
© Copyright IBM Corporation 2016 Trademarks
Configure MQ connections between IBM Integration Bus v10 and
IBM MQ v8

Page 1 of 22

Configure MQ connections between IBM Integration
Bus v10 and IBM MQ v8
Venu Movva February 24, 2016

In IBM® Integration Bus v10, the Integration node can now run alone without any queue
managers running. In this tutorial, you learn different ways to configure MQ connections
between IBM Integration Bus v10 and IBM MQ v8.

Introduction
Before IBM Integration Bus v10, the Integration node depended on the queue manager to connect
to IBM MQ. If the Integration node had to process a message to the queue manager, the node had
to run on the queue manager. Starting in IBM Integration Bus v10, the dependency on IBM MQ
has been removed. The Integration node can now run alone without any queue managers running.
In this tutorial, you learn the different ways to configure MQ connections between IBM Integration
Bus v10 and IBM MQ v8.

To connect an Integration node to the MQ queue manager, you can choose from the following
options at the MQInput and MQOutput nodes:

• Local queue manager
• MQ client connection properties
• Client Channel Definition Table (CCDT)

By choosing one of these options, the Integration node can connect to the queue manager and
propagate the messages.

Set up the system
To configure the components and objects that are described in this tutorial, you must have the
following skills and system requirements.

Required skills
Before you begin this tutorial, you must have skills in the following areas:

• Implementation knowledge of MQ client/server architecture
• Intermediate knowledge of IBM MQ administration
• Intermediate knowledge of IBM Integration Bus administration
• IBM Integration Bus development skills

http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

developerWorks® ibm.com/developerWorks/

Configure MQ connections between IBM Integration Bus v10 and
IBM MQ v8

Page 2 of 22

System requirements
Table 1 outlines the infrastructure setup that is required for the three options. In this table, Y
indicates that the product is installed on the server, and NA indicates that the product is not
installed or does not apply to the server.

You are not required to configure all prerequisites as listed in Table 1. Therefore, configure only the
prerequisites for the option that you intend to implement in your environment.

Table 1. Server environment overview for each option
Options IBM Integration Bus v10

on Microsoft® Windows®
IBM Integration

Bus v8 on Windows
IBM Integration

Bus v8 on Windows
MQ v8 on Linux®

Local queue manager Y Y NA NA

MQ client connection Y NA Y Y

CCDT Y NA Y Y

Integration node creation: You do not need to create the Integration node again when you use
the -q flag or mqsichangebroker command.

Create the MQ objects for connectivity on a Linux server
If you are running MQ on a Linux server, create the required MQ objects for IBM Integration Bus
connectivity:

1. Check the version of MQ:
-bash-4.1$ dspmqver

Listing 1 shows an example of the output that is displayed for the version of MQ.
Listing 1. MQ version details
Name: WebSphere MQ
Version: 8.0.0.2
Level: p800-002-150519.TRIAL
BuildType: IKAP - (Production)
Platform: WebSphere MQ for Linux (x86-64 platform)
Mode: 64-bit
0/S: Linux 2.6.32-71.e16.x86_64
InstName: Installation1
InstDesc:
Primary: Yes
InstPath: /opt/mqm
DataPath: /var/mqm
MaxCmdLevel: 801

2. Create the IIB10_QM1 and IIB10_QM2 queue managers:
crtmqm IIB10_QM1
crtmqm IIB10_QM2

3. Start the IIB10_QM1 and IIB10_QM2 queue managers:
strmqm IIB10_QM1
strmqm IIB10_QM2

4. Check the status of the queue managers:
-bash-4.1$ dspmq

ibm.com/developerWorks/ developerWorks®

Configure MQ connections between IBM Integration Bus v10 and
IBM MQ v8

Page 3 of 22

Creation of the queue managers is successful, and their status is shown as Running:
QMNAME(IIB10_QM1) STATUS(Running)
QMNAME(IIB10_QM2) STATUS(Running)

5. Create the required objects under the IIB10_QM1 queue manager:
-bash-4.1$ runmqsc IIB10_QM1

a. Define the local queue:
DEFINE QL(INPUT.QL)

