
Foundations of Test on z/OS
—
Michael Gildein

1918

© 2022 IBM Corporation 2

Agenda

© 2022 IBM Corporation 3

Test Basics
• What is Test? and Why Test?
• IBM Z Stability Requirements
• Perfect Verification Paradox
• Principles of Testing
Test Classification
• Verification, validation, vs testing
• Test Types
• Static vs Dynamic
Test Phases
• Unit Test
• Function Test
• System Test
• Acceptance (Platform) Test

What is Test?

© 2022 IBM Corporation 4

“A procedure intended to
establish the quality,
performance, or reliability of
something, especially before it is
taken into widespread use.”

© 2022 IBM Corporation 5

Purpose
• Remove defects
• Validate conformity to requirements

(not specification!)

What is Test?

What is a Defect?
“Problem or flaw in a program or system that causes it to produce an incorrect or
unexpected result, or to behave in unintended ways.”

error = defect = bug

Fault is the manifestation or an instance of one or more defects during execution.

Failure occurs when a fault produces an undesired state that may propagate to the
programs output or behavior.

Presenter Notes
Presentation Notes
M

Why Test?

© 2022 IBM Corporation 7

Why Test?

Defects have impact in terms of cost, reputation/trust, and legal issues.

https://www.stickyminds.com/sites/default/files/shared/2018-12-10%20ArthurHicken%20The%20Shift-
Left%20Approach%20to%20Software%20Testing%20image3.png

Presenter Notes
Presentation Notes
Chef Watson Example

https://www.stickyminds.com/sites/default/files/shared/2018-12-10%20ArthurHicken%20The%20Shift-Left%20Approach%20to%20Software%20Testing%20image3.png

Stability
Requirements

© 2022 IBM Corporation 9

Stability Requirements

10

Life Critical

Critical

Enterprise

Consumer

Prototype or
Beta

Classes of products
• Prototype or Beta

• As-is; defects expected; no warranty/SLAs
• Consumer

• Minimal cost; Fixes not guaranteed;
• Infrequent defects expected; limited impact

• Enterprise/Industrial
• 99.99%+ uptime; high costs
• No defects expected; impact large userbase

• Mission | Business Critical
• ~100% uptime; SLAs; DR w/ failover
• Defects can introduce market shift & revenue loss

• Life Critical
• 100%+ uptime/reliability; multiple levels of recovery
• Failure is unacceptable; results in injury or loss of life

Service Level Agreement (SLA) - Commitment about
aspects of quality, availability, responsibilities between a
server provider and consumer.

Disaster Recovery (DR) - Set of policies, tools and
procedures to enable the recovery or continuation of critical
infrastructure/systems following a disaster.

Stability Requirements
99.99999% availability equates to < 3 seconds downtime per year!

Reliability Availability Serviceability (RAS)
Quality Metrics
• Unplanned outages
• Client impacting events
• Repair actions

Clients expect flawless full stack operation

Solution Testing
Platform Evaluation Testing (zPET)
Running middleware and client like workloads

Perfect
Verification
Paradox

© 2022 IBM Corporation 12

Perfect Verification Paradox

• Real world problems are complex
• Ever increasing development process complexity
• Solutions naturally become more complex as they evolve without overt action
• Client/user functional expectations continually increase
• Quality is perceived as declining unless rigorously maintained

Why not just test everything?

13

Perfect Verification Paradox
Exhaustive Testing
Test all possible combinations of configurations, parameters, and inputs.

14

Browsers
• Microsoft Edge
• Google Chrome
• Apple Safari
• Mozilla Firefox

Operating Systems
• Microsoft Windows
• Google Android
• Apple iOS

Accessibility
• Mouse
• Keyboard
• Touchscreen
• Screen readers
• Night mode

Perfect Verification Paradox
Exhaustive Testing
Test all possible combinations of configurations, parameters, and inputs.

