
Discovering the internals of IBM FileNet
Content Platform Engine Configuration

By Praveen M Kumar

Abstract
This article provides a high level understanding of IBM FileNet P8 content management and
explains the various steps involved in its configuration. Each step is explained in detail, to
illustrate what the Configuration Manager tool does and why that needs to be done. While
customers should always use Configuration Manager to perform these steps, we show here how
the same steps could be performed manually, so that administrators may better understand the
concepts in the configuration of IBM FileNet Content Platform Engine.

Author Bio: Praveen Kumar Midde is a Senior Staff Software Engineer in the IBM Enterprise
Content Management group based in Hyderabad, India. He has more than eight years of
experience in enterprise software development with the past six in the development group of IBM
FileNet Enterprise Manager Administative tool and is currently working in the development
group of IBM Case Analyzer and Case History. Praveen holds a Masters degree in Computer
Science from International Institute of Information Technology (IIIT) Hyderabad, India. Reach
out to him with your comments at praveen.midde@in.ibm.com

mailto:praveen.midde@in.ibm.com

Introduction
The configuration of IBM FileNet Content Platform Engine is a simple process that is
often misunderstood as a complex one. Understanding the internals of each of the
configuration steps will increase understanding of the Content Platform Engine
configuration process.

Note that configuration steps for IBM FileNet Content Manager change with each
software release, and vary with the application server and database platforms being used,
as well as the options selected during the configuration process. This article
demonstrates manual steps that work for one application server / database / directory
server / authentication environment, for one release of Content Platform Engine. Please
always use the Configuration Manager tool to obtain the correct configuration settings for
your release, and your environment.

P8 Content Management Overview
IBM FileNet P8 provides a platform for enterprise content management and business
process management capabilities. P8 Content Platform Engine (CPE) is the core
component of the P8 platform that provides the content management features.

Content Platform Engine is a J2EE-based enterprise application that is deployed in an
Application server. The enterprise content is organized in various levels of hierarchy. At
the root of the hierarchy is the P8 Domain, shortly referred to as just “domain”. There is
only one Domain for the entire P8 platform. This domain holds all the information about
the different types of “resources” under it. Under this domain, there exists Sites. A Site is
just a logical grouping of different resources, mostly based on the geographic location.
Under each Site, there is a Virtual Server which is best viewed as a logical grouping of
Server Instances. In reality, the Virtual Server tends to map to the application server
cluster and be tied to a load balancer of some sort. Each Server Instance pertains to one
deployment of the CE application while the application server load balancer (logically
represented by the Virtual Server) is responsible for distributing requests across the
various CPE Server Instances under that Virtual Server.

Figure 1. P8 Domain hierarchy

As you see, there needs to be some place where the information of these sites, servers etc.
needs to be stored. This is stored in a repository called the “Global Configuration Data”
(GCD) – which, as the name suggests - stores all the configuration data of the domain.
There exists one and only one GCD database; and all the CPE servers refer to this GCD
database.

The main component of any enterprise is its “Content”. The content and its metadata (i.e.
data defining the content) is stored in an “Object Store”- which can be idealized as
another database/repository. There can be multiple object stores that store information
specific to different departments within the organization – like Software Development
Labs department, Human Resources department etc. The information of all the object
stores is stored in the global database, the GCD.

The typical documents/files in an enterprise form the “Content” and this can be stored
either in the database (as that of the object store which contains the content's metadata),
or in a shared file system or in third party software like IBM Image Services, EMC
Centera, SnapLock etc. These third party applications are also referred to as Fixed
Content Devices.

Once the content and its metadata is created inside an object stores, we need to provide
security to the objects of the object stores as well as identify who can actually use the P8

domain. This falls into the category of Authentication and Authorization. Authentication
talks about who can use the system; where as, Authorization talks about what operations
the authenticated user can perform.

CPE doesn't itself actually define its own set of users and groups. It indeed uses the
enterprise's LDAP servers which ideally store information about all the users in the
enterprise. Any user of P8 must be an LDAP registry user. Whenever a user logs into P8
system (via various tools) by providing his username and password, the application
server takes these credentials and verifies if the user exists in the LDAP server. If present,
a security token is generated and sent to the client. The client would use this security
token for any other request. This phase is called Authentication.