You see the following output:
AMQ8006: WebSphere MQ queue created.

b. Define the channel:
DEFINE CHANNEL(IIBV10.SVRCONN) CHLTYPE(SVRCONN)

You see the following output:
AMQ8014: WebSphere MQ channel created.

c. Define the listeners:
DEFINE LISTENER(QM1.LIS) TRPTYPE(TCP) PORT(1025) CONTROL(QMGR)

You see the following output:
AMQ8626: WebSphere MQ listener created.

d. Start the listener:
START LISTENER(QM1.LIS)

You see the following output:
AMQ8021: Request to start WebSphere MQ listener accepted.

6. Create the client-connection channel for IIB10_QM1 on the IIB10_QM1 queue manager:
DEFINE CHANNEL(IIBV10.SVRCONN) CHLTYPE(CLNTCONN) CONNAME('192.168.112.131(1025)') QMNAME(IIB10_QM1)

You see the following output:
AMQ8014: WebSphere MQ channel created.

7. Create the IIB10_QM2 CLNTCONN channels as part of the CCDT configuration for IIB10_QM2
on the IIB10_QM1 queue manager:
DEFINE CHANNEL(IIBV10.QM2.SVRCONN) CHLTYPE(CLNTCONN) CONNAME('192.168.112.131(1026)') QMNAME(IIB1O_QM2)

You see the following output:
AMQ8014: WebSphere MQ channel created.

8. Provide the authorizations for the IIB10_QM1 queue manager for the Integration node to
connect to the queue manager:
setmqaut -m IIB10_QM1 -t qmgr -p system +connect
setmqaut -m IIB10_QM1 -n INPUT.QL -t q -p system +inq +get

9. Ensure that all authorizations reflect the queue manager that is being used:
refresh security

10. Create the required objects under the IIB10_QM2 queue manager:
bash-4.1$ runmqsc IIB10_QM2

developerWorks® ibm.com/developerWorks/

Configure MQ connections between IBM Integration Bus v10 and
IBM MQ v8

Page 4 of 22

a. Define the local queue:
DEFINE QL(OUTPUT.QL)

You see the following output:
AMQ8006: WebSphere MQ queue created.

b. Define the channel:
DEFINE CHANNEL(IIBV10.QM2.SVRCONN) CHLTYPE(SVRCONN)

You see the following output:
AMQ8014: WebSphere MQ channel created.

c. Define the listeners:
DEFINE LISTENER(QM2.LIS) TRPTYPE(TCP) PORT(1026) CONTROL(QMGR)

You see the following output:
AMQ8626: WebSphere MQ listener created.

11. Provide the authorizations for the IIB10_QM2 queue manager for the Integration node to
connect to the queue manager:
setmqaut -m IIB10_QM2 -t qmgr -p system +inq +connect +setall
setmqaut -m IIB10_QM2 -n OUTPUT.QL -t q -p system +put +setall

12. Ensure that all the authorizations reflect the queue manager that is being used:
refresh security

Create the MQ objects for connectivity on a Windows server
If you are running MQ on a Windows server, create the required MQ objects for IBM Integration
Bus connectivity:

1. Create the LOCAL_QM1 and LOCAL_QM2 queue managers:
crtmqm LOCAL_QM1
crtmqm LOCAL_QM2

2. Start the LOCAL_QM1 and LOCAL_QM2 queue managers:
strmqm LOCAL_QM1
strmqm LOCAL_QM2

3. Check the status of the queue managers:
-bash-4.1$ dspmq

Creation of the queue managers is successful, and their status is shown as Running:
QMNAME(LOCAL_QM1) STATUS(Running)
QMNAME(LOCAL_QM2) STATUS(Running)

4. Create the required objects under the LOCAL_QM1 queue manager:
runmqsc LOCAL_QM1

5. Define the local queue:
DEFINE QL(INPUT.QL)

You see the following output:
AMQ8006: WebSphere MQ queue created.