15

Browsers
• Microsoft Edge
• Google Chrome
• Apple Safari
• Mozilla Firefox

Operating Systems
• Microsoft Windows
• Google Android
• Apple iOS

Accessibility
• Mouse
• Keyboard
• Touchscreen
• Screen readers
• Night mode

4 * 3 * 5 = 60

What about browser levels, screen resolutions,
… for each page and function?

Principles
of
Testing

© 2022 IBM Corporation 16

Principles of Testing

17

Testing shows presence of defects
Not the absence

Reliability and Confidence
Testing may increase one’s confidence in the correctness of a program though the
confidence may not match with the program’s reliability

Coverage
• A test case that tests untested portions of a program enhances or diminishes one's

confidence in the program’s correctness depending on whether the test passes or fails
• Code coverage is a reliable metric for the quality of a test suite

Requirements
Tests derived manually from requirements alone are rarely complete

Principles of Testing

Pesticide paradox
Process of repeating the same test cases again and again,
eventually, the same test cases will no longer find new bugs

Randomness
Random testing may or may not outperform non-random testing

Saturation Effect
The saturation effect or defect discovery rate is real and can be
used as an effective tool of test generation strategies

Roles

Every developer
…is also a tester

• Testability
• Static code analysis
• Defensive Programming
• Unit test

Roles

Every developer
…is also a tester

Tester Characteristics
• Curious/likes asking questions
• Likes problem solving/creating
• Detail oriented
• Outspoken/good communication skills
• Patient
• Likes scavenger hunts/debugging
• Thinks outside the box
• Dedicated
• Persevering
• Cares about the product
• Works well in a team
• Likes tinkering
• Likes coding
• Creative

• Testability
• Static code analysis
• Defensive Programming
• Unit test

Test
Classification

© 2022 IBM Corporation 21

• Dividing the test domain space into logical units

• Helps segment the domain into schedulable, manageable, and containable units

• Develop experts in specific areas faster than all of testing

Classify by
• Technique

Test execution or generation techniques
• Phase

Successive compounding test stages
w/ specific env and focus

• Goal
Desired end result
i.e., security This Photo by Unknown Author is licensed under CC BY-SA

Test Classification

Presenter Notes
Presentation Notes
How do you test a pencil sharpener? Even something simple has many things to consider…

https://en.wikipedia.org/wiki/Ocean
https://creativecommons.org/licenses/by-sa/3.0/

Verification,
Validation,
vs Testing

© 2022 IBM Corporation 23

Verification, Validation, vs Testing

Verification
• “A test of a system to prove that it meets all its specified requirements

at a particular stage of its development.” – IEEE-STD-610
• Prove correctness of a program based on specification and requirements
• Test to pass || “Happy” or “Good” path testing

Validation
• “An activity that ensures that an end product stakeholder’s

true needs and expectations are met.” – IEEE-STD-610
• Also known as acceptance or business testing

Testing (Destructive)
• Discover defects
• Test to fail
• Malicious intent
• “Bad” path testing

Verification

ValidationTesting

Presenter Notes
Presentation Notes
Overlap between testing and verification wrt driving error handling, availability, RAS, and maintenance functions

Test
Types

© 2022 IBM Corporation 25

Box Type Classification

Gray Box

• Based on requirements

• Enhanced with knowledge
about code and
implementation

• Very common

|
2

6 October 2022

White/Clear Box
• Based on logic and internals

such as code structure
• Developers’ perspective
• Tester, can see code as its

executing
• Easy debugging

Black Box
• Behavioral testing
• Can only see

inputs/outputs
• Based on requirements

and documentation
• Customer perspective
• Code is executed but not

used to create or enhance
tests

Presenter Notes
Presentation Notes
I like to do black box first, then iterate back through after understanding implementation to enhance the tests but not be overly influenced by implementation.

Functional vs Structural

Functional
• Program behaves compared to

requirement specifications
• What the program does
• Type of black box

Structural
• Program behaves compared to

intention of programmer
• How the program does it
• Type of white box

|
2

6 October 2022

Functional Examples
• Regression
• Usability
• Behavioral
• ...