Only authenticated requests actually pass through the Application server to the Content
Platform Engine application. The security on different objects inside the domain or an
object store is defined by using “Access Control Lists” (ACLs) on that object. These
ACLs are typically a matrix against the unique identifiers of the user(s)/group(s) and the
permissions the user/group has on that object. Now, once the request comes to CPE, CPE
would retrieve more information on the user (ex. all the various groups the user belongs
to), performs a look-up on the ACLs to see if the particular user has permission to
perform the operation he requested. This phase in servicing a request is called
Authorization.

Overall, CPE can be visualized as an EJB application that resides inside the J2EE
container, using the various services provided by the container. At a high level, CPE uses
the security, transaction, database services provided by the J2EE container.

Configuring Content Platform Engine
The configuration of CPE consists of various steps that would define the interaction
between the databases, LDAP servers etc. Prior to P8 4.5.0, the configuration of CPE is a
tiresome and error prone. To increase the consumability of the product, a tool call
“Configuration Manager” was introduced that performs the steps to configure the CPE by
taking minimal user input.

The configuration of Content Platform Engine falls in five different steps as below:

1. Creating data sources
As we discussed earlier, the data and the metadata is stored in two types of databases –
the Global Configuration Database (containing the information about the resources in a
domain); and the Object store Database (containing the metadata of the data, and
optionally the data).

CPE takes help of application server's “data source” object to talk to these databases. A
data source (an object on the Application Server) typically consists of the information
related to the database and also consists information on the drivers to be used to connect

to this database. Note that the low-level communication to the database, management of
the data sources etc. is all taken care by the Application Server.

So, you need to first inform where the GCD and the Object store database should reside.
You do this by creating one set of data sources (one XA data source and non-XA data
source) each for GCD and OS. The user would need to know the information about the
location of the database, port number the database listener listens to, database credentials,
the type and version of JDBC drivers to be used to connect to the database.

The application server tools can be used to create these data sources as described below:
(Note: The example below applies specifically to DB2 for LUW. For other types of
databases, please refer the product documentation.)

1.1 Database and the environment variable
Prior to creating the data source, make sure that databases are created for holding the
GCD and Object store information. These databases should have the required parameters
as mentioned in the FileNet guides. For example: On DB2, set the the Application heap
size of the database to 2560, Statement heap size to 8192, pagesize to atleast 32K. The
database user used for the data source need to have at least the “Connect to database” and
“create tables” permissions.

Here is a sample script to create the DB2 database. Copy it into a file “createDB2DB.bat”
and run the command ”createDB2DB DBNAME DBDRIVE DBDIR DBUSER”

Listing 1: Sample DB2 database creation script
@echo off

REM usage: createDB2DB DBNAME DBDRIVE DBDIR DBUSER
REM Creates a DB2 database named DBNAME under directory DBDRIVE DBDIR
REM accessible by user DBUSER.

if {%1}=={} goto usage
if {%2}=={} goto usage
if {%3}=={} goto usage
if {%4}=={} goto usage

set DBNAME=%1
set DBDRIVE=%2
set DBDIR=%3
set DBUSER=%4

REM close any outstanding connections
db2 -v CONNECT RESET

REM Go ahead and drop if it exists
db2 -v DROP DATABASE %DBNAME%

REM Create the database - these statements must be on a single line (unfortunately)
db2 -v -t "CREATE DATABASE %DBNAME% ON '%DBDRIVE%' USING CODESET UTF-8 TERRITORY US
COLLATE USING SYSTEM CATALOG TABLESPACE MANAGED BY SYSTEM USING ('%DBDRIVE%%DBDIR%\
%DBNAME%\sys') TEMPORARY TABLESPACE MANAGED BY SYSTEM USING ('%DBDRIVE%%DBDIR%\%DBNAME
%\systmp') USER TABLESPACE MANAGED BY SYSTEM USING ('%DBDRIVE%%DBDIR%\%DBNAME%\usr')" ;

REM Increase the application and statement heap sizes
db2 -v UPDATE DATABASE CONFIGURATION FOR %DBNAME% USING APPLHEAPSZ 2560
db2 -v UPDATE DATABASE CONFIGURATION FOR %DBNAME% USING STMTHEAP 8192