6. Create the required objects under the LOCAL_QM2 queue manager:
runmqsc LOCAL_QM2

ibm.com/developerWorks/ developerWorks®

Configure MQ connections between IBM Integration Bus v10 and
IBM MQ v8

Page 5 of 22

7. Define the local queue:
DEFINE QL(OUTPUT.QL)

You see the following output:
AMQ8006: WebSphere MQ queue created.

Configure IBM Integration Bus on the Windows server
To configure IBM Integration Bus on the Windows server:

1. Create the IIBV10 Integration node, where IIBV10 is the broker name and the Integration
node does not have any queue manager dependency:
mqsicreatebroker IIBV10

After you create the integration node, you see the following output:
BIP8071I: Successful command completion.

2. Check the status of the Integration node:
mqsilist

The following status is displayed.
BIP1326I: Integration node 'IIBV10' is stopped.
BIP8071I: Successful command completion.

3. Start the Integration node:
mqsistart IIBV10

You see the following output:
BIP8096I: Successful command initiation.

4. Check the Integration node properties by using the IBM Integration Toolkit (Figure 1). The
queue manager that is specified on the Integration node property indicates that no queue
manager is associated with this Integration node.

Figure 1. Integration node validation with the IBM Integration toolkit

developerWorks® ibm.com/developerWorks/

Configure MQ connections between IBM Integration Bus v10 and
IBM MQ v8

Page 6 of 22

Message flow

A sample message flow was developed by using the IBM Integration toolkit. You can use it for all
three methods that are described in this tutorial. This message flow illustrates the connection of
the following queue managers:

• IIB10_QM1 and IIB10_QM2 that are running on Linux
• LOCAL_QM1 and LOCAL_QM2 that are running on Windows

Figure 2 illustrates a flow that accepts messages in the XML format and transfers them as follows:

• From IIB10_QM1 to IIB10_QM2 (for the MQ client connection properties and CCDT methods)
running on Linux

• From LOCAL_QM1 to LOCAL_QM2 (for the Local queue manager method) running on Windows

Figure 2. Message flow in the XML format

Properties configuration

For all three scenarios, you configure the properties by using MQ Enterprise Transport.

Because you are using the message flow to transform the XML messages from one queue
manager to another queue manager, a distribution setup is not required at the MQ level. When you
develop a message flow, the message processing by the flow depends on the properties of the
nodes. For example, by setting the properties that define the INPUT and OUTPUT queue names
for MQ, you determine where the message flow receives the message from and where it delivers
the message.

Figure 3 shows the routing of a message from the LOCAL_QM1 queue manager to the LOCAL_QM2
queue manager. The client environment that is shown has two queue managers (LOCAL_QM1 and
LOCAL_QM2) and IBM Integration Bus (IIBV10). They are installed on the same Windows server. The
source application puts a message on the INPUT.QL queue under the LOCAL_QM1 queue manager.
Then, the message flow picks up the message and sends it to the OUTPUT.QL queue under the
LOCAL_QM2 queue manager for the target application.

ibm.com/developerWorks/ developerWorks®

Configure MQ connections between IBM Integration Bus v10 and
IBM MQ v8

Page 7 of 22

Figure 3. Routing a message from LOCAL_QM1 to LOCAL_QM2

Figure 4 shows the routing of a message from IIBV10_QM1 to IIBV10_QM2. The client environment
has two queue managers (IIB10_QM1 and IIB10_QM2) on a Linux server and IBM Integration Bus
(IIBV10) on a Windows server. The putter application puts a message on the INPUT.QL queue
under IIB10_QM1. Then, the message flow picks the message and sends it to the OUTPUT.QL queue
under IIB10_QM2 for the getter application.

Figure 4. Routing a message from IIBV10_QM1 to IIBV10_QM2

Scenario 1: Local queue manager
In this scenario, IBM Integration Bus v10 and IBM MQ v8 are both installed on the same Windows
server, and both the components are connecting in Binding mode. In Binding mode, IBM

developerWorks® ibm.com/developerWorks/

Configure MQ connections between IBM Integration Bus v10 and
IBM MQ v8

Page 8 of 22

Integration Bus and MQ connect to each other on the same server. Also, a local connection is
made to a local queue manager that uses server bindings. A client connection is made to remote
queue managers. You can use local connections, client connections, or a combination of local and
client connections to your queue managers.

