
© Copyright IBM Corporation 2009 Trademarks
Fast and easy data movement using DB2's LOAD FROM
CURSOR feature

Page 1 of 14

Fast and easy data movement using DB2's LOAD
FROM CURSOR feature

Dirk Fechner January 08, 2009

Ease the process of DB2® for Linux®, UNIX®, and Windows® data movement using the DB2
LOAD utility's FROM CURSOR option. This article introduces the LOAD FROM CURSOR
feature and provides usage samples for two interfaces, the Command Line Processor and the
ADMIN_CMD stored procedure.

Introduction
Typical DB2 data movement tasks involve three steps:

1. Exporting the data from the source database into a temporary data exchange file in binary or
text format

2. Moving the generated file between systems
3. Importing or loading the data from the file into the target database.

Generating the data exchange file using the EXPORT utility is often a lengthy process in the case
of large amounts of data. Besides, different database codepages and operating systems have to
be considered when moving data in and out of a database.

Such problems can be avoided by using the LOAD utility's FROM CURSOR option. When
specifying the FROM CURSOR option, the LOAD utility directly references the result set of a SQL
query as the source of a data load operation, thus bypassing the need to produce a temporary
data exchange file. This way, a LOAD FROM CURSOR is a fast and easy possibility to move data
between different tablespaces or different databases. LOAD FROM CURSOR operations can
be executed on the command line as well as from within an application or a stored procedure by
utilizing DB2's ADMIN_CMD stored procedure. This article introduces the LOAD FROM CURSOR
feature and provides usage samples for both interfaces, the DB2 Command Line Processor (CLP)
and ADMIN_CMD stored procedure.

Moving a table into another tablespace
First, see how to move a table from one tablespace into another tablespace. This may become
necessary if the table was created in a tablespace with an inadequate page size or when a
separate bufferpool should be used for accessing the table. In DB2 versions prior to 9.1, tables

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

developerWorks® ibm.com/developerWorks/

Fast and easy data movement using DB2's LOAD FROM
CURSOR feature

Page 2 of 14

were often moved between tablespaces because the maximum size of a tablespace was reached.
However, with DB2 9.1 and higher versions, this should be no longer an issue as the tablespace
size limits have been significantly increased (a prerequisite is the usage of large tablespaces in
contrast to the regular tablespaces used before).

This sample scenarios starts with creating the DB2 SAMPLE database. This can be accomplished
by calling the db2sampl command on the command line as Listing 1 indicates.

Listing 1. Creating the SAMPLE database
C:\>db2sampl

 Creating database "SAMPLE"...
 Connecting to database "SAMPLE"...
 Creating tables and data in schema "FECHNER"...

 'db2sampl' processing complete.

Besides other tables, the SAMPLE database contains a table named SALES. By default, that table
was created in tablespace USERSPACE1. This can be verified by executing a query against the
DB2 catalog views SYSCAT.TABLES and SYSCAT.TABLESPACES.

Listing 2. Determining the tablespace of table SALES
C:\>db2 "CONNECT TO SAMPLE"

 Database Connection Information

 Database server = DB2/NT 9.5.2
 SQL authorization ID = FECHNER
 Local database alias = SAMPLE

C:\>db2 "SELECT TABLES.TABSCHEMA, TABLES.TABNAME, TBSPACES.TBSPACE FROM SYSCAT.TABLES AS
TABLES, SYSCAT.TABLESPACES AS TBSPACES WHERE TABLES.TBSPACEID = TBSPACES.TBSPACEID AND
TABNAME = 'SALES'"

TABSCHEMA
 TABNAME
 TBSPACE

--
-------- ---
----------------- --

FECHNER
 SALES
 USERSPACE1

 1 record(s) selected.

In addition to tablespace USERSPACE1, there is a second tablespace IBMDB2SAMPLEREL
that is intended for storing user data, too. In this sample scenario, IBMDB2SAMPLEREL serves
as the destination tablespace for moving table SALES. By executing the DB2 command LIST
TABLESPACES, you can see all the tablespaces of a database. Listing 3 shows how to do this.

