

WebSphere Application Server

Understanding Java Batch
(JSR-352)

This document can be found on the web at:
www.ibm.com/support/techdocs

Search for document number WP102706 under the category of "White Papers"

Version Date: March 20, 2018
See "Document change history" on page 33 for a description of the changes in this version of the document

IBM Software Group
Application and Integration Middleware Software

Written by:

David Follis
IBM Poughkeepsie

845-435-5462
follis@us.ibm.com

Don Bagwell
IBM Advanced Technical Sales

301-240-3016
dbagwell@us.ibm.com

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 2 - Version Date: Tuesday, March 20, 2018

Many thanks go to Scott Kurz for answering all my
obscure spec questions and Don Bagwell for all his

help..with everything.

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 3 - Version Date: Tuesday, March 20, 2018

Contents
Introduction ... 5

Types of Steps ... 5

Batchlet ... 5

Chunk .. 6

The Reader... 6

The Processor .. 7

The Writer .. 8

Checkpoint processing ... 9

Checkpoint policy ...10

When Bad Things Happen .. 11

Batch Status .. 11

Exit Status .. 11

Exception Handling ..12

Skippable Exceptions ..12

Retryable Exceptions ..13

Retry Rollback and Some Complications ..14

Listeners ...15

Job Listener ..15

Step Listeners ...15

Chunk Step Listeners ..16

Chunk Listener..16

Read/Process/Write Listeners ..16

Skip and Retry Listeners ...17

Listener Multiple Inheritance and Multiple Listeners ..18

Flow Control ..18

The Basics ..18

Conditional Execution...19

Next ..19

Fail ...19

Stop ..19

End ...20

Ordering ..20

Split/Flow ...20

The Flow...20

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 4 - Version Date: Tuesday, March 20, 2018

The Split ...21

The Decider ..21

Parameters, Properties, and Contexts ..22

Contexts..22

JobContext ..22

StepContext ..22

Properties ..23

Parameters ..23

Partitioned Steps ...24

Partition Plan ..25

PartitionMapper ..26

Partition Collector and Analyzer ...27

Partition Reducer ..28

Restarting a failed job ...29

What makes a job restartable? ...29

Job Instances and Job Executions ..29

Restart Processing ...30

Restarting a Batchlet ...31

Restarting a Chunk..31

Restarting a Partitioned Step ...31

Restarting a Decider ..32

Conclusion..32

Document change history..33

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 5 - Version Date: Tuesday, March 20, 2018

Introduction
JSR-352 defines the open standard for Java Batch. There is a very detailed specification
available online that precisely defines the proper behavior for any JSR-352 implementation
(of which there are several). The purpose of this paper is not to replace the specification.
In fact, there will be many things covered careful in the specification which we will just gloss
right over here. The goal of this paper is to simply convey the general idea of the Java
Batch model in a more approachable style. If you read this document and find yourself
asking “Well, what happens if…” you should go read the specification. Hopefully this
document will raise those questions in your mind, because it means you’ve understood the
basics enough to have complex questions. Enjoy.

Types of Steps

Batch jobs consist of steps and JSR-352 defines two types of steps: batchlet and chunk.
In this section we’ll take a look at both types and how and when you might use them.

Batchlet

Of all the fancy and complicated things you can do with a JSR-352 batch job, the batchlet is
the simplest and the best place to start. A batchlet is simply a Java program that gets run
for a step. The program gets control, does whatever it does, and then it ends and the step
is over.
If you have written batch-like applications in Java that are run by starting up a JVM and
then running your Java code then moving that application into a batchlet is usually pretty
simple. Where your Java program probably had a main, your batchlet will have a
process() method.
Parameters passed to your Java program will get handed to your batchlet a little differently
(as we’ll see later) but whatever processing you did you in your Java code can probably be
done, possibly more easily, inside a batch (and maybe Java EE) container. You might copy
a file from here to there or some other non-iterative processing.
A batchlet is a great place to invoke utility services. The WP102636 whitepaper has
samples showing how to invoke DFSORT and IDCAMS from a simple batchlet.
The only extra duty a batchlet has to provide beyond whatever function it performs is
handling a stop request. Through an operations interface you can request a job be stopped
as it is executing. A batchlet step is notified of the request to stop by driving the stop()
method on another thread. If your batchlet process() method is doing something that
gets control occasionally (i.e. executing some sort of loop vs. just calling a utility and
completing when it returns) then it can also check the state of some internal flag that your

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 6 - Version Date: Tuesday, March 20, 2018

stop() method can set. That allows the process() method to recognize a stop request
and actually stop.

Chunk

For a batchlet your application code just gets control once and does whatever it needs to
do. A chunk step is different because it always contains a loop. The batch container will
create a loop around calls to your application. The idea is that your application will do
some limited amount of processing, perhaps on a single item of data, and then return so
the container can loop around and we do it again.
Obviously you could do this in a batchlet yourself, but the chunk model brings with it some
pretty fancy options that the container takes care of for you. We’ll dig into that as we work
our way through the chunk programming model. But at a high level a chunk step is simply
the container calling your application in a loop until you are done. In theory each pass
through the loop does similar processing with different data, although really that is up to
your application.

Fair enough, but we need more details. It turns out the application part of a chunk step is
actually broken up into three main parts (instead of just one like a batchlet). In this section
we’ll take a look at those parts and then take a first look at the mysteries of checkpoint
processing. For this section we’ll assume everything always works…to keep things simple.

The Reader

The first interface you need to implement for a chunk step is an ItemReader. This class
is, oddly enough, where you read the data being handled by the chunk step. Remember
that the idea is that you’re looping around reading different data and then doing similar
processing on that data. In this part we’re doing the read.
To implement a reader you need to know how to get to the data you are using as input to
the processing part of the loop. It might be in a database table or a flat file
or…well…anywhere. You don’t need to know much in an ItemReader, but you have to
know how to access your input data.
The first thing that will get control for an ItemReader in a chunk step is the open()
method. This only happens once, outside the loop that forms the chunk step. This is your
application’s opportunity to open a file or establish a connection to a database or whatever
it needs to do. You might even read a whole pile of data into memory here as a cache for
later. Entirely up to you. The open() method gets control under a transaction which will
be committed when all the open processing is complete. We’ll talk later about other
transactional considerations for the reader and cursor positioning for job restart. But we’ll
keep it simple for now.
The next method to implement is the readItem() method. This is where the action is for
the ItemReader. You get to go actually read an item from wherever your application is

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 7 - Version Date: Tuesday, March 20, 2018

getting them from. You return that item to the caller. But how? The return type is just
Object so it can be anything you like. You could just squish it into a String and return
that. But this object is how you communicate with the processing part of the loop. Even if
right now it seems like all you want to pass along is the data, somewhere down the road
you’re going to want to convey some other information besides the actual data you read.
Probably best to create some sort of object that wraps the returned data. Then you can
easily add other state data into that object.
What if your data is in some parseable format? Maybe it is a JSON string, or a blob of
XML, or maybe a line from a CSV file, or even just some column delimited text…should you
parse it? It might be nice to pull it apart and put it into nice handy attributes of your
returned object. Processing code can then just pull the values it wants out of the object
with appropriate getter methods.
That’s especially handy if you are creating a generic ItemReader for this source of data
that might get used with several different types of processing in different batch applications
(woo hoo! Code reuse!).
On the other hand, parsing costs CPU cycles and elapsed time. And this code is called in
loop, possibly a very very long loop. What if the processing code only needs one field out
of the pile of fields in the record you read? Then you are wasting a lot of time each pass
through the loop parsing data that nothing will look at. Multiply that little delay by the
number of times through the loop and suddenly you’ve added hours to the execution time
for the job (and a lot of CPU if you’re being charged for it).
We’ll get into this later, but it is possible to pass parameters into your ItemReader
implementation so you could have the capability of parsing all the data but let the
invocation tell you via parameters which fields (or sets of fields) to bother parsing out.
All the calls to readItem() occur inside a transaction that encompasses the contents of
our loop. If your data access is transactional then it will participate in this transaction. This
might be important because we commit the transaction occasionally in the course of
processing (more on that later). If you have an open cursor on a database, that commit
might close your cursor. To avoid that, try to keep your read-access to data out of the
transaction by configuring the datasource as non-transactional, if possible.
The readItem() method is also the one in control of the loop. When it returns a null
instead of some object representing what it read, that signals the batch runtime that you are
all done and the loop will end.
Part of ending the loop is closing down the access to the data source. The close()
method will be called at the end to take care of that.
There is one more method, checkPointInfo(), that we haven’t talked about. We’ll save
that for later when we get to checkpoint processing.

