
z/TPF Detailed Summary
z/TPF Automated Test Framework
—
Jennifer Chiarieri
z/TPF Development

z/TPF | November 12, 2020 | © 2020 IBM Corporation 1

z/TPF automated test framework agenda:

Overview
Getting started
Test case handle
Test case properties
Multiple ECB testing
Overrides and intercepts
Running test cases
References

z/TPF | November 12, 2020 | © 2020 IBM Corporation 2

z/TPF automated test framework agenda:

Overview
Getting started
Test case handle
Test case properties
Multiple ECB testing
Overrides and intercepts
Running test cases
References

z/TPF | November 12, 2020 | © 2020 IBM Corporation 3

Overview

z/TPF | November 12, 2020 | © 2020 IBM Corporation 4

• Provides a testing framework tailored for z/TPF testing
• Provides a method to create self-validating programmatic test cases similar to other

testing frameworks, like Google Test
• Simplifies development of new unit-level and function-level test cases

• Provides an interface to convert existing test drivers into automated test cases
• Provides multiple levels of diagnostics (debug, info, error)
• Uses a set of z/TPF APIs to address many of the challenge areas that are unique to z/TPF
• Organizes tests by namespace, for example, airco.res.overbook

• Allows multiple-ECB testing with parameter passing capabilities
• Provides multiple interfaces to query and run test cases defined in the z/TPF automated

test framework (ZDEVO commands, REST interface, and JUnit interface)

• Detects new test cases automatically when they are loaded to the z/TPF system

Architecture

z/TPF | November 12, 2020 | © 2020 IBM Corporation 5

TPF_TESTCASE(apptest,"App test")
{

perform test case setup
ECB fields
database setup
data levels

call application code

verify results
return values
ECB fields
read database
.
.
.

perform clean-up
return;

}

Application
code

Test framework process

For each test case that is run
Create a new process and
wait for test case completion

New
Process

ZDEVO RUN
command

Test case process

Remote
REST or
JUnit
request

Application
must return

z/TPF

z/TPF automated test framework agenda:

Overview
Getting started
Test case handle
Test case properties
Multiple ECB testing
Overrides and intercepts
Running test cases
References

z/TPF | November 12, 2020 | © 2020 IBM Corporation 6

Getting started in 5 easy steps

z/TPF | November 12, 2020 | © 2020 IBM Corporation 7

• Step 1: Enable test automation on z/TPF
• Step 2: Include the idevops environment
• Step 3: Create a test suite
• Step 4: Create test cases
• Step 5: Build and load the test program to z/TPF

ZSTRC ALTER TESTAUTO

Step 1: Enable test automation on z/TPF

z/TPF | November 12, 2020 | © 2020 IBM Corporation 8

• Test cases can potentially consume resources, hold locks, or other
dangerous system activity and should not be run on a production
system

• To avoid running automated test cases on production or shared test
systems, the automated test framework is off by default

• To enable test automation on z/TPF, use the ZSTRC ALTER command
with the TESTAUTO option:

Step 2: Include the idevops environment

z/TPF | November 12, 2020 | © 2020 IBM Corporation 9

• Include the idevops environment
variable in all makefiles that are
used in the test application

• The idevops environment
variable sets up the necessary
environment for automated testing

TPF_DRIVER := temp
APP := QOVB

maketpf_env := drvs
maketpf_env += idevops
maketpf_env += base_rt

C_SRC := qovb.c

include maketpf.rules

qovb.mak

Step 3: Create a test suite

z/TPF | November 12, 2020 | © 2020 IBM Corporation 10

• Add TPF_TESTSUITE to
one source file of a
shared object

• Source file must include
the tpf/c_devops.h
header file

#include <tpf/c_devops.h>
.
.
.
TPF_TESTSUITE("airco.res.overbook","TOV*")

qovb.c

https://www.ibm.com/support/knowledgecenter/SSB23S_latest/gtpc2/cpp_tpf_testsuite.html

Step 4: Create test cases

z/TPF | November 12, 2020 | © 2020 IBM Corporation 11

• Add TPF_TESTCASE
macros for each test
case in the test suite

• Include a test case
name and description

• Add the test case code

#include <tpf/c_devops.h>
.
.
.
TPF_TESTSUITE("airco.res.overbook","TOV*")