REM Connect to db
db2 -v CONNECT TO %DBNAME%

REM Drop unnecessary default tablespaces
db2 -v DROP TABLESPACE USERSPACE1

REM Create default buffer pool
db2 -v CREATE Bufferpool %DBNAME%BP IMMEDIATE SIZE -1 PAGESIZE 32K

REM Create additional buffer pools
db2 -v CREATE Bufferpool %DBNAME%TEMPBP IMMEDIATE SIZE -1 PAGESIZE 32K
db2 -v CREATE Bufferpool %DBNAME%SYSBP IMMEDIATE SIZE -1 PAGESIZE 32K

db2 -v CONNECT RESET

db2 -v CONNECT TO %DBNAME%

REM Create tablespaces - these statements must be on a single line
db2 -v -t "CREATE REGULAR TABLESPACE %DBNAME% PAGESIZE 32K MANAGED BY DATABASE USING
(FILE '%DBDRIVE%%DBDIR%\%DBNAME%\usr2\%DBNAME%_tbs.dbf' 512M) AUTORESIZE YES BUFFERPOOL
%DBNAME%BP" ;
db2 -v -t "CREATE USER TEMPORARY TABLESPACE USERTEMP1 PAGESIZE 32K MANAGED BY DATABASE
USING (FILE '%DBDRIVE%%DBDIR%\%DBNAME%\usrtmp\%DBNAME%_tmp.dbf' 64M) AUTORESIZE YES
BUFFERPOOL %DBNAME%TEMPBP" ;
db2 -v -t "CREATE SYSTEM TEMPORARY TABLESPACE TEMPSYS1 PAGESIZE 32K MANAGED BY SYSTEM
USING ('%DBDRIVE%%DBDIR%\%DBNAME%\systmp2') BUFFERPOOL %DBNAME%SYSBP" ;

REM Grant USER access to tablespaces
db2 -v GRANT CREATETAB,CONNECT ON DATABASE TO user %DBUSER%
db2 -v GRANT USE OF TABLESPACE %DBNAME% TO user %DBUSER%
db2 -v GRANT USE OF TABLESPACE USERTEMP1 TO user %DBUSER%

REM Close connection
db2 -v CONNECT RESET

goto end

:usage
@echo usage: createDB2DB DBNAME DBDRIVE DBDIR DBUSER
@echo where:
@echo DBNAME is the name of the database (8 characters or less).
@echo DBDRIVE is the windows driver letter followed by colon (:).
@echo DBDIR is the existing directory that will contain the database.
@echo This value must NOT include the drive prefix nor a trailing slash.
@echo The database will be created in a sub-directory named [DBNAME].
@echo DBUSER is a system user in which database access is provided.
@echo e.g.: createDB2DB Daphne c: \DB2 db2admin
@echo Creates a database under c:\DB2\Daphne accessible by db2admin.

:end

The application server uses the vendor-specific APIs (JDBC drivers) to talk to the
database. In the case of WebSphere, the directory containing the library files is specified
as one of the environment variables.

For ex: For DB2 database, the environment variable
“DB2UNIVERSAL_JDBC_DRIVER_PATH” can be set appropriately as below:
Navigate to Environment > WebSphere Variables >
DB2UNIVERSAL_JDBC_DRIVER_PATH

Figure 2: JDBC Driver Variable

Set the folder path to the required drivers (.jars) as below: (Make sure that the path
doesn't contain spaces)

Figure 3: Setting the JDBC Driver Variable

1.2 Database credentials:
The database credentials to access the databases are specified using J2C authentication
data specified as below:

Navigate to Security > Global Security > Java Authentication and Authorization Service
> J2C Authentication data

Figure 4: J2C Authentication Data - Navigation

Create a new Authentication alias:

Figure 5: New J2C Authentication Data – New entry

Provide the credentials for the database

Figure 6: J2C Authentication Data – specify database credentials

Once created, the new J2C Authentication alias is displayed as below:

Figure 7: J2C Authentication Data – entry after creation

1.3 JDBC XA and non-XA data sources
The JDBC XA and non-XA data sources are created as below:
Navigate to Resources > JDBC > Data sources
Under the Cell scope, create a New data source by clicking “New”

Figure 8: JDBC non-XA data source - Navigation

Follow the wizard providing the required details for the data source creation as below:

Figure 9: JDBC non-XA data source: Name

Figure 10: JDBC non-XA data source: New JDBC provider creation

Figure 11: JDBC non-XA data source: JDBC provider details

Figure 12: JDBC non-XA data source: database class path

Figure 13: JDBC non-XA data source: database details

Figure 14: JDBC non-XA data source: Authentication alias

Figure 15: JDBC non-XA data source: Summary

Similarly create JDBC XA data source as below:

Figure 16: JDBC XA Data source – Name

Figure 17: JDBC XA Data source – new JDBC provider

Figure 18: JDBC XA Data source – JDBC provider details

Figure 19: JDBC XA Data source – database class path information

Figure 20: JDBC XA Data source – database specific properties

Figure 21: JDBC XA Data source – security aliases

Figure 22: JDBC XA Data source – summary

1.4 Custom properties for the created data sources
For the created XA and non-XA data sources, update (or create new if these doesn't exist
already) two custom properties “resultSetHoldability” and
“WebSphereDefaultIsolationLevel” as below:

Navigate to the “Custom Properties” link on the respective data sources

Figure 23: Data source custom properties

Figure 24: JDBC non-XA data source Custom property
“resultSetHoldability” – Set the value to 1

Figure 25: JDBC non-XA data source Custom property
“resultSetHoldability” - afterwards

Figure 26: JDBC non-XA data source Custom property
“WebSphereDefaultIsolationLevel” - set to 2

Figure 27: JDBC non-XA data source Custom property
“WebSphereDefaultIsolationLevel” - afterwards

For the JDBC XA data source, set the value of custom property
“WebSphereDefaultIsolationLevel” to 2 as below:

Figure 28: JDBC XA data source Custom property
“WebSphereDefaultIsolationLevel”

Similarly create the data sources (both XA and non-XA) for the object store database.

Once all the data sources and their properties are set, test the data sources to see if the
connections are successful. If there is any error, it implies that there is some error talking
to the databases. Tip: Make sure that the data base properties provided are correct

Figure 29: Testing the data source connections

We, now, have successfully created the datasource objects that take care of talking to the
underlying databases.

2. Configuring security (Login modules and LDAP configuration)
The next step would be to configure the authentication of the users accessing the P8
platform. This is done in two phases as below:

2.1 Configuring Login Modules
Content Platform Engine uses Java Authentication and Authorization Service (JAAS)
framework for authentication only (not for Authorization). JAAS provides a policy-
based, pluggable framework for reliably and securely determining who is invoking a Java
application. The design of JAAS as a pluggable framework is a key architectural benefit
of J2EE. It allows applications to remain independent of the underlying authentication
technologies, and it allows third-party application server vendors, authentication
providers, and single sign-on providers to package solutions that can be leveraged by all
J2EE applications and clients. In an end user environment, new or updated single sign-on

solutions can be plugged in without requiring modifications to the client and server
applications that are already deployed.

The Content Platform Engine Enterprise Java Bean (EJB) resides within the J2EE
Application Server’s EJB container, and is therefore accessible only by authenticated
callers, who can pass any authorization checks that the administrator has placed on the
EJB.

To make use of a J2EE-based application, a client must first perform a JAAS login. To do
this, the client must specify a JAAS configuration (typically through a configuration file).
The JAAS configuration specifies the authentication technologies (LoginModules) that
will be used to verify the client’s credentials. A JAAS configuration file lists one entry
for each configured application. Within an application’s entry in a JAAS configuration
file is a list of LoginModules for that application. When a client application attempts to
authenticate, the JAAS framework dynamically determines the set of authentication
technologies to invoke based on the contents of the configuration file.

Each entry in a JAAS configuration is marked as either Required, Requisite, Sufficient,
or Optional. The authentication process for the client succeeds only if all LoginModules
marked either Required or Requisite succeed. If no Required or Requisite LoginModules
succeed, then at least one Sufficient or Optional LoginModule must succeed.

Content Platform Engine installation provides sample jaas login configuration file for
different types of application servers, say, “jaas.conf.WebSphere” for WebSphere
application server.