The Processor

The processing part of our loop involves calling your implementation of the
ItemProcessor interface. There is only really one method to implement,
processItem(). It gets passed the object returned by our readItem() method just
above. Reach into that and pull out whatever you need and off you go.

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 8 - Version Date: Tuesday, March 20, 2018

This is the meat of the batch application. Do calculations, drive business rules, sum, sort,
or compute, whatever floats your boat.
Once you’re done, you just need to decide one thing: what are you going to return? The
processing part of the chunk step loop can return an Object to be passed on to the writer
that we’ll discuss next. It is entirely up to you whether you want to return anything or not.
If you return something it will make its way to the writer, and if not then the writer will never
know about whatever you did here. Maybe that’s ok. Maybe processing means looking for
certain types of records and if this isn’t one of those there is nothing to tell the writer.
But if you do have something, you need to fold it into an object to give to the writer. Again,
this could just be a String or some other simple thing. But probably at some point in the
future you are going to want to pass more information along so it is probably best to just
wrap it in some class you can extend later on.
You should also note that the ItemProcessor is optional. You don’t have to have one. If
you don’t, then the objects provided by the ItemReader are just passed straight to the
writer we’ll get to in a moment.
That’s all there is for the processor. Even when things start to get complicated later on, the
processor just does his one basic job. But it is the most important part of the step.

The Writer

The last major part of the chunk step is the writer, which has to implement the
ItemWriter interface. This is where the results of the processing get handled. The name
of the interface implies you are going to write results somewhere. The interface looks a lot
like the ItemReader interface with the exception that the readItem() method is replaced
by a writeItems() method (note the plural, it is important).
The writer starts, like with the reader, with an open() method. This gets called in the same
transaction as the reader’s open and is your opportunity to get set to write data wherever it
is going to go. You might create an output file or open a connection to a database. The
transaction wrapped around open processing is committed before we start into our loop for
the first time.
Similarly, the close() method will be called along with the reader’s close() after we
have exited from the loop for the final time (when readItem returned a null). Do whatever
is appropriate for wherever you are writing data.
The fun stuff is in the writeItems() method. As we noticed just above, the method
name is plural. That’s because it gets passed a list of items to write. But how can that be?
The processor just returned one item (or maybe none). Where did we get multiple things to
write? Ah…that’s because the writer doesn’t get called after every read and process! The
batch container will loop around doing reads and processes until either the read returns a
null and ends the loop or we hit a checkpoint. Ah that mysterious checkpoint that we’ve
been hinting at. We’ll get to it in just a moment, but for now ignore it.
Consider instead a very simple case where the reader just reads a few bits of data before
declaring we are all done by returning a null. We’ve gone round the loop just a few times,
say just five for example. And each time we went through our process code to have a look

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 9 - Version Date: Tuesday, March 20, 2018

at the data. Each time process returned an object meant to go to the writer. But the batch
container just looped around and did the read/process two-step again.
Well, now the reader has given us a null and we’re all done. But we still need to write our
results. Before the batch container commits the transaction that is wrapped around our
loop, it calls our writeItems() method passing it a list of all the items returned by
processing. In this case it will get a list of five items.
Now what? We write! But now we’ve got all five things to write instead of getting them one
by one. This might make no difference at all, but for some datasources there might be
ways to do bulk inserts where it is more efficient to insert five rows all at once rather than
do them one at a time. That’s why the loop is structured this way. It allows the writer to
take advantage of those capabilities and write a bunch of items all at once. Write doesn’t
return anything when it is done.
The only other method to talk about here is the checkpointInfo() method. And just like
we did under ItemReader, we’re going to duck discussing that until we get to checkpoint
processing.
Oh look…that’s the next section! Finally….

Checkpoint processing

Let’s start with what a checkpoint is. The idea behind a checkpoint is that you have
reached some spot in processing where you want to remember that you got this far, just in
case something bad happens. It is essentially the same as reaching a save point in a video
game (if that analogy helps you). The batch job is about to confront the Boss Monster and
if you die, you want to just start the game over right here and not have to start again from
the beginning of the level.
In order to be able to start again from this spot, we’re going to have to remember some
things. What might we need to know? Well, we need to know where we are in reading
records from our source. We might also have something we need to remember about
where we are in putting results wherever the writer is putting them (maybe an offset into a
file or something). And, perhaps most importantly, we want to be sure that everything we
did so far (probably whatever the writer wrote) actually got written, because if we start over
from here, we’re not going to re-process those earlier records again. Back to our video
game analogy, if you got the Super Weapon before you face the Boss Monster, you want to
make sure you still have it when you start over from the save point.
How do we do this? Let’s do the reader and writer first. As we mentioned earlier, both of
those interfaces require you to implement a checkpointInfo() method. When we reach
a checkpoint (when is that? Be patient..we’ll get there) the batch runtime will call both the
reader and writer and ask them for checkpoint information. This information will be placed
into the Job Repository along with other information about this job, so we have it
somewhere safe (well, as safe as your Job Repository is…).
What information should be provided as checkpoint info? Well, it depends on what your
reader and writer will need to know if we have to start over again. Most simply this might
just be a count of the record number that the reader was on, working through some known
set of records. But what if the data source could change between now and when we try

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 10 - Version Date: Tuesday, March 20, 2018

again? Well, you might need to remember more things about the data source. It depends
on your data source. In creating your checkpoint data you have to consider all the things
that might happen and what you would need to know if the job got restarted and this was all
the information you had in order to properly pick up where you left off (if you can).
To help all this work, as we’ve mentioned earlier, the batch container wraps a transaction
around the processing in our loop. Before we read our first record the transaction has
started. When we reach a checkpoint, the container will let the writer do his thing, then
collect checkpoint data from both the reader and writer and store that away in the Job
Repository. Then the transaction is committed. That will commit the changes to the Job
Repository and, at the same time, also commit changes made by the writer – assuming
whatever the writer is doing will participate in the transaction. Just writing to a file won’t
honor the transaction and writes happen whenever they happen. But if you use a
transactional JDBC datasource or some other transactional activity, then you can be sure
the data you had written up to the checkpoint all happened.
We’ll get to the mechanics of a job restart later. At this point we just want to understand the
things we need to do up front to allow that to work.

Checkpoint policy

How often to checkpoints happen? You can trigger a checkpoint based on the number of
records processed, the amount of time that has passed, or anything you else you can figure
out.
To checkpoint based on the number of records, specify an item-count value on the chunk
element in your JSL. This specifically controls the number of times the reader and
processer will be called before the writer is called and a checkpoint taken.
You can also trigger a checkpoint on a time basis by specifying a time-limit value (in
seconds). Then the read-process loop will continue until a process completes and we are
past the time limit. Then the writer gets called and we do checkpoint processing. Note that
we need to get through a read-process cycle and wind up past the timer interval, so the
actual time of the checkpoint could be well after the timer has expired.
What if you specify both an item-count and a time-limit value? You get both! Whichever
one happens first will trigger the checkpoint. Then both the counter and the timer are reset
and we begin another checkpoint interval.
But what if what you want to do is complicated. Then you can specify checkpoint-
policy=custom in the chunk definition and provide a checkpoint-algorithm element
that points to a class implementing the CheckpointAlgorithm interface. This interface
requires you to implement several methods.
To help you keep track of what is going on, there are beginCheckpoint and
endCheckpoint methods that get control outside the loop (and outside the transaction).
And there is an isReadyToCheckpoint method that gets control after every item is
processed. This method returns a Boolean that indicates whether now is the time to
checkpoint or not.