If you select the local queue manager option, you must specify a queue manager name. The
message flow makes a server connection to the queue manager (by using server bindings). The
Integration node and queue manager must be running on the same server.

Configure the MQInput node properties
The MQInput node receives messages from applications and connects to the Integration node by
using the IBM MQ Enterprise Transport.

To configure the MQInput node properties:

1. Update the INPUT.QL queue name:
a. Navigate to the MQ Input Node Properties window (Figure 5).
b. On the Basic tab, for Queue name, enter INPUT.QL.

Figure 5. Queue name property

2. Update the connection details for the LOCAL_QM1 queue manager:
a. Go to the MQ Input Node Properties window (Figure 6).
b. On the MQ Connection tab, for Connection, enter Local queue manager. For

Destination queue manager name, enter LOCAL_QM1.

Figure 6. Connection details for the LOCAL_QM1 queue manager

Configure the MQOutput node properties
The MQOutput node delivers an output message from a message flow to an MQ queue. The node
uses MQPUT to put the message to the destination queue or queues that you specify.

To configure the MQOutput node properties:

ibm.com/developerWorks/ developerWorks®

Configure MQ connections between IBM Integration Bus v10 and
IBM MQ v8

Page 9 of 22

1. Update the OUTPUT.QL queue name:
a. Go to the MQ Output Node Properties window (Figure 7).
b. On the Basic tab, for Queue name, enter OUTPUT.QL.

Figure 7. Queue name property

2. Update the connection details for the LOCAL_QM2 queue manager:
a. Go to the MQ Output Node Properties window (Figure 8).
b. On the MQ Connection tab, for Connection, enter Local queue manager. For

Destination queue manager name, enter LOCAL_QM2.

Figure 8. Connection details for the LOCAL_QM2 queue manager

Confirm the data flow engine connection

To confirm the data flow engine connection with the queue, display the queue status:

runmqsc LOCAL_QM1
dis qs(INPUT.QL) type(handle)

The output in Listing 2 shows APPLTAG(erver\bin\DataFlowEngine.exe), which indicates that the
queue is listening to the data flow engine.

Listing 2. Queue status for the data flow engine connection

AMQ8450: Display queue status details.
QUEUE(INPUT.QL) TYPE(HANDLE)
APPLDESC()
APPLTAG(erver\bin\DataFlowEngine.exe)
APPLTYPE(USER) BROWSE(NO)
CHANNEL() CONNAME()
ASTATE(ACTIVE) HSTATE(ACTIVE)
INPUT(SHARED) INQUIRE(YES)
OUTPUT(NO) PID(5260)
QMURID(0.12291) SET(NO)
TID(*)
URID(XA_FORMATID[] XA_GTRIDH[] XA_BQUAL[])
URTYPE(QMGR) USERID(SYSTEM@NT AUTHORITY)

developerWorks® ibm.com/developerWorks/

Configure MQ connections between IBM Integration Bus v10 and
IBM MQ v8

Page 10 of 22

As shown in Figure 9, the Current queue depth for the INPUT.QL queue name is 0. It also shows
the message data that is displayed. In MQ Explorer, use the PUT command to place the message
in the INPUT.QL queue on the LOCAL_QM1 queue manager.

Figure 9. Current queue depth and message data for INPUT.QL

As shown in Figure 10, the Current queue depth for the OUTPUT.QL queue is now 1. This value
confirms that the message flow picks the message from the INPUT.QL queue on the LOCAL_QM1
queue manager and sends it to the OUTPUT.QL queue on the LOCAL_QM2 queue manager.

ibm.com/developerWorks/ developerWorks®

Configure MQ connections between IBM Integration Bus v10 and
IBM MQ v8

Page 11 of 22

Figure 10. Current queue depth for OUTPUT.QL

By using the IBM Integration Toolkit, the Current queue depth of the OUTPUT.QL queue on the
LOCAL_QM2 queue manager changed from 0 to 1 (Figure 11). This change confirms that the
message was sent. Also, the message data is for the same message that was sent from the
INPUT.QL queue on the LOCAL_QM1 queue manager.