Listing 2. Sample JAAS configuration file

FileNetP8 {
 com.ibm.ws.security.common.auth.module.WSLoginModuleImpl required;
};

FileNetP8WSI {
 com.filenet.api.util.WSILoginModule required;
};

FileNetP8Engine {
 com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy required
 delegate=com.ibm.ws.security.common.auth.module.WSLoginModuleImpl;
};

FileNetP8Server {
 com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy required
 delegate=com.ibm.ws.security.common.auth.module.WSLoginModuleImpl;
};

FileNetP8KerberosService {
 com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy required
 delegate=com.filenet.engine.authentication.kerberos.login.KrbServiceLoginModule;
 com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy required
 delegate=com.ibm.ws.security.server.lm.ltpaLoginModule;
 com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy required
 delegate=com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule;
};

Credentials {
 com.idoox.security.jaas.GSSLoginModule required debug=true;
};

ReceivedCredentials {
 com.idoox.security.jaas.GSSLoginModuleNoAuth required debug=true;
};

HttpCredentials {
 com.idoox.security.jaas.HttpLoginModule required debug=true;
};

KrbCredentials {
 com.ibm.security.auth.module.Krb5LoginModule required debug=false credsType=both;
};

CachedKrbCredentials {
 com.ibm.security.auth.module.Krb5LoginModule required debug=false
useDefaultCcache=true;
};

NamePasswordNoAN {
 com.idoox.security.jaas.NamePasswordLoginModuleNoAuth required debug=true;
};

NamePasswordAN {
 com.idoox.security.jaas.NamePasswordLoginModule required debug=true;
};

NameDigestAN {
 com.idoox.security.jaas.NameDigestLoginModule required debug=true;
};

NameMapping {
 com.idoox.security.jaas.NameLoginModuleNoAuth required debug=true;
};

CertsMapping {
 com.idoox.security.jaas.CertsLoginModule required debug=true;
};

Navigator {
 com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy required
 delegate=com.ibm.ws.security.server.lm.ltpaLoginModule;
 com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy required
 delegate=com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule;
};

The sample JAAS configuration provided by FileNet Content Platform Engine
installation are located at <CPE_InstallFolder>\config\samples

Figure 30: Location of sample JAAS configuration

The WebSphere JAAS configuration file can be specified using the JVM argument
“-Djava.security.auth.login.conf”.

In WebSphere admin console, navigate to server > “Java and Process Management” >
“Process Definition”

Figure 31: Process Definition entry for the server instance

Navigate to the JVM properties

Figure 32: Java Virtual Machine entry for the server instance

Set the Generic JVM argument as below:
-Djava.security.auth.login.config=<CPE_InstallFolder>\config\samples\jaas.conf.WebSphere

Figure 33: Setting the JVM argument for login module configuration

2.2 Configuring LDAP
IBM FileNet P8 platform doesn't maintain the list of users and groups needed to access
the Content Platform Engine. Instead, it relies on the LDAP directory configured by the
user in the application server. The LDAP directory is solely responsible for managing
(i.e. add/update/delete) the users or groups that are required for access to Content
Platform Engine.

Content Platform Engine retrieves security data from directory servers for the purpose of
authenticating security principals and authorizing users and groups. To retrieve this data,
an LDAP account should be granted as the WebSphere Application Server administrative
role. The following steps describe how an LDAP directory is configured in Application
Server:

Run the “security configuration wizard” from Security > Global Security > Start
Configuration Wizard

Figure 34: Security Configuration Wizard

IBM IBM FileNet P8 platform utilizes LDAP-based security, and does not support Java 2
security.

Figure 35: Configuring Security

Figure 36: Select user repository

Figure 37: Configure Standalone LDAP registry

Figure 38: Summary

Once created, make sure that Application security is selected and Java 2 security is not
selected.

Figure 39: Global Security

After the Global Security is configured in application server, the application server needs
to be restarted. After the restart, only the users from the LDAP server who are configured
as administrator would be able to login into WebSphere admin console.

Figure 40: Login into WebSphere using LDAP user configured as
administrator

This completes the Configuration of Authentication for Content Platform Engine.

2.3 Authorization
When a security principal that has already been authenticated attempts to access FileNet
P8 objects, Content Platform Engine will attempt to retrieve that principal's user and
group memberships from the directory service provider. If successful, the user or group
will be authorized to carry out actions described by the access rights placed on the
objects. This Authorization is defined on the respective object that resides inside the P8
domain with the help of administration tools like Administration Console for Content
Platform Engine (ACCE) and FileNet Enterprise Manager (FEM). (Authorization, in
detail, is not going to be covered in the scope of this article)

3. Bootstrapping the Content Platform Engine EAR

Content Platform Engine needs a directory service account to establish a connection with
the application server, access the application server's JNDI tree, look up the data sources
for accessing the GCD, and start up Content Platform Engine's background tasks. This
directory service account is called the “bootstrap user” and it is needed to create the
Global Configuration Database (GCD), and thereafter to provide the resources it needs to
boot up. Content Platform Engine will not be able to start if this user is not able to
authenticate.