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 11 - Version Date: Tuesday, March 20, 2018

Finally, there is the checkpointTimeout method which allows you to set a timeout value
for the transaction that wraps each checkpoint. The value you can return here and how it
all behaves gets rather complicated and interacts with various settings at the server level.
There’s an excellent writeup of those details here:
http://stackoverflow.com/questions/36945450/how-do-i-configure-a-transaction-timeout-in-
websphere-liberty-batch.

When Bad Things Happen
It’s always something, whether it is bad input data, something configured improperly, bugs
in the application code, somebody’s bad assumption, or something else. Things go wrong.
In this section we’ll take a look at some different ways your batch application and the batch
runtime itself can get involved in handling interesting situations.

Batch Status

The batch runtime itself will maintain a status for the job and for each step. You can access
the current status using the JobContext or the StepContext (we’ll get into a detailed
discussion of these contexts a bit later on – for now just accept that they exist and your
application can get to them).
The Batch Status will be a value from a spec-defined enumeration. The values are:

• STARTING
• STARTED
• STOPPING
• STOPPED
• FAILED
• COMPLETED
• ABANDONED

What good are these to a batch application itself? Not much. If you’re actually inside the
running job, the Batch Status is probably STARTED. This is probably more useful from an
external perspective, looking at a job that has been submitted to find out what happened to
it.

Exit Status

 There is a separate status for each step and for the job itself that is entirely controlled by
the application and is quite useful to the running batch application. This is called the Exit
Status. It is a string and can be set to anything you like that you can get into a String.
You can set (and get) the Exit Status using methods on the previously mentioned Job and
Step Context objects (which, again, we’ll get to in more detail later).

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 12 - Version Date: Tuesday, March 20, 2018

After a step is completed, the Exit Status value can be used to determine what to do next.
We’ll have more detail on this later, but you can use the Exit Status to direct the flow of the
job to an appropriate next step based on the results of the current step using the Exit
Status value. You can also decide to end the job, successfully or unsuccessfully, using the
Exit Status value.
For those familiar with z/OS JCL you can think of the Exit Status as something like the
condition code for a step. In JCL you can have conditional execution of job steps based on
the condition code of a previous step. One main difference is that JCL condition codes are
numbers where the Exit Status is a String. That doesn’t prevent it from being a numeric
value in a String (i.e. “8”).
Because you can use Exit Status for flow control it needs to always have a value after each
step. And because the job itself needs some Exit Status value for the entire job it also
always has to have a value. But what if your application doesn’t set the Exit Status for
each step (or for the job itself)? The batch runtime will take whatever the Batch Status
value was for the step (or job) and set that as the value for the Exit Status.
Be careful with this… you might write JSL with flow control based on nice numeric Exit
Status values but if you go down a path that doesn’t set the step Exit Status you could wind
up with a value of “COMPLETED”.
It is also important to recognize that the Job Exit Status and each Step’s Exit Status are
distinct. There is no magic propagation of the last step’s Exit Status to become the overall
Job Exit Status. If you want an Exit Status value for the job itself, you have to use the Job
Context to set it. And once it is set, that’s the value for the job, even if it isn’t done yet. If
you have a job with a dozen steps and set the Job Exit Status in the first step, that’s the
Exit Status for the job unless one of the other steps sets a new value.
This means you need to have some awareness in writing each step as to whether or not
you want to set an overall Job Exit Status or not based on what is happening. You might
also want to set the Job Exit Status value from a listener, which we’ll get to…soon.

Exception Handling
For a batchlet step it is pretty simple. If your batchlet throws an exception that it doesn’t
catch, then the step will fail. As we will see when we get to flow control, that doesn’t
necessarily mean the job is over. But the step fails and that’s the end of the step.
For a chunk step the rules are more complicated. If you know what exceptions your
application is likely to throw in situations where you want a chunk step to keep going, you
can add extra stuff into the JSL to handle it. That’s pretty vague. What are we talking
about?

Skippable Exceptions

Well, suppose your chunk step ItemReader is reading records from a database. Suppose
each record consists of a bunch of columns that the ItemReader establishes as attributes
of an object that will be passed to the ItemProcessor. Suppose along the way the
ItemReader does some basic validation that the column values contain reasonable

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 13 - Version Date: Tuesday, March 20, 2018

values. Maybe the customer’s year of birth is contained in one column and the application
validates that the year isn’t in the future.
Alright…that seems reasonable. So what should the ItemReader do if it finds a row with
a customer born 100 years from now? Well, we don’t want to just process this record like
any other. Something is wrong. But we don’t want to fail the entire job because of one bad
record.
The first thing we need to know to handle this is what exception the application is going to
throw when it encounters an error in the record data. For simplicity’s sake, let’s say it
throws an application-defined BadCustomerRecord exception. (A real exception probably
has a package name…).
In our JSL for this step we can indicate that we know we might get a
BadCustomerRecord exception and we just want to skip this record and move on. Skip
processing basically says to ignore this record and just call the ItemReader again to go
read another record. You code that up by specifying a skippable-exception-classes
element in the JSL for the step. Inside that element you can specify a list of exception
classes that you are expecting and want to just skip the record.
You can both include and exclude exception classes from skip processing and the rules for
handling exceptions that are in both lists or exceptions that are extensions of other
specified exceptions get complicated. Read the spec if you want to get clever.
But what happens to the record we skipped? There’s a listener that can get control for this
case and we’ll cover listeners in the next section.
What if every record is bad? Or a lot of them? We don’t want to skip all the input and
declare success. As part of the chunk element configuration you can specify a skip-
limit which is the maximum number of skippable exceptions to allow before failing the
step.

Retryable Exceptions

Is skipping the record the only thing you can do? Nope. You can also retry. Let’s take a
different example. Suppose your ItemProcessor gets passed information about a record
that the ItemReader acquired somehow and it is possible that something might go wrong
processing the record. There’s nothing wrong with the data in the record itself, but maybe
there’s some external resource the processor needs to access in order to do whatever it
does and sometimes that goes all funky. In that case the ItemProcessor throws some
particular exception that indicates some sort of transient error occurred processing this one
record. What we’d like to do is just try this one again. There’s a way to do that.
Just like the skippable exceptions we talked about earlier, you can also include (and
exclude) exception classes in a no-rollback-exception-classes element in the JSL
for the step.
If the processor throws an exception that matches an entry in this clause the batch runtime
will just call the ItemProcessor with the very same object it just used. The processor
gets a second try at processing this record.

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 14 - Version Date: Tuesday, March 20, 2018

And just like skipped records, you can code a retry-limit in the chunk JSL element to
stop the retry processing if it happens too many times.
And just like skipped records, you can specify a retry listener that will get control to do any
special processing required (like generate an email to the owner of the resource to
complain about it going all wonky again).

Retry Rollback and Some Complications

There’s yet another exception handling option called retryable-exception-classes.
Exceptions listed in this clause are also handled via retry processing, but the whole chunk
will be retried. The reader and writer close methods will be called, the transaction wrapping
the chunk processing will be rolled back, and we start again at the beginning of the chunk.
This is processing you might want in the case where something more serious has gone
wrong.
There’s an interesting twist to the retry-with-rollback processing. When processing begins
again at the start of the chunk, the specification requires that processing proceed as if the
chunk limit was an item-count set to one. This happens regardless of how your JSL
specifies the chunk limit (item-count, time-limit, or checkpointAlgorithm). That
means that the loop will call the reader, processor, and writer and then commit the
transaction in a one-by-one fashion. The question is, when does that one-by-one
processing stop? The specification isn’t really clear about it, but it appears to stop when
processing gets past the record that caused the exception before resuming normal
checkpoint intervals.
For example, suppose you were processing a chunk step with an item-count of ten and
a retryable exception occurred processing item number five. The transaction would roll
back and we start again with item number one. Processing continues, one-by-one, through
item number five. Then we go back to processing items in ten-item chunks as before. If
you are counting checkpoints in a job and expect a certain number to occur this might
surprise you. Maybe you know there are 1000 records and you checkpoint every 100
records, so you expect 10 checkpoints. But if a retryable exception occurs part way
through one set of 100 records you could easily end up with 50 checkpoints processing the
step (the expected ones plus a bunch processing records one-by-one recovering from a
retryable exception).
Furthermore, we’ve used some fairly simple examples of scenarios where you might want
to skip or retry and that has allowed us to avoid some interesting complications.
For example, suppose the ItemReader throws some exceptions that are skippable and
other exceptions that are retry-no-rollback exceptions. For the processor the
retry-no-rollback exception just drove the processor with the same object to process.
But what should a reader do? For a skippable exception it needs to move on to the next
record, but for a retry-no-rollback exception it needs to try to re-read the same
record. How does it know which case this is?
There are a few different ways to handle this. The simplest approach is to just have the
ItemReader understand how the JSL will handle different exceptions and, before it throws