Structural Examples
• Statement Coverage
• Branch Coverage
• Path Coverage
• ...

Presenter Notes
Presentation Notes
Structural is technically a subset of functional because code was written and developed based on requirements.

Non-functional Tests

© 2022 IBM Corporation 28

• Performance
• Scalability
• Security
• Constraints
• Installation
• Migration
• Co-existance
• Compatibility
• …

*These may also be defined as requirements

Static vs Dynamic Technique

Static
• Program/System not executed
• Inexpensive

Examples
• Code inspection/reviews
• Document review
• Intellectual Property (IP) scans
• Complexity analysis
• Security scans
• Coding standards & patterns

Dynamic
• Program/system is executed
• Expensive

Examples
• Classic testing

• Regression
• Load/Stress
• Phases

Waterfall SDLC Model

|
3

Static
“Testing”/
Analysis

Dynamic Testing

Software Development Life Cycle
(SDLC)

Test
Phases

© 2022 IBM Corporation 31

Non-Enterprise Test
Pipeline Overview

Launch
Release
General

Availability
(GA)

Presenter Notes
Presentation Notes
Chef Watson Example

Non-Enterprise Test
Pipeline Overview

Launch
Release
General

Availability
(GA)

Code Design Requirements

Presenter Notes
Presentation Notes
Chef Watson Example

Enterprise Test Pipeline
Overview

Presenter Notes
Presentation Notes
Chef Watson Example

Common Activities Across Phases

• Requirements Analysis
Understand customer requirements

• Design Tests
Build and document your test strategy including automation

• Test Plan Review
Inspect and approve test plans with subject matter experts and stakeholders

• Execute Test
Perform tests and identify defects

• Reflection
Analyze defects and test escapes

Presenter Notes
Presentation Notes
Chef Watson Example

Acceptance Test

System Test

Burger Example
Putting it all Together

Unit Test

Function Test

Unit Test – What is it?

• A unit typically refers to the smallest possible testable piece of the project
(e.g. a line of code, a branch, function/method, etc.)

• In software, the goal is 100% line coverage

• Taking all branches/paths in the code is acceptable

• If 100% coverage isn’t possible, at least hit all new or changed lines

• Unit tests can be "less natural" with the developer or tester forcibly flipping bits or
setting flags as needed to drive paths

• Generally executed by the developer as a first pass at ensuring stability in
their code, architecture, etc.

Presenter Notes
Presentation Notes
Chef Watson Example

1. def function1() {
2. ! Define variables
3. MyVar = 0 ! Variable to use in this program
4. print("Starting variation")
5.
6. ! Call service
7. MyVar = Proc1()
8.
9. ! Did the service work?
10. If MyVar != 0 Then {
11. ! Fail TC
12. return("Something broke " + MyVar)
13. }
14. Else {
15. return("Everything worked!")
16. }
17.}

Unit Test – Coverage Example

1. def function1() {
2. ! Define variables
3. MyVar = 0 ! Variable to use in this program
4. print("Starting variation")
5.

6. ! Call service
7. MyVar = Proc1()
8.

9. ! Did the service work?
10. If MyVar != 0 Then {
11. ! Fail TC
12. return("Something broke " + MyVar)
13. }
14. Else {
15. return("Everything worked!")
16. }
17. }

End

End

Presenter Notes
Presentation Notes
Chef Watson Example

Unit Test – Example

import unittest

class TestStringMethods(unittest.TestCase):

def test_zero(self):

Proc1() = {return 0;} # stub

self.assertEqual(function1(), 'Everything worked!')

def test_nonzero(self):

Proc1() = {return 1;} # stub

self.assertEqual(function1(), 'Something broke 0')

Presenter Notes
Presentation Notes
Chef Watson Example

Function Test

© 2022 IBM Corporation 40

• Functional and behavioral
verification of
interactions and
integrations of units or
components in a system

• Also known as
integration test

Function Test

The goal is to validate all new features, behaviors and interactions as
naturally as possible and to ensure no regressions in existing logic

• Mainline features and error paths
• Services
• Recovery logic
• Limits and boundaries are honored
• Serialization
• Counts
• Condition Codes

Presenter Notes
Presentation Notes
Chef Watson Example

Function Test - Example

If we were to test a file system, what variations might we execute?