Listing 3. Listing all tablespaces of the SAMPLE database
C:\>db2 "LIST TABLESPACES"

ibm.com/developerWorks/ developerWorks®

Fast and easy data movement using DB2's LOAD FROM
CURSOR feature

Page 3 of 14

 Tablespaces for Current Database

 Tablespace ID = 0
 Name = SYSCATSPACE
 Type = Database managed space
 Contents = All permanent data. Regular table space.
 State = 0x0000
 Detailed explanation:
 Normal

 Tablespace ID = 1
 Name = TEMPSPACE1
 Type = System managed space
 Contents = System Temporary data
 State = 0x0000
 Detailed explanation:
 Normal

 Tablespace ID = 2
 Name = USERSPACE1
 Type = Database managed space
 Contents = All permanent data. Large table space.
 State = 0x0000
 Detailed explanation:
 Normal

 Tablespace ID = 3
 Name = IBMDB2SAMPLEREL
 Type = Database managed space
 Contents = All permanent data. Large table space.
 State = 0x0000
 Detailed explanation:
 Normal

Before copying the contents of table SALES to tablespace IBMDB2SAMPLEREL, you have to
create an empty table in the destination tablespace that has the same structure as table SALES.
Because it is not possible to have two tables with identical names in the same schema, the new
table is temporarily created with the name SALES_TMP. Creating an empty table with the same
structure as an existing table can be done by specifying the LIKE option of the CREATE TABLE
command (Listing 4). The tablespace for the new table SALES_TMP is explicitly defined through
the IN option.

Listing 4. Creating the destination table SALES_TMP for the data movement
operation
C:\>db2 "CREATE TABLE FECHNER.SALES_TMP LIKE FECHNER.SALES IN IBMDB2SAMPLEREL"
DB20000I The SQL command completed successfully.

Now the data movement operation can take place. With the DECLARE CURSOR command, a cursor
is defined that reads all data of the source table SALES using a trivial SELECT statement. The
name of the cursor, C1 in the sample, can be freely chosen. Then this cursor is referenced
in a LOAD command for filling the destination table SALES_TMP. The LOAD command in the
sample writes its messages in a log file load_sales_tmp.msg. The LOAD operation is performed
with the option NONRECOVERABLE. That means the LOAD operation cannot be redone during the
rollforward phase of a database recovery. Thus a database backup, or at least a tablespace
backup, should be executed following the data movement operation. There are other options of the

developerWorks® ibm.com/developerWorks/

Fast and easy data movement using DB2's LOAD FROM
CURSOR feature

Page 4 of 14

LOAD command that avoid such a situation, but these options are outside the scope of this article.
See the description of the LOAD command in the DB2 Information Center for further information
(see Related topics).

Listing 5. Executing a LOAD FROM CURSOR operation to copy all rows in
table SALES into table SALES_TMP
C:\>db2 "DECLARE C1 CURSOR FOR SELECT * FROM FECHNER.SALES"
DB20000I The SQL command completed successfully.

C:\>db2 "LOAD FROM C1 OF CURSOR MESSAGES C:\load_sales_tmp.msg INSERT INTO
FECHNER.SALES_TMP NONRECOVERABLE"

Number of rows read = 41
Number of rows skipped = 0
Number of rows loaded = 41
Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 41

After copying all rows in table SALES successfully to table SALES_TMP, the source table SALES
can be dropped (DROP TABLE statement). Then the destination table SALES_TMP is renamed to
SALES (RENAME TABLE statement). When working with RENAME TABLE, one should know that only
the table name can be changed but not the schema name for the table. Thus it is important to
create table SALES_TMP in the correct schema right from the start.

Listing 6. Dropping source table SALES and renaming destination table
SALES_TMP
C:\>db2 "DROP TABLE FECHNER.SALES"
DB20000I The SQL command completed successfully.

C:\>db2 "RENAME TABLE FECHNER.SALES_TMP TO SALES"
DB20000I The SQL command completed successfully.

Using the already introduced query on the DB2 catalog views, you can check that table
SALES has been moved from its original tablespace USERSPACE1 in its new tablespace
IBMDB2SAMPLEREL as seen in Listing 7.