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 15 - Version Date: Tuesday, March 20, 2018

the exception, remember in the object state what happened and do the right thing when it
gets control to read an object again.
That seems a bit tacky though. Another approach is to exploit the skip and retry listeners
that we haven’t talked about yet. They will get control appropriately depending on what
processing is occurring and could communicate with the ItemReader to let it know what to
do next. Maybe the ItemReader is keeping track of what record number it is currently on
(as part of the checkpoint data) and the listeners could ‘adjust’ the current record value.
Or something else.
Exceptions during write processing are interesting also. A retry-no-rollback
exception will just call the ItemWriter again to try again to write the list of objects. If the
writer managed to write some but not all of the objects you need to be careful to not write
them again.
A retry-with-rollback exception will just retry the whole chunk, so that’s the same
processing as in any other processing in the chunk.
A skippable exception on the ItemWriter is interesting because we will just skip the writer
and move on..to commit the transaction and whatever it managed to write before the
exception occurred. I’d be very careful with skippable exceptions from the writer.

Listeners
Listeners are special classes that allow the application to have code that gets control at
different points in the processing of the job. Some of these points are just at convenient
times, like before and after a step executes. Some of them allow you to get control when
interesting things happen, like an uncaught exception from other application code.
Listeners are defined at the job level and at the step level. Each step can have its own set
of listeners, separate from the listeners used in other steps.
When you define a listener in the JSL for a job, you simply include the listener element at
the right level (the job, or inside the step you want listeners for) and list the listener classes.
You don’t have to tell the JSL what the listener is and when it should get control. The batch
runtime figures it out from the interface the class implements.

Job Listener

There is only one listener you can define at the job level, and that is, amazingly, the Job
Listener. This one is pretty simple. It allows you to get control at the beginning of the job
and at the end of the job. That’s it. A chance to set something up or to clean up something.
This might also be an excellent place to set the Exit Status for the Job. It is the only place
that is guaranteed to get control at the end of the job, regardless what step sequence
occurred.

Step Listeners

There are a lot of different listeners you can have inside a step. The simplest is the Step
Listener itself. Like the Job Listener, it gets control before the step and after the step.

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 16 - Version Date: Tuesday, March 20, 2018

Getting control before the step actually starts allows you to do initialization or setup of
whatever you might need for the step. Getting control after the step can allow cleanup
processing, but also might be a good place to set a final Exit Status for the step. You might
set that somewhere along the way as processing takes its course, but the Step Listener’s
afterStep() method is a chance to take a last look and make a final decision about how
this all actually went.
For a Batchlet step the Step Listener is the only listener that applies. That’s important
because if something goes wrong in a Batchlet and an exception is thrown that the Batchlet
itself doesn’t catch, the Step Listener’s afterStep() is the only opportunity you have to
sort things out. The Step Listener can examine the step’s Exit Status and determine that
something went wrong. You can leave the Exit Status as the Batch Status of FAILED or
customize it to something more specific and helpful, if you can tell.
For a Chunk step the Step Listener still gets control before and after the step, but you have
a lot of other options.

Chunk Step Listeners

Once we are inside a Chunk step there are more listeners that can get control. These
occur ‘inside’ the Step Listener’s before/after step methods.

Chunk Listener

The first of these is the Chunk Listener itself. Like the Job and Step Listeners it has
methods that get control before and after processing, in this case for each chunk.
Remember that a chunk is the read/process loop that ends with a write when we’ve hit the
end of a chunk as defined by a count, a time, or a checkpoint algorithm. The before and
after methods get control before the first read and after the write but before the transaction
is committed. Mostly.
The Chunk Listener has a third method called onError(). This method gets control if an
exception is thrown during the processing of the chunk that isn’t handled in some way. The
onError() method will get control instead of the afterChunk() method and will be
given the exception that was thrown as a parameter.

Read/Process/Write Listeners

There are also listeners that get control during the processing of each part of the chunk
loop processing. For the reader there is a Read Listener, for the processing there is a
Process Listener, and for the writer there is a Write Listener.
Each of these Listeners has its own before and after method that get control before and
after each part of the processing. So the Read Listener can get control before and after
each call to the ItemReader to read a record. Likewise the Process and Write Listeners
can get control before and after the call to the ItemProcessor and ItemWriter.
Each Listener gets information pertinent to what it is doing or has done. In the case of the
Read Listener, the afterRead() method will be passed the Object that was read. The
Process Listener’s beforeProcess() also gets the Object that was read and the

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 17 - Version Date: Tuesday, March 20, 2018

afterProcess() method gets both the read Object and the Object (if any) that was
the result of the processing. For the Write Listener both the before and after methods get
the List of Objects that were provided to the writer.
All of these control points allow Listeners to observe, and perhaps log, any interesting
information that comes along. They can also meddle with the contents. Perhaps you are
using a generic reader to read from some data source, but the Processor needs some
version of the data that has been manipulated in some way. You could use either the Read
Listener’s after method or the Process Listener’s before method to adjust the read Object
accordingly. Similarly with the edge between processing and writing. The Listeners give
you the opportunity to help ‘glue’ together what might be standard
readers/processors/writers by adjusting for differences between them.
All three of these Listeners also have an onError() method that will get control in the
event of an exception. The Listeners are all provided the exception that was thrown. You
cannot ‘handle’ the exception in the Listener. That has to be done with the skip/retry JSL
exception lists we have discussed earlier. The onError() method does allow you to log
something about the error. For example, if the Reader didn’t like the format of the record it
read, it might throw an exception and include the content of the bad record in the exception
class thrown. The Read Listener could then extract that data and log it somewhere as a
record that needs to be cleaned up or otherwise handled specially.

Skip and Retry Listeners

As if that wasn’t enough Listeners, there are actually still SIX MORE. There are additional
Listeners that get control for Skip and Retry processing and for each of those there is a
Listener for the read, process, and write phases.
There is a Skip Listener for Read which gets the exception thrown by the read that will
cause a skip. The Skip Listener for Process gets both the exception thrown by processing
and the Object that was being processed. The Skip Listener for Write gets passed the
entire List of objects to be written as well as the exception thrown while writing.
Remember that this is how the application processing knows that skip processing is
occurring. This is your chance to communicate with the relevant Reader, Processor, or
Writer that this item (or items for Write) should be skipped and to adjust accordingly.
Similarly, there are Retry Listeners for Read, Process, and Write. They all receive the
same parameters as described above for the Skip Listeners. And again, this is your
chance to tell the relevant Reader, Processor, or Writer what to do. For example, in the
case of the Reader, the Skip Listener needs to make sure the next call to readItem() will
read the next item, while the Retry Listener needs to make sure the next readItem() tries
to re-read the item.
Remember that Retry processing can just retry the one item or it can retry the entire chunk,
depending on whether the exception was in the no-rollback exception list or the retryable
exception list. The Retry Listeners don’t get told what is happening, so your application just
has to know from the exception that was thrown how the JSL was coded to handle it and
set things up properly. It can get a bit tricky.