TPF_TESTCASE(overbook_firstClass, "Overbooking in first class") {
// Test case code

}

TPF_TESTCASE(overbook_economy, "Overbooking in economy") {
// Test case code

}
.
. Additional test cases
.

qovb.c

https://www.ibm.com/support/knowledgecenter/SSB23S_latest/gtpc2/cpp_tpf_testcase.html

Step 4: Create test cases (continued)

z/TPF | November 12, 2020 | © 2020 IBM Corporation 12

• Use basic macros to improve test case usability:
– TPF_TC_INFO – includes an informational output message for a test

case; status not changed
– TPF_TC_IGNORE – notifies automated test framework of a skipped

test case; status changed to ignored
– TPF_TC_ERROR – marks a test case as failed and generates an error

message; status changed to error
– TPF_TC_DEBUG – includes a debug output message for a test case;

status not changed

• These basic macros use familiar printf style formatting

https://www.ibm.com/support/knowledgecenter/SSB23S_latest/gtpc2/cpp_tpf_tc_info.html
https://www.ibm.com/support/knowledgecenter/SSB23S_latest/gtpc2/cpp_tpf_tc_ignore.html
https://www.ibm.com/support/knowledgecenter/SSB23S_latest/gtpc2/cpp_tpf_tc_error.html
https://www.ibm.com/support/knowledgecenter/SSB23S_latest/gtpc2/cpp_tpf_tc_debug.html

Basic test case example

z/TPF | November 12, 2020 | © 2020 IBM Corporation 13

TPF_TESTCASE(overbook_firstClass,"Test overbooking in first class") {
struct overbook_input overbook_parms;
⁞
setup environment for call
⁞
TPF_TC_INFO("Calling overbook routine");
⁞
TPF_TC_TIMEOUT(15);

TPF_TC_DEBUG("Changed the timeout value to 15 seconds");

int rc = process_overbook(&overbook_parms);

if (rc == RETURN_ERROR) {
TPF_TC_ERROR("process_overbook failure-%d", overbook_parms.errCode);

} else {
TPF_TC_INFO("process_overbook completed successfully");
validate results

}
⁞
restore environment
return;

}

Calling an application function

Creating a test case flow message

Creating an error message

Changing the default timeout value

qovb.c

Creating a debug message

Creating another test case flow message

Step 5: Build and load the test program to z/TPF

z/TPF | November 12, 2020 | © 2020 IBM Corporation 14

#include <tpf/c_devops.h>
⁞
TPF_TESTSUITE("airco.res.overbook","TOV*");

TPF_TESTCASE(overbook_firstClass, "Overbooking in first class") {
// Test case code

}

TPF_TESTCASE(overbook_economy, "Overbooking in economy") {
// Test case code

}
⁞ Additional test cases

qovb.c

z/TPF

airco.res.overbook
overbook_firstClass
overbook_economy

OLD or
TLD load

Automated Test Table

Test cases automatically detected
and available to query and run

QOVB.soBuild

z/TPF automated test framework agenda:

Overview
Getting started
Test case handle
Test case properties
Multiple ECB testing
Overrides and intercepts
Running test cases
References

z/TPF | November 12, 2020 | © 2020 IBM Corporation 15

Understanding the test case handle

z/TPF | November 12, 2020 | © 2020 IBM Corporation 16

• The test case handle stores some state information to manage the
test case

– Represented as an unsigned integer
– Initially set when you call TPF_TESTCASE
– Must be set to call the test case APIs

• The test case handle is propagated between ECBs using a name-
value pair

– Propagation is automatic for most normal ECB creation: cremc, swisc,
or tpf_fork

– Propagation is not automatic for cretc or activtate_on_receipt, so
TPF_TC_GET_HANDLE and TPF_TC_SET_HANDLE are required

https://www.ibm.com/support/knowledgecenter/SSB23S_latest/gtpc2/cpp_tpf_tc_get_handle.html
https://www.ibm.com/support/knowledgecenter/SSB23S_latest/gtpc2/cpp_tpf_tc_set_handle.html