Listing 7. Verifying the tablespace of the new SALES table
C:\>db2 "SELECT TABLES.TABSCHEMA, TABLES.TABNAME, TBSPACES.TBSPACE FROM SYSCAT.TABLES AS
TABLES, SYSCAT.TABLESPACES AS TBSPACES WHERE TABLES.TBSPACEID = TBSPACES.TBSPACEID AND
TABNAME = 'SALES'"

TABSCHEMA
 TABNAME
 TBSPACE

--
-------- ---
----------------- --

FECHNER
 SALES
 IBMDB2SAMPLEREL

ibm.com/developerWorks/ developerWorks®

Fast and easy data movement using DB2's LOAD FROM
CURSOR feature

Page 5 of 14

 1 record(s) selected.

C:\>db2 "TERMINATE"
DB20000I The TERMINATE command completed successfully.

Creating a table copy in another database by using a nickname

As well as a table can be moved between tablespaces within a database, a table can be moved
between two different databases. That means: Using LOAD FROM CURSOR, a table can be copied
from one database into another database, too. This can be accomplished in two ways:

• Approach 1 - From within the target database, the source database is accessed using DB2's
mechanisms for federated databases.

• Approach 2 - The remote access feature of the LOAD FROM CURSOR command is used.

Both approaches offer certain advantages which will be explored in this article.

Approach 1 uses a federated access to the source database to copy table contents. Approach
1 requires that the target database is configured as federated database. Therefore the
parameter FEDERATED of the corresponding DB2 instance has to be set to YES (UPDATE DBM
CFG). After changing the DBM CFG parameter FEDERATED, the DB2 instance has to be restarted
(db2stop/db2start). In this sample scenario, source and target database run within the same DB2
instance. As a target database, you create an empty, second database named MYSAMPLE. For
a test database with no special requirements, this can be accomplished using a CREATE DATABASE
command without further options.

Listing 8. Activating federated database support in the DBM CFG and creating
the empty target database MYSAMPLE

C:\>db2 "UPDATE DBM CFG USING FEDERATED YES"
DB20000I The UPDATE DATABASE MANAGER CONFIGURATION command completed
successfully.
SQL1362W One or more of the parameters submitted for immediate modification
were not changed dynamically. Client changes will not be effective until the
next time the application is started or the TERMINATE command has been issued.
Server changes will not be effective until the next DB2START command.

C:\>db2stop
2008-09-22 14.55.36 0 0 SQL1064N DB2STOP processing was successful.
SQL1064N DB2STOP processing was successful.

C:\>db2start
2008-09-22 14.55.53 0 0 SQL1063N DB2START processing was successful.
SQL1063N DB2START processing was successful.

C:\>db2 "CREATE DATABASE MYSAMPLE"
DB20000I The CREATE DATABASE command completed successfully.

As before, an empty table is required in the target database MYSAMPLE that has the same
structure like the table SALES in the source database SAMPLE. Thus, you should extract the DDL
of table sales in the source database using the db2look utility.

developerWorks® ibm.com/developerWorks/

Fast and easy data movement using DB2's LOAD FROM
CURSOR feature

Page 6 of 14

Listing 9. Extracting DDL of source table SALES using the db2look utility
C:\>db2look -d sample -e -z fechner -t sales -o sales.ddl
-- USER is: FECHNER
-- Specified SCHEMA is: FECHNER
-- The db2look utility will consider only the specified tables
-- Creating DDL for table(s)

-- Schema name is ignored for the Federated Section
-- Output is sent to file: sales.ddl
-- Binding package automatically ...
-- Bind is successful
-- Binding package automatically ...
-- Bind is successful

The result of the db2look call is a file sales.ddl containing the CREATE TABLE statement for table
SALES. If there were constraints and/or indexes defined on table SALES, the corresponding
definitions would also be extracted and written to the file sales.ddl. Listing 10 shows these results.

Listing 10. Result file sales.ddl from db2look call
-- This CLP file was created using DB2LOOK Version 9.5
-- Timestamp: 23.09.2008 07:35:10
-- Database Name: SAMPLE
-- Database Manager Version: DB2/NT Version 9.5.2
-- Database Codepage: 1208
-- Database Collating Sequence is: IDENTITY

CONNECT TO SAMPLE;

--
-- DDL Statements for table "FECHNER "."SALES"
--

CREATE TABLE "FECHNER "."SALES" (
 "SALES_DATE" DATE ,
 "SALES_PERSON" VARCHAR(15) ,
 "REGION" VARCHAR(15) ,
 "SALES" INTEGER)
 IN "IBMDB2SAMPLEREL" ;

COMMIT WORK;

CONNECT RESET;

TERMINATE;

Before executing the statements in file sales.ddl against the target database MYSAMPLE, open
the file in a text editor and make two changes to the generated statements:

• At the beginning of the file, db2look generated a CONNECT statement to the source database
SAMPLE. As you want to execute the following statements against the target database
MYSAMPLE, you alter the CONNECT statement accordingly.