This “bootstrap user” information is configured inside the Content Platform Engine EAR
file under the file named as “CEMPBoot.properties”. Once Content Platform Engine is

configured and the new P8 domain is created and functioning, the bootstrap file continues
to provide the information to allow Content Platform Engine to load.
Bootstrapping of CPE EAR file with the directory service account is performed using the
following steps:

3.1 Creating Content Platform Engine Bootstrap account
Content Platform Engine installation provides the utility “BootstrapConfig.jar” that can
be used to add/modify the bootstrap information into the CPE EAR file Engine-xx.ear
(which is later deployed into Application Server).
Note: CPE installation provides different EAR files for different application servers,
which can be identified based on the xx in “Engine-xx.ear” where “ws” refers to
WebSphere, “wl” refers to WebLogic, “jb” refers to JBoss, “jbc” refers to JBoss Cluster.

This utility gets installed into “<CPE_InstallFolder>\lib” directory. Also, contained in
this directory, is the Content Platform Engine's EAR file and another configuration utility
for Text Extraction (explained later).

Figure 41: Location of Bootstrap and Text Extraction utilities

Open command prompt and navigate to the Content Platform Engine's lib folder.
Run the command “java -jar BootstrapConfig.jar -h” to know all the options that are
provided by this utility. (Note: The list of options might increase in higher releases.)

This bootstrap utility can be used either in a fresh installation where it adds the details of
the user, the GCD data sources, SHA encrypted password information into the new EAR
(OR) to update an EAR file, usually in upgrade scenarios, with the information residing
in an already deployed EAR file.

Figure 42: BootstrapConfig.jar options

For a fresh installation, the information about the username, password, datasource name
connecting to the GCD database, XA datasource name for the GCD database, and the
location of the EAR file to be be bootstrapped should be specified as below:
Run the command “java -jar BoostrapConfig.jar -u <username> -p <password> -s
<GCD_DatasourceName> -x <GCD_XADatasourceName> -e <EARFiletoBeDeployed>”

Figure 43: Bootstrapping an EAR for fresh installation

Note: I have copied the newly installed EAR file into a sub-directory “ToBeDeployed”
for precautionary measure. One can directory run the bootstrap command directly on the
EAR file that gets installed into the “lib” folder.

Once, the EAR is bootstrapped, the information is stored in the file
“CEMPBoot.properties” located under “APP-INF/lib/props.jar/” inside the CPE EAR
file.

Figure 44: File changes in CPE EAR i.e. “Engine-xx.ear” file

Figure 45: Changes inside the CEMPBoot.properties

In case of an upgrade environment, the bootstrap utility takes the information from the
old EAR file and places them into the new EAR file that gets laid with the installation.
To bootstrap the EAR for an upgraded environment, run the command
java -jar BootstrapConfig.jar -e <AlreadyDeployedEAR> - j <newEARToBeDeployed>

Figure 46: Bootstrapping CPE EAR for an Upgrade Configuration

Note: The figure represents a sample configuration where the old EAR file “Engine-
ws_064.ear” (renamed to distinguish, only for internal understanding) is used.

3.2 Text Extraction Utility
Starting CPE 5.2.0, a CSS Server Client file (Text Extraction utility) is placed inside the
CPE EAR file to be deployed. This CSS server client is supported only on 64-bit
Operating systems and hence, CPE is required to be installed on a 64-bit machine. So, the
next step in configuration would be to add the CSS server client tool to the already
bootstrapped CPE EAR file.

CPE Installation provides a CSS Client configuration tool “CSSClientTool” in the form
of “CSSClientConfig.jar” (located at the “<CPE_InstallFolder>\lib” directory) to embed
the CSS Server Client file into the CPE EAR file. Running this utility needs “commons-
cli-1.0.jar” to reside in the class path. This is a third party library (Apache Commons CLI
library) that provides an API for parsing command line options passed to programs. This
“commons-cli-1.0.jar” can be found inside the “org.apache.commons.cli_1.0.0.jar” file
that is laid for FileNet Deployment Manager tool during the Content Platform Engine
installation and is located at “<CPE_InstallFolder>\tools\deploy\plugins”. Extract the jar
file using any unzip utility.