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 18 - Version Date: Tuesday, March 20, 2018

Listener Multiple Inheritance and Multiple Listeners
One more item about Listener implementations. We noted earlier that in the JSL you
simply define a Java class as a Listener and the batch runtime will figure out what Listener
Interface it implements and give it control appropriately. What if a single Java Class
implements multiple Listener Interfaces? Suppose you have a single class that implements
both the Step and Chunk Listener Interfaces? The method names are all different so there
won’t be any confusion there. But which Listener is registered and given control? The
answer: both of them.
But what if my JSL defines two Listener classes and both of them implement the same
Interface? What happens then? Well, the spec says that you can do that. And both
Listeners will get control. If you specify two Step Listeners both will get control before and
after the Step. The spec specifically says that you can’t count on what order they will get
control.
That said, it might make some sense to put the implementations of multiple Listeners in a
single class. Maybe the Skip and Retry Read Listeners go together. But don’t get carried
away. Do things that make sense.

Flow Control
We’ve talked a lot about what goes on inside an individual step, but only hinted a bit at how
you get from one step to another. In this section we’ll take one step away from the details
of the JSL in the step and look at the overall flow of a job.

The Basics

There are three basic rules for flow through the steps of a job.
1) The first step in the JSL file is always the first step executed
2) The currently executing step must indicate what the next step should be
3) If no next step is indicated the job finishes
That’s it. You start at the top and run the first step and then go wherever it tells you. After
that the indicated step is run and when it is done you go wherever it says to go. If you ever
reach a step that doesn’t tell you what step to go to after that, then you are done.
The simplest thing to do is have each step unconditionally proceed to another named step.
You do that in the step element by specifying the next attribute and the ID of where to go
next. That next thing is probably another step, but can be some other special things that
we’ll get to.
The only other thing to remember about basic flow control is that you are NOT allowed to
create a loop. If job execution winds its way back to a step that it has already executed the
job will fail.

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 19 - Version Date: Tuesday, March 20, 2018

Conditional Execution
Basic flow control with each step specifying an unconditional next step is easy, but pretty
unrealistic. Things go wrong. At the very least your JSL should be prepared for things to
go wrong. It is very rare that no matter what happens in STEP1, you always go to STEP2.
You can introduce conditional flow control through various elements that are included
underneath the step element. These elements, while included under the step, are not
technically considered to be part of the step itself and are only evaluated after the step’s
processing is completed (not the same, necessarily, as having the step’s Batch Status set
to COMPLETED).
There are four special elements you can include to manage flow control and you can
specify each of them multiple times. They are evaluated in the order they occur in the JSL.
That will be important.
All four elements begin by letting you specify an Exit Status value to match. Essentially you
are specifying “if the Exit Status is XYZ then do this, else if the Exit Status is ABC then
something else, etc.”

Next

The first transition element is next. In this case you simply specify the Exit Status you
wish to match (wildcarding is allowed) and then, just like in the next attribute of the step
element, the ID of where you want to go next. This is pretty normal flow control. If the step
completed with this Exit Status, go here, if it completed with some other Exit Status, go
there. Nice, simple conditional flow control.

Fail

But what if something really bad happened? You don’t want to run any other steps. You
want to stop right here. Well, you can manage that by just not providing any flow control
and the job will stop. But the job will be considered to have completed successfully (Batch
Status of COMPLETED). That might not be what you want. Something went wrong. We’d
like to make it look that way.
For that you use the fail element. Just like the next element, fail allows you specify
an Exit Status you want to match (again, wildcard if you need to). If the Exit Status from
the step matches, then the job execution ends with a Batch Status of FAILED. What about
the Exit Status? We already have the step Exit Status, but we should set the job’s Exit
Status too (remember they are separate). The application could set that, but you might
want to have it here in the JSL. So the fail element allows you to specify an Exit Status
value for the job here too.

Stop

If you want to stop execution of the job due to an error (or whatever reason) use the stop
element. Just like next and fail, you specify an Exit Status (wildcarding if you must) to
match. And you also get to specify an Exit Status value to be used for the job’s Exit Status.
That’s exactly the same as the fail element. What’s different is that the Batch Status of

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 20 - Version Date: Tuesday, March 20, 2018

the job will be STOPPED. With stop you also get to specify the id of a step to restart at if
the job is restarted. We’ll get more into job restart processing later.

End

The final flow control element is end. This is for the case where you are perfectly happy to
end the job right here. Nothing went wrong, you just want to set a final job Exit Status and
mark the job COMPLETED. That’s the difference from just walking off the end of the JSL
by leaving the batch runtime with no next step. An end element is a nice tidy completion of
the job with a JSL-coded job Exit Status. You code it just like the fail element by specifying
an Exit Status to match (wildcarding supported, of course) and the job Exit Status you want
set.

Ordering
As we said earlier, these flow control elements are evaluated in the order they are found. If
you code specific Exit Status values to match then it doesn’t really matter. But if your
application is handing back interesting strings (vs nice simple numbers) as Exit Status
values and you are having a good time with wildcards in the matching Exit Status values,
be careful to not accidentally match something you didn’t mean to match.

Split/Flow

JSR-352 contains a special job flow construct that allows concurrent execution of different
steps. This is a great way to get some parallelism in your job and maybe cut down on the
overall elapsed time. But you have to be really sure those concurrent steps don’t really
have dependencies.

The Flow

The first piece to understand is the flow. A flow is a grouping of steps. You can have a flow
all by itself (without the split stuff). This allows you to treat a group of steps as if it was a
single thing. The flow has an ID so it can be the target of flow control statements. For
example, when an error occurs there might be a whole sequence of things you need to do.
You could group those steps together into a flow and any next elements that need to do
error processing could point to the entire flow instead of just whatever happens to be the
first step in the sequence.
In some ways you can consider a flow to just be a giant step. The flow itself can have a
next attribute that tells the job where to go, unconditionally, when the flow ends.
If you look at the specification it would appear that you can also have the four control
elements we discussed earlier (next, fail, etc) as child elements of the flow and
conditionally route control based on the results of the last step in the flow. But if you
discover Section 8.9.5 you’ll see that isn’t the case. The syntax of JSL will let you do that,
but the specification makes clear that you shouldn’t. That’s because there are some messy
situations where it isn’t clear what the Exit Status of the ‘last step’ actually would be.

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 21 - Version Date: Tuesday, March 20, 2018

It is important to note that all next attributes or elements for steps within the flow must direct
control to another step within the flow. You cannot branch out of the flow. You also should
not branch from a step outside the flow to a step inside the flow. The elements inside a
flow should be considered ‘invisible’ externally.
From the outside then, you can reference the flow as a complete entity, branching to it as if
it was a step. The flow itself can unconditionally direct control just like a step. So, in a
sense, it is just like a giant step made up of internal steps.

The Split

A split is another special JSR-352 construct. A split has an ID just like steps and flows, so
other steps can direct control to the split on a next or other control elements.
A split specifies an unconditional next attribute. This indicates where control should
proceed when all the processing in the split is complete. You cannot have conditional
controls directly as part of the split (we’ll see how this is handled in a moment). If the split
does not specify a next attribute, the job is complete when the split completes.
The only inner elements allowed within a split are flow elements. Thus a split is made up
of one or more flows. Each flow will be executed on separate threads (not the thread
where the split got control). You can have as many flows inside a split as you like. A flow
can contain another split with more inner flows.
If you think you can make use of a split/flow in your job, first group together steps in the job
into flows and then determine if those flows can execute concurrently or not.

The Decider

When all the flows within a split complete, what do we do next? We saw just above that the
only control statement you can make is to indicate a next step after the split completes. But
a lot probably happened inside there. You may need to make a complicated decision about
what to do next. That’s what the decider is for.
The decider is a special kind of step. It has an ID (so the split’s next attribute can point
to it) and it can have all the usual control elements based on Exit Status values.
But what does it do? There is an interface called a Decider that you implement with a
single method called decide(). That method gets passed an array of StepExecution
objects representing the results of whatever ran before it.
In the case of a decider following a split, the array contains the StepExecution objects
for the final step of each flow that was part of the split. From there you can get to the Exit
Status of the steps (among other things). The decider uses that information to determine
its own Exit Status to be used to, ahem, decide where to go next.
The String returned from the decide() method is the Exit Status used in any conditional
flow control elements that you define as part of the decider step. It also becomes the
overall Exit Status for the Job itself.
You can use a decider as we have discussed here to resolve the flow of control after
parallel processing of flows within a split. But you can place a decider element anywhere in

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 22 - Version Date: Tuesday, March 20, 2018

the processing of a job. The decider always receives the StepExecution object for
whatever came before it and can use that to set a job-level Exit Status as well as make a
decision about what the job should do next.