Using the test case handle – an example

z/TPF | November 12, 2020 | © 2020 IBM Corporation 17

Passing the handle to an ECB
that is created with cretc

extern "C" void QZZ1() {
// TEST CASE CONTINUES HERE

unsigned int handle = *(unsigned int *)&ecbptr()->ebw000;
TPF_TC_SET_HANDLE(handle);
TPF_TC_INFO("entered ecb 2");
TPF_TC_ECB_DONE(); // mark ECB 2 as finished
return;

}

qzz1.c

TPF_TESTCASE(hand1,"test case handle") {
// TEST CASE STARTS HERE

unsigned int handle = TPF_TC_GET_HANDLE();
TPF_TC_NEW_ECB();
cretc(CRETC_SECONDS, QZZ1, 2, &handle);
return;

}

test.c

z/TPF automated test framework agenda:

Overview
Getting started
Test case handle
Test case properties
Multiple ECB testing
Overrides and intercepts
Running test cases
References

z/TPF | November 12, 2020 | © 2020 IBM Corporation 18

Understanding test case properties

z/TPF | November 12, 2020 | © 2020 IBM Corporation 19

• Properties are “variables” that you can use to store information about
the test case

• Properties are saved in shared memory
• Properties can be used for:

– Test case specific processing in common routines
– Serialization of multi-ECB testing

• Properties are scoped for a test case handle – you can only access
properties passed in or set as part of the current test case

• Use TPF_TC_SET_PROPERTY to set a property
• Use TPF_TC_GET_PROPERTY to get a property previously set with
TPF_TC_SET_PROPERTY

https://www.ibm.com/support/knowledgecenter/SSB23S_latest/gtpc2/cpp_tpf_tc_set_property.html
https://www.ibm.com/support/knowledgecenter/SSB23S_latest/gtpc2/cpp_tpf_tc_get_property.html

Using properties – an example

z/TPF | November 12, 2020 | © 2020 IBM Corporation 20

Passing properties to an ECB that
is created as part of the test case

void main() {
int length = 0;
int option = *(int *) TPF_TC_GET_PROPERTY("myOption",length);

switch (option) {
⁞
}

}

New ECB

TPF_TESTSUITE("airco.res.overbook","TOV*");

TPF_TESTCASE(overbook_multiECB,"overbooking multiECB") {
int option = 1;
TPF_TC_SET_PROPERTY("myOption", (void*)option, sizeof(option));

swisc_create(…)
⁞
return;

}

Test case start

z/TPF automated test framework agenda:

Overview
Getting started
Test case handle
Test case properties
Multiple ECB testing
Overrides and intercepts
Running test cases
References

z/TPF | November 12, 2020 | © 2020 IBM Corporation 21

Multiple ECB testing

z/TPF | November 12, 2020 | © 2020 IBM Corporation 22

• TPF applications / APIs often need multiple ECBs to perform a
unit of test

• The z/TPF automated test framework provides a built-in
mechanism to follow multiple ECBs without having to create
custom tracking code

• Use TPF_TC_NEW_ECB to notify the framework that another ECB
is participating in the test

• Use TPF_TC_ECB_DONE to notify the framework that the created
ECB has completed

https://www.ibm.com/support/knowledgecenter/SSB23S_latest/gtpc2/cpp_tpf_tc_new_ecb.html
https://www.ibm.com/support/knowledgecenter/SSB23S_latest/gtpc2/cpp_tpf_tc_ecb_done.html

Multiple ECB testing – example

z/TPF | November 12, 2020 | © 2020 IBM Corporation 23

• TPF_TC_NEW_ECB indicates that a new
ECB is participating in the test

• Test case ECB waits for all ECBs to issue
TPF_TC_ECB_DONE before completion

• If any ECB issues TPF_TC_ERROR, the test
case fails

void main() {
struct overbook_input overbook_parms;
TPF_TC_INFO("Calling overbook routine");
int rc = process_overbook(&overbook_parms);
if (rc == RETURN_ERROR)

TPF_TC_ERROR("overbook failure");
TPF_TC_ECB_DONE();

return;
}

ECB 1
TPF_TESTSUITE("airco.res.overbook","TOV*");