• As there is not a tablespace IBMDB2SAMPLREL for user data in the target database
MYSAMPLE, replace the tablespace name in the CREATE TABLE statement with
USERSPACE1.

ibm.com/developerWorks/ developerWorks®

Fast and easy data movement using DB2's LOAD FROM
CURSOR feature

Page 7 of 14

Listing 11. Modifications in the result file sales.ddl for creation of the
destination table
CONNECT TO SAMPLE; -> CONNECT TO MYSAMPLE;

IN "IBMDB2SAMPLEREL" ; -> IN "USERSPACE1";

After changing the file sales.ddl as described above, the script is executed by calling the DB2 CLP
(command line processor).

Listing 12. Creating the destination table in database MYSAMPLE
C:\>db2 -tf sales.ddl

 Database Connection Information

 Database server = DB2/NT 9.5.2
 SQL authorization ID = FECHNER
 Local database alias = MYSAMPLE

DB20000I The SQL command completed successfully.

DB20000I The SQL command completed successfully.

DB20000I The SQL command completed successfully.

DB20000I The TERMINATE command completed successfully.

Until now, only an empty copy of table SALES in the target database MYSAMPLE has been
created. The next step in preparing your data movement operation is cataloging the source
database SAMPLE as remote database. Obviously, this is not a mandatory prerequisite for this
sample scenario because both databases, source and target, run on the same server within the
same DB2 instance. But in a real environment, the following CATALOG commands would have to be
executed for the DB2 instance hosting the target database to allow TCP/IP access to the source
database.

Listing 13. Creating entries in the node and database directory for accessing
database SAMPLE
C:\>db2 "CATALOG TCPIP NODE SRCNODE REMOTE localhost SERVER 50000"
DB20000I The CATALOG TCPIP NODE command completed successfully.
DB21056W Directory changes may not be effective until the directory cache is
refreshed.

C:\>db2 "CATALOG DATABASE SAMPLE AS SRCDB AT NODE SRCNODE AUTHENTICATION SERVER"
DB20000I The CATALOG DATABASE command completed successfully.
DB21056W Directory changes may not be effective until the directory cache is
refreshed.

C:\>db2 "TERMINATE"
DB20000I The TERMINATE command completed successfully.

The last step to prepare the LOAD FROM CURSOR operation is to configure the federated
access to table SALES in the source database SAMPLE. This is done within the target database
MYSAMPLE by creating several, special objects required for federated access to another
database:

developerWorks® ibm.com/developerWorks/

Fast and easy data movement using DB2's LOAD FROM
CURSOR feature

Page 8 of 14

• Wrapper - A wrapper allows access to external data sources. The external data source could
be another DBMS (database management system) like Oracle or SQL Server, or just an Excel
sheet. Depending on the data source that should be accessed, a suitable wrapper is required.
These wrappers are contained in the separate IBM product WebSphere® Federation Server.
If one would like to access just another database of the DB2 product family, DB2 LUW or DB2
z/OS, the DRDA wrapper is needed. This wrapper is already contained in DB2 LUW, that is,
WebSphere Federation Server is not necessary in that case. The DRDA wrapper is created
by executing the following, trivial command in the target database: CREATE WRAPPER DRDA.

• Server - The term server is a little bit confusing in this case because what is really meant
is the source database that takes the role of a (data) server. To make the source database
known in the target database, a server object is created that specifies the type of the
data source (DB2/UDB VERSION 9.5), the wrapper to use (DRDA), and a user/password
combination to access the source database. The name of the source database itself is
provided using the option DBNAME. Username and password have to be specified in quotation
marks. To avoid that the quotation marks are removed by the command line interpreter, they
are masked with a backslash (\). The name of the server object can be freely chosen. In this
sample scenario, the name SRCSRV is used.

• User Mapping - A user mapping has to be defined for each user who wants to access the
remote database using the previously defined server object. The user mapping defines how
the authorization ID at the local database (MYSAMPLE) is mapped to an authorization ID at
the remote database (SAMPLE). In this sample scenario, local and remote user are identical,
nevertheless a user mapping has to be defined.