Parameters, Properties, and Contexts
Contexts

We’re going to take these in reverse order. We’ve talked about Contexts a bit before this.
You can access the Job or Step Context to set the Exit Status for the job or step. But how?
What do you have to do to get to those contexts?
It is done through injection. There are several different technologies that can be used to
make that work and how it is done depends on what implementation of JSR-352 you are
using. We won’t get into the mechanics of it here, just assume it works.
In your application when you need to access a context you just put an @Inject on the line
before your declaration of the StepContext or JobContext. The result will be that your
local Job or Step Context variable will be set to point to the appropriate batch artifact.

JobContext

What can you do with the JobContext? We already talked about the ability to get and set
the Exit Status for the job. You can also peek at what the batch runtime has set the Batch
Status value to (probably STARTED). You can get the identifiers for the job (instance and
execution) as well as the jobname (from the JSL).
You can also access the Job Properties. Most JSL elements allow you to specify properties
and we’ll talk about how those get injected in to the related application artifact later. But
there is no ‘job’ artifact for job-level properties so you have to access them through the Job
Context. As we’ll see job properties might have values from the JSL or might have values
provided by the submitter of the job. If you need to access any of those then the
JobContext is the way you get there.
The last thing of interest in the JobContext is the Transient User Data. This is pretty
much just what it says it is. The application can use the JobContext to set any Object
into the Transient User Data and to get it back out again.
The Transient User Data is, like the name says, transient. So it won’t survive a job restart.
And there are some questions about how the data is handled in multi-threaded jobs and
other situations. Behavior may vary a bit between JSR-352 implementations so be careful
how you use it.

StepContext

The StepContext is, obviously, similar to the JobContext but for the current step in
execution. It allows you to access the step execution ID and a Properties object containing
step-level properties from the JSL. You can also get the step name (from the JSL). And,

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 23 - Version Date: Tuesday, March 20, 2018

as with the JobContext, you can get the Batch Status and get and set the Exit Status (for
the step).
The StepContext also provides access to the same Transient User Data discussed
above. There is also a method to access the last exception thrown from application code
within the step that was caught by the batch runtime. This might prove useful in some of
the error handling cases we’ve discussed earlier.
You can also access the step Metrics. The Metrics object contains counts of some
things that are interesting when processing a chunk step. The Metrics include counts of
the number of reads and writes and the number of skips and retries.
Finally, the StepContext provides access to the Persistent User Data. This is different
from the Transient User Data because it persists. This data must be serializable and is
associated with this particular step. It is saved (persisted) at checkpoints and the end of
the step. It will be available if the step runs during a job restart. When we get to partitions
we will have to be careful with the Persistent User Data.

Properties
I think every artifact you can specify in JSL can have properties associated with it. Those
properties are then available to the artifact when it is given control. You can set properties
on a batchlet, on a reader, on a listener, even a decider. When your application code is
driven, the value of those properties are available.
All the properties are just name/value pairs of strings. The name is a string and the value is
a string. To get the value of the property into your application code, you need to know the
name. In your code you specify the @Inject like we did for the Contexts, but then you
follow that with @BatchProperty and name=”property_name” in parenthesis
afterwards. This tells the injection code to inject the property with the specified name.
Following that you declare the String variable that you want the value of the property placed
in. For example:

@Inject

@BatchProperty(name=”myproperty”)

String myproperty;

Will take whatever the value of the myproperty property is and place it in the local
myproperty variable. You can specify and access any property from the JSL inside your
application code. Be warned, you can’t access injected property values from the
constructor. The object has to exist first.
What if you try to inject a property that isn’t in the JSL? It won’t get a value, so the variable
will be null. Do you have to inject all the properties from the JSL? No.

Parameters
As we’ve mentioned earlier, the submitter of the job can provide parameters that can be
used in the processing of the job. How? Where do these parameters end up? The only
place you access them is through substitution into property values. For any property value

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 24 - Version Date: Tuesday, March 20, 2018

you can code a specific value, allow the value to be taken from the value of a job
parameter, or use a default value if the job parameter wasn’t specified when the job was
submitted.
The syntax is a bit tricky. Let’s start with a simple property:
<property name=”propertyName” value=”propertyValue” />

Now suppose we want the submitter to be able to supply a job parameter to set the value of
propertyName. As a general rule the parameter name should probably match the
property name to avoid confusion. But, in this example, we’ll ask the submitter to supply a
parameter called parameterName with some value. In that case the property syntax
becomes:
<property name=”propertyName” value=”#{jobParameters[‘parameterName’]}”/>

Say what? Ok, the #{…} bit means we’re going to substitute in something here and not
just have a literal string value. You can substitute in from job parameters (as we’re doing
here) or job properties (so a step can get a property value from another property) or even
from system properties. So the pound sign and curly brackets say we’re substituting, and
the jobParameters tells us to get a value from a job parameter, now we just need to
know which parameter. The name of the parameter goes inside the square brackets, inside
single quotes. Because it does.
Well that’s all well and good as long as the submitter of the job gives us a value for
parameterName. If he doesn’t and our application injects the value of propertyName
somewhere it will get a null. Also fine as long as we’re expecting that.
But maybe we’d like to supply a default value just in case. That way the application code
always gets a value. In our case, let’s supply a default value of VAL. To specify a default
you put a question mark followed by a colon and then the default value, followed by a semi-
colon. This goes outside the curly braces but inside the double quote. Like this:
<property name=”propertyName” value=”#{jobParameters[‘parameterName’]}?:VAL;”/>

If you want to get clever, the default value could also be a value substituted from another
value (e.g. use the #{…} business in the default value part of the string). As with most other
things, there is a lot of opportunity to get very clever and create problems. Remember
Brian Kernighan’s rule about clever programming….

Partitioned Steps
Earlier we discussed the split/flow construct that allowed us to run different steps
concurrently as part of a single job. A partitioned step allows us to run multiple copies of
the same step, concurrently. For example, suppose we have a chunk step that is going to
process a million records. If we know there aren’t any contention issues, we might like to
run 10 copies of that step, each processing a different range of 100,000 records. In theory,
that might allow the step to finish in less elapsed time. Of course it depends a lot on what
processing is going on and how locking is handled etc.
How do we make this happen? First we need to be able to specify in the JSL that we want
the step to run partitioned. That’s easy enough. We just specify <partition> as an
element of the <step>. Note that the partition element is a peer to the chunk or

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 25 - Version Date: Tuesday, March 20, 2018

batchlet element. We’re going to put information inside the partition element that
explains how the partitioning is going to work.
But wait… did we just say batchlet? A partitioned chunk step makes sense. Just see the
example above. But why would you want a partitioned batchlet? Why not? A batchlet is
just some piece of code that runs as a step. You might want to run multiple copies of that
at the same time doing similar but slightly different things. Suppose your batchlet copies a
file. You could run ten copies of it concurrently to copy ten different files at the same time.
All this leads us to the main questions with partitioned steps. How do the partitions know
what to do? How does each copy of the chunk step know what range of data to work with?
How does each copy of the batchlet know which file to copy? We need a plan. In fact, we
need a partitionPlan!