…

Variations need to be as specific as possible on what function is being tested
and what the expected outcome is

Test Description Expected Results
Create a new file File is created with a size of 0
Create new file with name conflict Appropriate return code
Modify a file that you don't have
authority to change

File contents remain unchanged.
Appropriate abend or error code is
returned

System Test
Focused on real world type usage
such as how end users and customers
would interact with the full system
• Ensures completeness of the system

• Verifies that no regressions occurred in
the existing features

• Exposes problems in upgrade capabilities
for customers looking to upgrade to a new
version of the system

• Validates usability of features and
components. If developers and testers
have difficulty using the system,
customers will too

• Uses customer-centric and native z/OS
tools (e.g. IPCS, RMF, SDSF, etc.) © 2022 IBM Corporation

43

System Test - Example

• If we were to system test the same file system from earlier, which scenarios
would we execute?

• We want to focus on things like the interactions between different services,
serialization and the number of users at different scales

Test Description Expected Results
Have a thrasher with many users
accessing (reading, writing,
modifying, etc.) the file system

No unexpected abends or error
codes. File contents will be
consistent and in a healthy state

Have users from different OS and
hardware levels perform file
operations against the same file
system

No unexpected abends or error
codes. File contents will be
consistent and in a healthy state

Presenter Notes
Presentation Notes
Need to have a deep understanding of the system and what is expected

Acceptance Test

Testing performed outside of the development team to verify
customer requirements were implemented and behave accordingly

The goal is to verify that customer requirements were met…

• Using “customer-like” workloads

• Follows publications strictly

• Driving features like rolling IPLs

• Applying service

• Generally following “happy path” type tests, not injecting errors

Acceptance Test – Example

• Returning to our file system example, how might we conduct an acceptance
test from an end user’s perspective?

• We want to focus on things like the end user experience and mainline
functions performing as expected

Test Description Expected Results
Have a user install a program which
requires the creating and managing
files using the file system

No unexpected abends or error
codes. The program will install
successfully

Have a user interface with a text
processing program (e.g. Microsoft
Word) to create a new document on
the file system and print it out

No unexpected abends or error
codes. File contents will be
consistent and in a healthy state

Acceptance Test

System Test

Burger Example
Putting it all Together

Unit Test

Function Test

Questions?

© 2022 IBM Corporation 48

© 2022 IBM Corporation 49

	Foundations of Test on z/OS�—�Michael Gildein�
	1918
	Agenda
	What is Test?
	What is Test?
	Slide Number 6
	Why Test?
	Why Test?
	Stability�Requirements
	Slide Number 10
	Slide Number 11
	Perfect �Verification�Paradox
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Principles�of�Testing
	Slide Number 17
	Slide Number 18
	Roles��Every developer �…is also a tester������
	Roles��Every developer �…is also a tester������
	Test�Classification
	Slide Number 22
	Verification, �Validation, �vs Testing
	Verification, Validation, vs Testing
	Test�Types
	Box Type Classification
	Functional vs Structural
	Non-functional Tests
	Static vs Dynamic Technique
	Waterfall SDLC Model
	Test�Phases
	Non-Enterprise Test Pipeline Overview
	Non-Enterprise Test Pipeline Overview
	Enterprise Test Pipeline Overview
	Common Activities Across Phases
	Burger Example�Putting it all Together
	Unit Test – What is it?
	Unit Test – Coverage Example
	Unit Test – Example
	Function Test
	Function Test
	Function Test - Example
	System Test
	System Test - Example
	Acceptance Test
	Acceptance Test – Example
	Burger Example�Putting it all Together
	Questions?
	IBM sign-off