Figure 11. Current queue depth and message data for OUTPUT.QL

developerWorks® ibm.com/developerWorks/

Configure MQ connections between IBM Integration Bus v10 and
IBM MQ v8

Page 12 of 22

Scenario 2: MQ client connection properties

If you choose to define the MQ client connection properties, you must also specify the following
properties:

• Queue manager host name
• Listener port number
• Channel name
• Destination queue manager name at the MQInput nodes
• Destination queue manager name at the MQOutput nodes

In this example, the Integration node is running on a Windows server, and the queue managers
are running on a Linux server.

Configure the MQInput node properties

To configure the MQInput node properties:

1. Update the INPUT.QL queue name:
a. Go to the MQInput Node Properties window (Figure 12).
b. On the Basic tab, for Queue name, enter INPUT.QL.

Figure 12. Queue name property for the MQInput node

2. Update the connection details for the IIB10_QM1 queue manager:
a. Go to the MQ Input Node Properties window.
b. On the MQ Connection tab (Figure 13):

i. For Connection, enter MQ client Connection properties.
ii. For Destination queue manager name, enter IIB10_QM1.
iii. For Queue manager host name, enter the IP address.
iv. For Listener port number, enter 1025.
v. For Channel name, enter IIBV10.SVRCONN.

ibm.com/developerWorks/ developerWorks®

Configure MQ connections between IBM Integration Bus v10 and
IBM MQ v8

Page 13 of 22

Figure 13. Connection details for IIB10_QM1

Configure the MQOutput node properties
To configure the MQOutput node properties:

1. Update the OUTPUT.QL queue name:
a. Go to the MQ Output Node Properties window (Figure 14).
b. On the Basic tab, for Queue name, enter OUTPUT.QL.

Figure 14. Figure 14. Queue name of the MQOutput node

2. Update the connection details for the IIB10_QM2 queue manager:
a. Go to the MQ Output Node Properties window (Figure 15).
b. On the MQ Connection tab:

i. For Connection, enter MQ client connection properties.
ii. For Destination queue manager name, enter IIB10_QM2.

developerWorks® ibm.com/developerWorks/

Configure MQ connections between IBM Integration Bus v10 and
IBM MQ v8

Page 14 of 22

iii. For Queue Manager Host Name, enter the IP address.
iv. For Listener Port Number, enter 1026.
v. For Channel Name, enter IIBV10.QM2.SVRCONN.

Figure 15. Connection details for IIB10_MQ2

Test the MQ client connection

Until you test the message flow, the initial current depth (CURDEPTH) of the INPUT.QL and OUTPUT.QL
queues is 0, which means that no messages are in the queue. To test the client connection:

1. Start the MQSC commands for the IIB10_QM1 queue manager:
-bash-4.1$ runmqsc IIB10_QM1

2. Display the current depth of the INPUT.QL queue:
dis ql(INPUT.QL) CURDEPTH

The CURDEPTH is 0 as shown in the following input queue details:
AMQ40409: Display Queue details.
QUEUE(INPUT.QL) TYPE(QLOCAL)
CURDEPTH(0)

3. Start the MQSC commands for the IIB10_QM2 queue manager:
-bash-4.1$ runmqsc IIB10_QM2

4. Display the current depth of the OUTPUT.QL queue:
dis ql(OUTPUT.QL) CURDEPTH

The CURDEPTH is 0 as shown in the following output queue details:
AMQ8409: Display Queue details.
QUEUE(OUTPUT.QL) TYPE(QLOCAL)
CURDEPTH(0)

5. Put a sample message on the INPUT.QL queue:
-bash-4.1$./amqsput INPUT.QL IIB10_QM1

ibm.com/developerWorks/ developerWorks®

Configure MQ connections between IBM Integration Bus v10 and
IBM MQ v8

Page 15 of 22

You see the following output:
Sample AMQSPUT0 start
target queue is INPUT.QL
<XML>I am using IIBV10 and MQV8.0</XML>

Sample AMQSPUT0 end

6. Start the MQSC commands for the IIB10_QM2 queue manager:
-bash-4.1$ runmqsc IIB10_QM2

You see the following output:
Starting MQSC for queue manager IIB10_QM2.