TPF_TESTCASE(overbook_multiECB,"overbook multi-ECB") {
for (int i = 0; i < 10; i++) {

TPF_TC_NEW_ECB();
swisc_create(…)

}
return;

}

Test case start

void main() {
struct overbook_input overbook_parms;
TPF_TC_INFO("Calling overbook routine");
int rc = process_overbook(&overbook_parms);
if (rc == RETURN_ERROR)

TPF_TC_ERROR("overbook failure");
TPF_TC_ECB_DONE();
return;

}

ECB n
ECBs created with swisc_create

z/TPF automated test framework agenda:

Overview
Getting started
Test case handle
Test case properties
Multiple ECB testing
Overrides and intercepts
Running test cases
References

z/TPF | November 12, 2020 | © 2020 IBM Corporation 24

Overrides and intercepts

z/TPF | November 12, 2020 | © 2020 IBM Corporation 25

• Test more complex application code and programming models
• TPF_TC_OVERRIDE and TPF_TC_INTERCEPT macros provide

support to override and intercept user functions, system
functions, and 4-character program names

• Pass data to override and intercept functions in the test case
logic

• Limit the scope in which a function is overridden or intercepted
• TPF_TC_COMPLETE macro provides more control over when a test

case ends

https://www.ibm.com/support/knowledgecenter/SSB23S_latest/gtpc2/cpp_tpf_tc_override.html
https://www.ibm.com/support/knowledgecenter/SSB23S_latest/gtpc2/cpp_tpf_tc_intercept.html
https://www.ibm.com/support/knowledgecenter/SSB23S_latest/gtpc2/cpp_tpf_tc_complete.html

TPF_TC_OVERRIDE – example

z/TPF | November 12, 2020 | © 2020 IBM Corporation 26

timeOver() is called instead
of the system function time()

TPF_TC_INTERCEPT – example

z/TPF | November 12, 2020 | © 2020 IBM Corporation 27

cretcInter() is
called before cretc()

Using TPF_TC_COMPLETE

28z/TPF | November 12, 2020 | © 2020 IBM Corporation

z/TPF automated test framework agenda:

Overview
Getting started
Test case handle
Test case properties
Multiple ECB testing
Overrides and intercepts
Running test cases
References

z/TPF | November 12, 2020 | © 2020 IBM Corporation 29

Running test cases

z/TPF | November 12, 2020 | © 2020 IBM Corporation 30

• ZDEVO commands
• REST interface
• JUnit interface

ZDEVO RUN: Run test cases

z/TPF | November 12, 2020 | © 2020 IBM Corporation 31

progspec A program name, namespace filter, or comma-delimited program list; wildcards are accepted.

caseName Run the matched test cases; wildcards are accepted.

Loud

Whisper

Quiet

Display status messages for all test cases, and information for passing and failing test cases.

Display status messages for all test cases and information for failing and skipped test cases.

Display status messages and information for failing test cases while suppressing status messages and
information for passing and ignored test cases.

File Direct output to the file system instead of the z/TPF console. Output is written to the ZDEVO-progspec-
testspec.out file in the /tmp directory.

Verbose

Debug

Display extra framework information.

Display extra debugging information.

.-,------------.
V | .- -Loud----.

>>-ZDEVO Run-- --progspec-- ----+-caseName-+-+--+-----------+--+--------+--+-----------+-><
'-*--------' +- -Whisper-+ '- -File-' +- -Verbose-+

'- -Quiet---' '- -Debug---'

ZDEVO INFO: Query test cases

z/TPF | November 12, 2020 | © 2020 IBM Corporation 32

progspec A program name, namespace filter, or comma-delimited program list; wildcards are accepted.

caseName Display information about the matched test cases; wildcards are accepted.

Quiet Display the number of test cases in each of the selected namespaces that have test cases that match the
specified criteria.

.-,------------.
V |

>>-ZDEVO Info-- --progspec-- ----+-caseName-+-+--+---------+---><
'-*--------' '- -Quiet-'

ZDEVO RUN and INFO: Example commands

z/TPF | November 12, 2020 | © 2020 IBM Corporation 33

ZDEVO RUN ibm.comms.* * Runs all test cases in all test suites that begin with the
namespace "ibm.comms."