Partition Plan
The first thing we need in our plan is how many partitions we’re going to have. We also get
a chance to tell the batch runtime how many threads we’d like to use. You might have ten
partitions but know that running more than five at a time creates too much contention for
some resource. There’s no guarantee you will actually get five running at a time, we are
just giving the runtime some guidance. You do all this with the plan element:
<plan partitions=”10” threads=”5” />

That’s great, but how will those ten partitions know what to do? We need to give them all
their own properties! The idea is that each partition, being just a copy of the same code,
will be prepared to inject properties that tell it what to do. For example, our batchlet would
expect to get a property injected that tells it the name of the file to copy. That might be a
property named sourceFileName. We just need our partitionPlan to specify ten
different values for sourceFileName and the runtime will take care of giving each copy of
the batchlet the right value.
To do this we set up properties blocks underneath the partitionPlan element. Each
properties block specifies the number of the partition it belongs to. Partition numbers
start at zero. We might have something like this (cutting down to two partitions for
simplicity):

<plan partitions=”2” threads=”2” >

 <properties partition=”0” >

 <property name=”sourceFileName” value=”file1.txt”/>

 </properties>

 <properties partition=”1” >

 <property name=”sourceFileName” value=”file2.txt”/>

 </properties>

</plan>

That seems pretty straight-forward. But presumably those properties are going to be used
by the application. How do you specify the property to be used? Well, there’s a trick to the

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 26 - Version Date: Tuesday, March 20, 2018

property substitution we talked about earlier (under job parameters) that you can use with
partitions. Our batchlet might have a property like this:

< properties >

 <property name=”source” value=”#{partitionPlan[‘sourceFileName’]}”/>

</properties>

That’s the same #{…} syntax we used before, but in this case instead of substituting in
from a job property, we substitute from the partition plan. The batch runtime will take care
that each partition (each copy of the batchlet in this case) gets the property value injected
from the properties for that partition in the plan. So in our case partition zero gets ‘file1.txt’
substituted in and injected into the batchlet and partition one gets ‘file2.txt’.
But this requires you to code in the JSL exactly how you want the partition parameters to
work. That might be easy in a case where you know parameters as in our case where we
have some files to copy. But what if you don’t know? What if you needed to go look in a
directory and find all the files? Or for a partitioned chunk step you might need to find out
how many records there are to process and decide on the fly how to partition it? For that,
we use a partitionMapper!

PartitionMapper
Instead of specifying a plan element inside the partition you can specify a mapper
instead. The mapper references another batch artifact which implements an interface
called PartitionMapper. Like every other artifact, the mapper can be provided with
properties.
The job of the mapper is to return a Java Object called a PartitionPlan when the
mapPartitions() method is invoked. You need to create an implementation of this
interface and initialize an instance of it to return from mapPartitions. There is a sample
implementation called PartitionPlanImpl that is included in the JSR-352 Reference
Implementation.
To properly set up the partition plan you need to tell it all the things we provided in our JSL
partition plan: number of partitions, number of threads, and the partition properties. The
properties are provided as an array of Properties objects.
One thing to be careful with is the type of the data you put in the Properties object. A ‘pure’
usage of the Properties interface uses setProperty to put a value into the object. That
method only allows you to put Strings in as property names and values. But you can
cheat a little bit and use the underlying HashMap put method to put anything into the
object. That works as long as you are using the matching HashMap get method to get
them out again. But JSR-352 knows those property names and values are supposed to be
Strings because it only uses the Properties object getProperty method to retrieve
values. That will return a null if you’ve set non-String values as Properties and your
partition won’t get the value you wanted.

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 27 - Version Date: Tuesday, March 20, 2018

Partition Collector and Analyzer
In our examples so far each of our partitions has been responsible for actually doing
something. But suppose you have an application where you need to merge the results of
the partitions together in order to complete the work for the step. For example, suppose
you need to examine every record in some giant table looking for some complicated set of
things that you can’t just do with a carefully crafted SQL COUNT(*) WHERE statement. I
don’t know…imagine something. Then in our basic non-partitioned job we would have a
chunk step where the reader reads a record and the processor determines if this record
meets our criteria. If it does, then we increment a count. Our writer doesn’t do anything
because we know our processor will never return anything to write. It just keeps a count.
Maybe the Exit Status for the job is the count.
Before we get into how we might partition this processing…how does the Exit Status get
set to the final count? Unlike the reader and writer the processor has no close()
method so it does not get notified when the loop is done. The simplest thing would
probably be to have a step listener that lifts the value from an object shared with the
processor and sets the step Exit Status as the step ends.
Ok, so now we make our step into a partitioned step and set up a plan so each partition
knows what range of data to process. As each partition runs each processor object is
managing its own independent count. To get the final result and Exit Status for the step we
need to add up the counts from every processor instance. How do we manage this
communication?
Well, you might think about the Step Context and the user data that is accessible from it.
This is all part of one step, so shouldn’t there be one Step Context and thus one shared
user data where we could keep track of the results of each partition? Nope. It turns out
that every partition gets its own separate instance of the Step Context and therefore of the
user data. This is actually a good thing. It means that each partition has its own persistent
user data area where it can keep track of things relevant to that partition. If the job restarts,
being able to access this persisted user data might be important. Also, in some
implementations of JSR-352 it is possible for the partitions to run not only on separate
threads, but in separate JVMs. In those environments there is just no way for an object
instance to be read/write shared across partitions.
We need another way for the partitions to communicate with the main thread of the step
itself so that the Exit Status for the actual step can be properly set. That’s where the
collector and analyzer come in.
You configure a collector and analyzer as sub-elements of the partition and point
them to implementations of the PartitionCollector and PartitionAnalyzer
interfaces.
The collector has to implement one method, collectPartitionData(). That method will
get control periodically during processing for the partition. For a batchlet it just gets control
at the end of processing. For a chunk it gets control once at each checkpoint and again
when the partition processing is complete. Each time it has the opportunity to return some
Serializable object that can contain anything you like. In our situation we would only
really need it to return anything on the final invocation and then we want to get the final

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 28 - Version Date: Tuesday, March 20, 2018

count from the processor (from some shared object, maybe hung off the StepContext
user data) and return it.
Meanwhile the analyzer has to implement two methods: analyzeCollectorData and
analyzeStatus. The analyzer methods run on the main step thread and thus have
access to the StepContext for the step itself. There is only one instance of the analyzer
(where each partition has its own instance of the collector). The
analyzeCollectorData method gets control any time a collector provides data and is
given whatever Serializable object the collector returned. In our scenario it would get
control once for each partition since we only provide collector data at the end and it would
just keep a running total of the counts provided by the collectors. Each time we could
update the Exit Status for the step with the current total.
The analyzeStatus method receives control whenever a partition ends and it gets the
Exit Status and Batch Status of the partition that ended. Both of these methods allow you
to keep a running total of what happened. How do you know when the final partition has
ended? Well, nothing from the runtime specifically tells you. You are presumed to know
from the partition mapper how many partitions you wanted and thus you can tell in your
analyzer how many results you have seen and therefore when you are on the last one.

Partition Reducer
We have one last piece of partition processing to consider. That’s called the
PartitionReducer. Despite the name, I find it easiest to think of this is just another very
special listener. Consider the listeners we’ve already discussed and when they will get
control in a partitioned step. The Step Listener will get control before and after the entire
step, just like always. Within each partition (assuming a chunk step) the Chunk, Reader,
Processor, and Writer Listeners will also get control, along with the various error handling
listeners. But there is no listener that gives a few of partition processing. The collector and
analyzer we just discussed are there to help flow the results of each partition into a single
final result, but they don’t really hook into the overall partition processing. There’s where
the PartitionReducer comes in.
The first point of control for the reducer is the beginPartitionStep() method which gets
control before the mapper has even run. As the partitions then execute and the collectors
feed data to the analyzer a transaction is wrapped around the analyzer processing. If an
uncaught exception occurs during analyzer processing, that transaction, and any
transactional updates made by the analyzer, are rolled back. Prior to rolling back the
transaction, the rollbackPartitionedStep() method gets control.
On the other hand, if all the analyzer processing goes well, we will commit the transaction
that wrapped its processing. Before that commit the
beforePartitionedStepCompletion() method will get control. After the commit
occurs the afterPartitionedStepCompletion() method will get control. Note that
the ‘after’ method receives control whether we committed or rolled back and receives a
status parameter that allows it to know how things turned out.
What use are these listener-like methods? Any opportunity to get control where you know
the outcome can be handy. You might use these methods to help manage non-
transactional assets that are manipulated by the analyzer processing. The analyzer might

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 29 - Version Date: Tuesday, March 20, 2018

stage its non-transactional results to some temporary area and these PartitionReducer
methods might help you move those temporary results into wherever final results live (or
not – depending how things went). Having this processing outside the actual analyzer
processing helps protect it from any errors that might occur inside the analyzer.