• Nickname - The nickname is a local alias for the remote table in the source database.
Specifying the nickname, the remote table can be queried in SQL statements on the target
database like any other local table.

Listing 14. Creating the database objects required for federated access
C:\>db2 "CONNECT TO MYSAMPLE"

 Database Connection Information

 Database server = DB2/NT 9.5.2
 SQL authorization ID = FECHNER
 Local database alias = MYSAMPLE

C:\>db2 "CREATE WRAPPER DRDA"
DB20000I The SQL command completed successfully.

C:\>db2 "CREATE SERVER SRCSRV TYPE DB2/UDB VERSION 9.5 WRAPPER DRDA AUTHORIZATION
\"fechner\" PASSWORD \"password\" OPTIONS (DBNAME 'SRCDB')"
DB20000I The SQL command completed successfully.

C:\>db2 "CREATE USER MAPPING FOR fechner SERVER SRCSRV OPTIONS (REMOTE_AUTHID 'fechner',
REMOTE_PASSWORD 'password')"
DB20000I The SQL command completed successfully.

C:\>db2 "CREATE NICKNAME FECHNER.SRCTAB FOR SRCSRV.FECHNER.SALES"
DB20000I The SQL command completed successfully.

Note: The steps described here for setting up the federated access are completely independent
from the LOAD FROM CURSOR functionality. That means these steps can generally be used to
create a nickname for a table in a remote database.

ibm.com/developerWorks/ developerWorks®

Fast and easy data movement using DB2's LOAD FROM
CURSOR feature

Page 9 of 14

Now that federated access to the table in the source database is configured, the LOAD FROM
CURSOR operation works exactly the same as already shown. First a cursor is defined that reads
all rows in the remote table using the nickname created above. Then that cursor is referenced in
the LOAD command.

Listing 15. Executing the remote LOAD FROM CURSOR operation using the
nickname

C:\>db2 "DECLARE C1 CURSOR FOR SELECT * FROM FECHNER.SRCTAB"
DB20000I The SQL command completed successfully.

C:\>db2 "LOAD FROM C1 OF CURSOR MESSAGES C:\load_sales.msg INSERT INTO FECHNER.SALES
NONRECOVERABLE"

Number of rows read = 41
Number of rows skipped = 0
Number of rows loaded = 41
Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 41

C:\>db2 "TERMINATE"
DB20000I The TERMINATE command completed successfully.

As already mentioned, the LOAD FROM CURSOR operation combined with the federated access
requires more effort in terms of configuration than the approach that is presented next. But the
main advantage of the federated approach is the possibility to load data from data sources other
than DB2. By using the federated approach, you can access data sources like Oracle, SQL
Server, and many other relational and non-relational data sources and copy contents by creating
a nickname and executing a LOAD FROM CURSOR operation referencing that nickname. The
wrappers required to access other data sources than DB2 are shipped with the WebSphere
Federation Server product.

An easier way to create a table copy in another database

Now that you know the remote LOAD FROM CURSOR approach based on usage of nicknames,
you will evaluate the alternate approach that comes with less effort. To do so, you start
with deleting all the rows that you have just imported in table SALES in the target database
MYSAMPLE as Listing 16 shows.

Listing 16. Deleting all rows in the destination table for repetition of the LOAD
FROM CURSOR operation

C:\>db2 "CONNECT TO MYSAMPLE"

 Database Connection Information

 Database server = DB2/NT 9.5.2
 SQL authorization ID = FECHNER
 Local database alias = MYSAMPLE

C:\>db2 "DELETE FROM FECHNER.SALES"
DB20000I The SQL command completed successfully.

developerWorks® ibm.com/developerWorks/

Fast and easy data movement using DB2's LOAD FROM
CURSOR feature

Page 10 of 14

For the alternate approach, it is not necessary to configure a federated access to the remote
database. Instead, the remote database is just specified in the DECLARE CURSOR statement using
the DATABASE option. For this to work, the remote database has to be cataloged in the system
database directory of the local DB2 instance. The corresponding CATALOG commands were already
presented above. In addition, the user name and password for the remote access are specified
during definition of the cursor. The LOAD command itself remains unchanged.