ZDEVO RUN airco* overbook* Runs all test cases that start with the name
"overbook", and that are part of test suites that begin
with the "airco" namespace

ZDEVO RUN airco.res.overbook *economy Runs all test cases that end with "economy", and that
are part of the "airco.res.overbook" namespace

ZDEVO RUN QBCD FIN*A?C Runs all test cases that start with "fin", end with "a"
followed by some character then "c", and that are part
of the QBCD shared object (for example "finfa1c" but
not "fin2abdc")

ZDEVO INFO QXZY * Displays information about all test cases that are part of
the QXZY shared object

ZDEVO INFO CXYZ,CABC,BDFE * Displays information about all test cases that are part of
the CXYZ, CABC, and BDFE shared objects

ZDEVO RUN: Example output

z/TPF | November 12, 2020 | © 2020 IBM Corporation

DEVO0004I 08.44.23 PROCESSING FOR THE SELECTED TEST CASES IS STARTED.+
DEVO0005I 08.44.23 RESULTS FOR TEST 1 - overbook_firstClass
-- Test overbooking in first class --
TEST CASE STARTED
Calling overbook routine
process_overbook completed successfully

TEST CASE COMPLETED IN 6ms - PASSED - overbook_firstClass
END OF DISPLAY+
DEVO0018I 08.44.23 1 TEST WERE COMPLETED.

1 PASSED, 0 FAILED, 0 SKIPPED+

DEVO0004I 08.38.35 PROCESSING FOR THE SELECTED TEST CASES IS STARTED.+
CSMP0097I 08.38.35 CPU-B SS-BSS SSU-HPN IS-01
DEVO0018I 08.38.35 2 TESTS WERE COMPLETED.

2 PASSED, 0 FAILED, 0 SKIPPED+

zdevo run airco.res.overbook *firstClass

zdevo run qovb * quiet

34

ZDEVO INFO: Example output

z/TPF | November 12, 2020 | © 2020 IBM Corporation

DEVO0010I 08.34.24 TEST CASE INFORMATION DISPLAY
PGM NAME DESCRIPTION
----- ------------------------- --
**
QOVB airco.res.overbook
**
QOVB overbook_firstClass overbooking in first class
QOVB overbook_economy overbooking in economy
**
2 TEST CASES TOTAL
END OF DISPLAY+

DEVO0010I 08.10.31 TEST CASE INFORMATION DISPLAY
PGM #TEST NAMESPACE
----- ----- --
QOVB 2 airco.res.overbook
**
2 TEST CASES TOTAL
END OF DISPLAY+

zdevo info airco.res.overbook *

zdevo info qovb * quiet

35

ZDEVO STATUS: Get status for running test cases

z/TPF | November 12, 2020 | © 2020 IBM Corporation 36

ZDEVO STATUS
DEVO0021I 11.17.37 TEST CASE RUN STATUS
HANDLE 0x26e53000
TC RRMD:rmdir19
- (rmdir when directory in use)
expected completion in 16 seconds
29 total, 18 passed, 0 failed, 0 skipped

HANDLE 0x26e54000
TC RACE:access23_posix28 _
- (access returns ENOTDIR when path prefix is not a dir)
expected completion in 10 seconds
34 total, 19 passed, 0 failed, 3 skipped

END OF DISPLAY+

ZDEVO STATUS
DEVO0021I 07.59.58 TEST CASE RUN STATUS
DEVO0017I 07.59.58 NO TEST CASES ARE RUNNING
END OF DISPLAY+

Rest interface: invoking test cases remotely

z/TPF | November 12, 2020 | © 2020 IBM Corporation

Get list of namespaces defined

Get test cases for a namespace

Run test cases residing on z/TPF

Linux / Windows / etc

z/TPF System

37

REST interface: enabling remote invocation

z/TPF | November 12, 2020 | © 2020 IBM Corporation 38

• Add tpftest.tpf.swagger.json to
/etc/tpf_httpserver/url_program_map.conf

• Deploy tpftest.tpf.swagger.json

• Do not enable on production systems
• Manage access appropriately for test systems with sensitive data

ZMDES DEPLOY FILE-tpftest.tpf.swagger.json

REST interface: external properties

z/TPF | November 12, 2020 | © 2020 IBM Corporation 39

• You can pass external properties to a test case when using the
REST interface. These are provided as EBCDIC string values
when accessing through TPF_TC_GET_PROPERTY. For example,
the IP address and port of a test server may be specified to a test
case in this manner.