Restarting a failed job
Bad things happen. Jobs fail. One of the most important features of JSR-352 is the ability
to restart a failed job and have it pick up (more or less) where it left off. In this section we’ll
take a look at how all that works and what things you’ll need to consider in writing your
application so restart processing actually works (nothing is ever just magic).

What makes a job restartable?
Not every failed job can just be restarted. Remember that every job has a Batch Status
value. The final Batch Status value of a job determines whether that job can be restarted
or not. Obviously if the job completed, then you can’t restart it. It worked, so you wouldn’t
want to restart it. In fact only two Batch Status values are allowed for a job to be
restartable: STOPPED and FAILED.
Remember that a job can have a Batch Status of STOPPED either because an operations
interface stopped it, or because a transition element said to stop it based on some Exit
Status value. A job can be FAILED either because there was an unhandled exception or
because a step transition said to fail it.
Assuming one of those things is true, there’s one more attribute required to be able to
restart a job. The job itself has to have been marked restartable in the <job> element.
There is an attribute, defaulting to true, that says whether the job is restartable.

Job Instances and Job Executions
The difference between instances and executions turns up a lot in discussions about restart
so we should quickly explain. When you submit a job, an instance of that job is created.
Today at 2:00 I submitted a job so there is a 2:00-today instance of the job. It has a unique
job instance identifier. When the job actually ran, a job execution was created. This is an
execution for the 2:00-today job instance. If the execution completes successfully then
we’re done. But if fails or is stopped I might want to start it again. What I want is NOT to
submit the same job, but to restart the 2:00-today instance. I want a new try at executing
that instance of the job. A restart request is made for the job instance and a new, second
execution is created for the original job instance.
In summary, submitting a job creates an instance. Running a job creates an execution.
Restarting a failed/stopped job creates a new execution for that instance.

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 30 - Version Date: Tuesday, March 20, 2018

Restart Processing
What happens when a job is restarted? First there is the matter of job parameters. When
the job was originally submitted there might have been parameters supplied as part of the
submit request. When a job is restarted new parameters are supplied.
As the new job execution begins, processing begins with the first step in the JSL file, just
like it did for the original execution. Probably. When a transition element in the prior
execution indicated that the execution should stop, it might have also specified the restart
attribute and indicated the ID of the step to begin at if the job is restarted. In that case,
restart processing starts with the indicated step. Remember also that the first thing in the
JSL, or the thing indicated as the restart point might not actually be a step, it could also be
a flow, or a split containing flows. For simplicity, let’s assume it is a normal step.
What happens next depends on the setting of the allow-start-if-complete and
start-limit attributes on the step. By default allow-start-if-complete is false
and start-limit is zero, meaning no limit. Let’s start with that.
With the default settings job processing will examine the Batch Status for the step from the
previous execution. If the previous execution resulted in a COMPLETED Batch Status for
this step then it ran successfully (as far as the batch runtime is concerned) and the Exit
Status from the prior execution is examined and any transition elements for the step are
consulted to determine where to go next. This will be the same sequence of events that
happened in the prior execution. Essentially we examine the step and branch just as we
branched previously, without re-running the step. We’re on a path to picking up where we
left off.
But it doesn’t have to be that way. The step might specify allow-start-if-complete
to be true. In that case the JSL is indicating that we don’t care what happened in the prior
execution in this step. We want to run the step again and make a new decision. The step
will be executed and, if it completes, the resulting Exit Status will be evaluated with any
provided transition elements to determine where to go from here. That might be the same
thing that happened in the prior execution. This step worked previously, so it might work
again, perhaps we just needed to re-run it for some reason. Maybe we proceed to the
same next step as we did before, but maybe we head off in a new direction in the JSL.
There is a limit to how many times we will re-run a step. If the start-limit is specified
along with the allow-start-if-complete attribute set to true, we will only re-run the
step on restarts the specified number of times. After the specified number of attempts the
job will fail when execution reaches the step.
Processing for a flow or for a split containing multiple flows proceeds in just the same way,
evaluating results from the prior execution again or re-executing a step when told.
And thus we proceed, branching through the JSL using results from the previous execution
for completed steps, unless we re-execute a step. If we re-execute a step we might get
different results and maybe branch off into new territory in the JSL with steps we have
never run before. Those steps just run as normal and hopefully the job works this time.
But we might get to a step that we have run before but whose Batch Status is not
COMPLETED. This is probably the step that failed or where we were when the job stopped
(by command or by transition element). Now we have to “pick up where we left off” in this
step. What does that mean?

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 31 - Version Date: Tuesday, March 20, 2018

Restarting a Batchlet

This is pretty easy. On the previous execution of this job instance this step failed or was
stopped. We restart the step so we just run it again. The batchlet is given control and does
whatever it does. I thought we should have something easy before the fun starts..

Restarting a Chunk
A chunk step has been reading and processing and writing results of the processing and
committing transactions around all of that. Part of the commit processing has committed
updates to information in the Job Repository based on the Serializable Object
returned by calls to the ItemReader and ItemWriter checkPointInfo() methods.
On a restart of a chunk step the open() methods are called for the reader and writer and
the last provided instance of checkPointInfo is provided. It is up to the implementation
of the open() method to understand the checkpoint information it provided and determine
how to use that to pick up where the step left off previously. This is the part where we wave
our hands and call it magic. The application code, when providing the checkpoint
information, has to also have code in open() to interpret that information and use it
appropriately. That might mean advancing a cursor to the right record in a query or it might
just mean opening a file for append instead of creating a new file. It depends what the
application is doing.
After that it is all processing as normal for the chunk step. Unless it was partitioned. Then
it gets really fun.

Restarting a Partitioned Step
If you code the partition plan directly in the JSL then this is easy. Each partition will be
defined exactly as on the previous execution. Partitions that completed will not be
executed again. Partitions that failed will be restarted appropriately (depending on whether
it was a batchlet or chunk step). Partitions that never got a chance to run are still eligible to
run this time, from the start.
But what if you have a partitionMapper? That allows you to dynamically create a
partition plan. Does it have to create the same plan as it did for the prior execution? It can
if it wants to.. The key is whatever the new partition plan returns for the
partitionsOverride value. If set to true then the mapper is deciding that it doesn’t
want to remember anything from a previous execution. All new properties are being
established to run brand new partitions from scratch. No checkpoint data or anything else
is preserved from before.
On the other hand, if partitionsOverride is false then the mapper is saying that it
wants to restart using the checkpoint information from before. For that to work, the mapper
has to define a plan that has the same number of partitions as the plan for the previous
execution. That will allow the batch runtime to use the checkpoint information from the
previous partitions for a matching partition in the new execution. The mapper does have

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 32 - Version Date: Tuesday, March 20, 2018

the option to provide different properties to each partition. This might include some clue
that the partition is being restarted or other guidance on how to behave.

Restarting a Decider
The last thing we’ll consider is restarting a decider step. Unlike a normal step which may or
may not be run on a restart, if we reach a decider it is always run. The decider is normally
passed the Exit Status values from the flow(s) before it. That still happens. In the case of
a restart some of the Exit Status values might be carried over from the previous execution if
the step that set it wasn’t run as part of this execution. Other Exit Status values might be
new values if they come from steps that were run for this execution. Whatever values are
provided, the decider makes a new decision and that resulting Exit Status is used with the
transition elements in the decider to determine where job flow control goes next.

Conclusion
Hopefully this has been helpful in trying to understand at least some of the details of JSR-
352. The actual specification is, of course, the final word in how things are supposed to
work and if you find any contradictions between what is written here and what is in the
specification you should obviously go with what you find in there (although drop me a note
and let me know I got something wrong and I’ll try to fix it up). Thanks!

WP102706 – Understanding Java Batch (JSR-352)

© 2017, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 33 - Version Date: Tuesday, March 20, 2018

Document change history
Check the date in the footer of the document for the version of the document.

April 25, 2017 Initial Version

April 27, 2017 Add document number, minor update to PartitionMapper section

March 20, 2018 Corrected syntax for default parameters

End of WP102706