Following steps would add this CSS Server client tool to the already bootstrapped EAR
file.

In command prompt, navigate to the lib folder in the <CPE_InstallFolder> location and
run the CSSClientTool using the command
java -cp <commons-cli-1.0.jar;CSSClientConfig.jar> com.filenet.css.client.CSSClientTool
-d -v -c false -e <PathToBootstrappedEAR> -p <platform> -f

The descriptions of the options can be seen in the following figure.. (“-d” for logging
debug information, “-v” for printing the version of CSS Client and INSO versions, “-c
false” to specify not to install the CSS Client, “-p win64” for installing on a 64-bit
windows platform, “-f” for force update)

Figure 47: CSSClientTool options

Figure 48: Running CSSClientTool

Figure 49: Completion status of CSSClientTool configuration

Once done, the file INSO.zip is placed in the CPE EAR file. The following figures show
its location inside the EAR file for versions prior to CPE 5.2.0.3, but the location of this
zip file inside the EAR file would vary in future releases, for better handling.

Figure 50: engine.rar inside Engine-ws.jar (prior v5.2.0.3)

Figure 51: Contents of engine.rar (prior v5.2.0.3)

Starting CPE 5.2.0.3 and higher, for WebSphere/Weblogic, the INSO.zip file is located in
the EAR under APP-INF\classes; and for JBoss it lies in the EAR under \lib but wrapped
in a jar (INSO.jar) file.

Once the bootstrap and text search configuration steps are completed, the resultant
“engine-xx.ear” file needs to be deployed in the Application Server.

4. Deployment
The next and final step in Content Platform Engine configuration is to make the modified
EAR (EAR that has been bootstrapped and been added with the CSS Client) available for
use by a process called “Deployment” on the Application server.

Deploy CPE EAR as a “WebSphere Enterprise Application” by following the steps
below:

Browse to the WebSphere enterprise applications node on the left and select the option
“Install” to deploy the new application.

Figure 52: Install a New application

Browse and choose the bootstrapped CPE EAR file for installation.

Figure 53: Select the local bootstrapped CPE EAR file “Engine-
ws.ear”

Choose the fast path for deployment which would prompt only for any information that is
required.

Figure 54: Select “Fast Path” for deployment

In the next page, the Application name would be defaulted to “FileNetEngine”. Go with
the default options and click Next”

Figure 55: Verify installation options (enter “FileNetEngine” as
Application Name if not already defaulted to)

Go with the default selections in the next wizard pages.

Figure 56: Map modules to servers

Figure 57: Map virtual hosts for Web modules

Figure 58: Summary of deployment

The deployment can take several minutes. Once successful, select "Save directly to the
master configuration" that would save the changes.

Figure 59: Successful Deployment

The application “FileNetEngine” is seen under the list of enterprise applications. (For
upgrade scenarios, restart the WebSphere application server).

Figure 60: FileNetEngine application

Content Platform Engine needs the classes for its application to be loaded first. So, the
class loading options in application server should be set such that the class loader
searches in the application class loader first rather than the parent class loader, to load a
class.
Under the application, navigate to the class loading section and set (if not already set) the
options appropriately as below:

Figure 61: Class loading and update detection configuration

Set “Override class reloading settings for Web and EJB modules”
Set the “Class loader order” to “Classes loaded with local class loader first (parent last)”;
Set “WAS class loader policy” to “Single class loader for application”

Figure 62: Setting the class loading properties

Once the options are set, restart the application server.

Open the browser and navigate the CPE ping page URL
“http://server:port/FileNet/Engine” to view the details of Content Platform Engine
running.

DISCLAIMER: This tutorial is purely for educational purposes. Although, it works for a
CPE 5.2.x environment, the installation guides and other documentation should be
referred in case the user faces any issue during configuration. The screen shots of
WebSphere that are captured correspond to v7.0.0.27 for CPE 5.2.0 GA and they are
shown for illustration purposes only. A newer version of WebSphere may see a slightly
different UI.

	Abstract
	Introduction
	P8 Content Management Overview
	Configuring Content Platform Engine