• The current set of properties are also returned as part of the
execution result to retrieve “output” values from a test case.

• REST services have been created to query and run tests from a
remote platform

REST interface: running and querying test cases

z/TPF | November 12, 2020 | © 2020 IBM Corporation 40

/ns List available namespaces
/prog List available programs in a namespace
/query List available test case in a program
/run Execute a test case or check the status of

a currently running test case

JUnit interface

z/TPF | November 12, 2020 | © 2020 IBM Corporation 41

• Provides the ability to run z/TPF automated tests from a
Java application on a remote platform

• Allows integration between z/TPF and non-z/TPF test flows,
for example, setup a test server then run a test case that
connects to that server

• Allows invocation of test cases through TPF Toolkit, Maven,
and other common Java tools for integrated build testing

• Allows use of Java MongoDB client for the database setup
stage (if enabled) outside of your test case logic

JUnit interface: plug-in for z/TPF

z/TPF | November 12, 2020 | © 2020 IBM Corporation 42

z/TPF System

Linux / Windows / etc

JUnit

JUnit z/TPF
Plug-in

Query and run test
cases on z/TPF

JUnit interface: running test cases

z/TPF | November 12, 2020 | © 2020 IBM Corporation 43

Sample implementation of how to query and run test cases over
the REST interface, providing integration with JUnit framework:

base/samples/junit root directory of java maven project

com/ibm/tpf/test/TpfFrameworkTestRunner.java JUnit parameterized test that runs all the
defined test cases over REST

Linux / Windows / etc

Integrating into automated testing platforms

z/TPF | November 12, 2020 | © 2020 IBM Corporation 44

z/TPF System

Query and run test
cases on z/TPF

Jenkins Dashboard

Test cases

100% Passed
0% Failures

Results

JUnit

JUnit z/TPF
Plug-in

Run z/TPF
and

JUnit tests

z/TPF automated test framework agenda:

Overview
Getting started
Test case handle
Test case properties
Multiple ECB testing
Overrides and intercepts
Running test cases
References

z/TPF | November 12, 2020 | © 2020 IBM Corporation 45

References

z/TPF | November 12, 2020 | © 2020 IBM Corporation 46

• z/TPF automated test framework in IBM Knowledge Center:
https://www.ibm.com/support/knowledgecenter/SSB23S_latest/gtpa2/tpfautotestfrwk.html

• TPFUG challenge: http://ibm.biz/tpfchallenge

• z/TPF automated test framework APARs:

APAR number Quarter delivered Description

PJ45217 1Q 2018 Infrastructure APAR

PJ43782 3Q 2018 Initial support - invocations from ZDEVO

PJ45488 4Q 2018 Remote invocation support - includes
delivery and support of the z/TPF JUnit
plug-in

PJ45801 3Q 2019 Overrides and intercepts

https://www.ibm.com/support/knowledgecenter/SSB23S_latest/gtpa2/tpfautotestfrwk.html
http://ibm.biz/tpfchallenge

Thank You!

Questions or Comments?

z/TPF | November 12, 2020 | © 2020 IBM Corporation 47

IBM, the IBM logo, ibm.com and Rational are trademarks or registered trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM
trademarks is available on the Web at “Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.
Notes
Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a
controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount
of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no
assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.
All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have
used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary
depending on individual customer configurations and conditions.
This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in
other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on
the product or services available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and
objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not
tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.
Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your
geography.
This presentation and the claims outlined in it were reviewed for compliance with US law. Adaptations of these claims for use in other
geographies must be reviewed by the local country counsel for compliance with local laws.

Trademarks

z/TPF | November 12, 2020 | © 2020 IBM Corporation 48

z/TPF | November 12, 2020 | © 2020 IBM Corporation 49

