

e CURWEATHER

e DAILYFORECAST

e HISTWEATHER

e HOURLYFORECAST

These Resources leverage Attribute bind variables that are supported in the
SERVICEADDRESS MBO.

32

Accessing Federated Resource via the Maximo JSON API

In earlier examples we covered cases where a Maximo application, Locations, was
viewing data (Location Meters) that came from a Federated Resource. Another use
case could be that a new Ul application is built outside of the Maximo Framework and it
is using the Maximo JSON API to present Maximo data in this application. Along with
the Maximo data (locations), this application wants to include external data (location
meters) from another application. In this case the same JSON Resource is being used
but instead of a Maximo application using that MBO, the data is being access through
integration.

There are two options to consider when accessing Federated Resource data via
integration, using a Resource with a Usage of API or with a Usage of Object. See the
content earlier in this document that covers the Resource Usage during the creation of a
Resource to understand the benefits of using either. When the Federated Resource has
a Usage of Object then it can be configured as an object in an integration object
structure and accessed using the JSON API in the same manner as other Maximo
Objects. Then next sections covers how the API can use a Federated Resource with a
Usage Type of API.

Resource Usage is API

When a JSON Resource is defined with a Usage of API, this means the federated data
will not be represented as a MBO and access to that is only supported via the Maximo
JSON API. The JSON Resource creation process described earlier in this document is
completed after the first dialog is processed. When accessing, the JSON data format is
the default format that is provided by the external API.

For the following examples a new Federated Resource, APIWEATHER, was created
with a usage of API. The URL from the End Point is as follows:

http://api.weather.com/v1/geocode/attr:latitudey/attr:longitudex/observations/current.json?apiKey
=prop:weatherapi.apikey&language=en-US&units=e
The URL depends on 3 bind variables, two are attributes from the 'parent' object and
one is a system property, weatherapi.apikey. The attribute values provide a latitude and
longitude for a location from which the api will return the current weather conditions.
Below is a screen shot of the resource creation:

33

H Craate JSOM Resaurcs I

Fasasre Codleciior: prosarty

oL RWEATIE Sl R IO A H ST

rams SO0 e

WELATE TP

Cancs Fiocaas

Since the resource is not a type Object, there is no MBO representation for
APIWEATHER in Maximo so this prevents the use of relationships to identify the parent
object. Given that, the parent object and the bind variables it will provide to the
Federated Resource will be identified in the JSON API request URL.

In Maximo there is a SERVICEADDRESS MBO that contains latitudey and longitudex
attributes thus it can support use of this Federated Resource. Location PT100 has
been configured with Service Address 1004 which is located in Boston. This address
has a latitude value of 42.364506 and longitude value of -71.038887 which is Boston,
MA.

As an external client using the MAXIMO JSON API, there is a need to retrieve location
PT100 and display the current weather for the Boston location. To do this requires the
following URL:

http://host:port/maximo/oslc/os/mxoperloc?lean=1&oslc.select=*,serviceaddress{
city,description,extres. curweather}&oslc.where=location="PT100"

The 'out of box' MXOPERLOC object structure was changed to include a new object,
SERVICEADDRESS, configured with LOCATIONS as its parent object. Since
SERVICEADDRESS is going to provide the values for the bind variables for the URL
(.../attr:1atitudey/attr:longitudex/...), the reference to the federated resource is done 'within'
service address by specifying extres.apiweather within curly brackets { }.

extres. is a reserved word identifying the use of a Federated Resource
apiweather is the name of the Federated Resource

34

The oslc.select (&oslc.select=*,serviceaddress{ city,description,extres.curweather}) will retrieve:

* - all the attributes values for Location PT100 and URLs for the child
objects in the mxoperloc object structure

serviceaddress{city,description - the city and description values from
the serviceaddress object related to location PT100

,extres.curweather} - all of the values of the apiweather federated
resource - this data was retrieved using this URL from the
APIWEATHER End Point

http://api.weather.com/v1/geocode/attr:latitudey/attr:longitudex/observations/
current.json?apiKey=prop:weatherapi.apikey&language=en-US&units=e

where

'attr:latitudey’ was replaced with 42.364506 from
SERVICEADDRESS.LATITUDEY

'attr:longitudex' was replaced with -71.038887 from
SERVICEADDRESS.LONGITUDEX

' prop:weatherapi.apikey' was replaced by
34b54a2413263374bdace07052e0fdf3 from
System Property weatherapi.apikey

The fully resolved URL.:

http://api.weather.com/v1/geocode/42.364506/-71.038887
/observations/current.json?apiKey=34b54a2413263374bdace07052e0fdf3&l
anguage=en-US&units=e

Below is a snippet (not entire response) of the JSON response from the Maximo JSON
API

"member":

"changedate": "2016-02-02T13:21:52-05:00",
"saddresscode": "1004",
"status_description": "Operating",

"location": "PT100",

"serviceaddress":

35

"description": "Boston HQ",
"city": "Boston",

"apiweather":

"observation":

"uv_desc": "Low",
"phrase_32char": "Fair",
"imperial":
{
"precip_2day": 0.0,
"temp_min_24hour": 38,
"snow_24hour": 0.0,
"precip_ytd": 3.35,
"snow_ytd": 10.6,
"snow_3day": 0.0,
"rh": 32,
"hi": 49,
"dewpt": 20,
"temp_change_24hour": -10,
"ceiling": null,
"snow_mtd": 0.0,
"temp": 49,

The response data includes values from LOCATIONS, the city and description from
SERVICEADDRESS and the values from APIWEATHER. The APIWEATHER data is in
the format provided by the external API (not reformatted to the Maximo native format).

36