Listing 17. Executing the remote LOAD FROM CURSOR operation without
using a nickname

C:\>db2 "DECLARE C1 CURSOR DATABASE SRCDB USER fechner USING password FOR SELECT * FROM
FECHNER.SALES"
DB20000I The SQL command completed successfully.

C:\>db2 "LOAD FROM C1 OF CURSOR MESSAGES C:\load_sales_2.msg INSERT INTO FECHNER.SALES
NONRECOVERABLE"

Number of rows read = 41
Number of rows skipped = 0
Number of rows loaded = 41
Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 41

C:\>db2 "TERMINATE"
DB20000I The TERMINATE command completed successfully.

The possibility to perform a remote LOAD FROM CURSOR operation this way exists since DB2
9.1, the approach based on a federated access did already work in version 8. The new approach
comes with two advantages -- ease of use and performance. It is obvious that the new approach
is very easy to use. The performance benefit compared to the federated approach is related to the
fact that less data transfer layers are involved. However, the advantage of the federated approach
should not be forgotten, that is, the possibility to access other data sources than DB2.

Differences between CLP and ADMIN_CMD concerning LOAD FROM
CURSOR

Many administrative commands can also be embedded in application code by executing the
administrative commands through the special stored procedure ADMIN_CMD. This is true
for a LOAD FROM CURSOR operation, too. Usage of the stored procedure ADMIN_CMD is
independent from the location of the application code, that is, it does not matter if you talk about
client-side code (for example, a Java application) or server-side code (for example, a SQL/
PL stored procedure). The following sample demonstrates usage of the ADMIN_CMD stored
procedure within a custom SQL/PL stored procedure. The file create_load_routine.sql contains the
SQL/PL source code for our sample stored procedure called REMOTE_LOAD_FROM_CURSOR.

ibm.com/developerWorks/ developerWorks®

Fast and easy data movement using DB2's LOAD FROM
CURSOR feature

Page 11 of 14

Listing 18. Contents of file create_load_routine.sql containing the sample
stored procedure

CREATE PROCEDURE FECHNER.REMOTE_LOAD_FROM_CURSOR ()
 SPECIFIC REMOTE_LOAD_FROM_CURSOR
 LANGUAGE SQL
BEGIN

 DELETE FROM FECHNER.SALES;--

 CALL SYSPROC.ADMIN_CMD ('LOAD FROM (DATABASE SRCDB SELECT * FROM FECHNER.SALES) OF
CURSOR INSERT INTO FECHNER.SALES NONRECOVERABLE');--
END;

The first statement within the stored procedure is a DELETE to remove the existing rows in the
local destination table SALES. Next, the remote LOAD FROM CURSOR operation is executed by
calling ADMIN_CMD with a suitable LOAD command. The following differences exist compared to a
LOAD FROM CURSOR operation that is executed on the command line:

• Definition of the required cursor does not occur separately by executing DECLARE CURSOR.
Instead the cursor definition is implicitly done by providing the corresponding SELECT
statement within the LOAD command. This syntax is only valid when the LOAD FROM
CURSOR operation is embedded in an ADMIN_CMD call, but it is not valid on the command
line.

• The remote database is defined via the DATABASE option within the LOAD command. The
specification of a user/password combination for the remote access is not possible. Observe
the implications of this restriction when testing your stored procedure.

But first you should create your stored procedure in the destination database MYSAMPLE.

Listing 19. Creating the sample stored procedure

C:\>db2 "CONNECT TO MYSAMPLE"

 Database Connection Information

 Database server = DB2/NT 9.5.2
 SQL authorization ID = FECHNER
 Local database alias = MYSAMPLE

C:\>db2 -tf create_load_routine.sql
DB20000I The SQL command completed successfully.

A first test call fails returning the message SQL30082N Security processing failed with reason
"3" ("PASSWORD MISSING"). SQLSTATE=08001.

Listing 20. First test of the sample stored procedure that fails

C:\>db2 "CALL FECHNER.REMOTE_LOAD_FROM_CURSOR"
SQL30082N Security processing failed with reason "3" ("PASSWORD MISSING").
SQLSTATE=08001

C:\>db2 "TERMINATE"
DB20000I The TERMINATE command completed successfully.

developerWorks® ibm.com/developerWorks/

Fast and easy data movement using DB2's LOAD FROM
CURSOR feature

Page 12 of 14

The cause of the error message is the way the connection to the database was established: db2
"CONNECT TO MYSAMPLE". When executing the CONNECT statement, no user and password were
given so that the connection was established with the username that was used to log in to the
operating system. In that case, DB2 does not know about the password of the user connected.
Now when performing the LOAD FROM CURSOR operation within the stored procedure, DB2
tries to establish the remote connection to database SAMPLE with the authorization ID of the local
user. However, as DB2 does not know about the corresponding password because of the implicit
CONNECT, remote access fails. Thus the reasons for the error are the following:

• Because a LOAD FROM CURSOR operation executed via ADMIN_CMD does not allow the
definition of a user for remote access, the LOAD operation automatically tries to establish a
connection to the remote database with the authorization ID belonging to the local database
connection.

• If the locally connected user has done an implicit CONNECT without specifying a password,
her/his password is unknown to DB2 and therefore not available when trying to establish the
connection to the remote database.

Another implication of the described behavior for a remote LOAD FROM CURSOR via
ADMIN_CMD - that is, the restriction that no explicit user can be specified for remote access - is
that the user currently connected to the local database must have access to the remote database
using the same authorization ID. This restriction does not apply to the approach using a federated
access to the remote database as in that case there is an additional layer of abstraction in form of
the user mappings that have to be defined.

Having determined the cause of the error, reconnect to the local database, this time explicitly
specifying a username and a password. Afterwards a second call to your stored procedure should
work fine (Return Status = 0) as Listing 21 indicates.

Listing 21. Second test of the sample stored procedure that succeeds
C:\>db2 "CONNECT TO MYSAMPLE USER fechner"
Enter current password for fechner:

 Database Connection Information

 Database server = DB2/NT 9.5.2
 SQL authorization ID = FECHNER
 Local database alias = MYSAMPLE

C:\>db2 "CALL FECHNER.REMOTE_LOAD_FROM_CURSOR"

 Return Status = 0

C:\>db2 "TERMINATE"
DB20000I The TERMINATE command completed successfully.

Summary
With the help of sample scenarios, the article demonstrates how DB2's LOAD FROM CURSOR
feature can be used to copy data fast and simple within a database and also between different

ibm.com/developerWorks/ developerWorks®

Fast and easy data movement using DB2's LOAD FROM
CURSOR feature

Page 13 of 14

databases. The article also explains the specialties when LOAD FROM CURSOR operations
are executed within application code using the ADMIN_CMD stored procedure. Additionally, you
learned how to configure a federated access to another DB2 database so that tables/views in a
remote database can be transparently read and written as if they were local tables or views.

developerWorks® ibm.com/developerWorks/

Fast and easy data movement using DB2's LOAD FROM
CURSOR feature

Page 14 of 14

Related topics

• Read Moving data using the CURSOR file type to get more in-depth information about the
topics covered in this article:

• Visit the DB2 9.5 Information Center for Linux, UNIX, and Windows to get the complete DB2
9.5 LUW documentation online in HTML format.

• The DB2 9 for Linux UNIX and Windows Support Site lets you search for APARs, download
fixpacks, get DB2 LUW documentation in PDF format, and so on.

• Check out the Best practices for DB2 for Linux, UNIX, and Windows papers. These
papers are designed to provide practical guidance for the most common DB2 9 product
configurations. By applying these recommendations, you may improve the value of your
DB2 data servers and align yourself with IBM's technical direction for DB2. These papers
are authored by leading experts in IBM's development and consulting teams, and have been
extensively tested.

• Download IBM product evaluation versions and get your hands on application development
tools and middleware products from DB2®, Lotus®, Rational®, Tivoli®, and WebSphere®.

© Copyright IBM Corporation 2009
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?topic=/com.ibm.db2.luw.admin.dm.doc/doc/c0005437.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp
http://www-306.ibm.com/software/data/db2/udb/support/
http://www.ibm.com/developerworks/db2/bestpractices/
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX01&S_CMP=ART
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Introduction
	Moving a table into another tablespace
	Creating a table copy in another database by using a nickname
	An easier way to create a table copy in another database
	Differences between CLP and ADMIN_CMD concerning LOAD FROM CURSOR
	Summary
	Trademarks