7. Display the current depth of the OUTPUT.QL queue:
dis ql(OUTPUT.QL) CURDEPTH

As shown in the following output, the CURDEPTH is 1, meaning that the message flow
processed the message successfully to the output queue:
AMQ8409: Display Queue details.
QUEUE(OUTPUT.QL) TYPE(QLOCAL)
CURDEPTH(1)
END

8. Verify the flow connection to the IIB10_QM1 queue manager:
dis chs(IIBVlO.SVRCONN) all

The data flow engine (execution group) is listening, and the server connection channel
IIBV10.SVRCONN is running. The MQInput node is connected to the server connection channel,
showing successful connectivity in this scenario (Listing 3).

Listing 3. Message flow connected to the IIB10_QM1 queue manager

AMQ8417: Display Channel Status details.
CHANNEL(IIBV10.SVRCONN) CHLTYPE(SVRCONN)
BUFSRCVD(46) BUFSSENT(5)
BYTSRCVD(4296) BYTSSENT(2152)
CHSTADA(2015-10-05) CHSTAII(12.04.28)
COMPHDR(NONE,NONE) COMPMSG(NONE,NONE)
COMPRATE(0,0) COMPTIME(0,0)
CONNAME(192.168.112.1) CURRENT
EXITTIME(0,0) HBINT(300)
JOBNAME(000ooF3600000121)
LOCLADDR(::ffff:192.168.112.l31(1025))
LSTMSGDA(2015-lO-05) LSTMSGTI(12.04.28)
MCASTAI(RUNNING) MCAUSER(system)
MONCHL(OFF) MSGS(3)
RAPPLTAG(erver\bin\DataFlowEngine.exe)
SECPROT(NONE) SSLCERTI()
SSLKEYDA() SSLKEYTI()
SSLPEER() SSLRKEYS(0)
STAIUS(RUNNING) STOPREQ(NO)
SUBSTAIE(RECEIVE) CURSHCNV(1)
MAXSHCNV(10) RVERSION(08000002)
RPRODUCT(MQCC)

9. Verify the flow connection to the IIB10_QM2 queue manager:
dis chs(IIBVlO.QM2.SVRCONN) all

developerWorks® ibm.com/developerWorks/

Configure MQ connections between IBM Integration Bus v10 and
IBM MQ v8

Page 16 of 22

As shown in Listing 4, the data flow engine (execution group) is listening, and the server
connection channel IIBV10.QM2.SVRCONN is running. These results demonstrate that the
MQOutput node is connected to the server-connection channel, indicating successful
connectivity.

Listing 4. Message flow connected to the IIB10_QM2 queue manager

AMQ8417: Display Channel Status details.
CHANNEL(IIBV10.QM2.SVRCONN) CHLTYPE(SVRCONN)
BUFSRCVD(10) BUFSSENT(9)
BYTSRCVD(2884) BYTSSENT(2844)
CHSTADA(2015-10-05) CHSTATI(12.05.55)
COMPHDR(NONE,NONE) COMRMSG(NONE,NONE)
COMPRATE(0,0) COMPTIME(0,0)
CONNAME(192.168.112.1) CURRENT
EXITTIME(0,0) HBINT(300)
JOBNAME(OOOOIOZBOOOOOOOD)
LOCLADDR(::ffff:192.168.112.131(1026))
LSTMSGDA(2015-lO-05) LSTMSGTI(12.05.55)
MCASTAT(RUNNING) MCAUSER(system)
MONCHL(OFF) MSGS(7)
RAPPLTAG(erver\bin\DataFlowEngine.exe)
SECPROT(NONE) SSLCERTI()
SSLKEYDA() SSLKEYTI()
SSLPEER() SSLRKEYS(0)
STATUS(RUNNING) STOPREQ(NO)
SUBSTATE(RECEIVE) CURSHCNV(1)
MAXSHCNV(10) RVERSION(08000002)
RPRODUCT(MQCC)

10. Get the sample message from the OUTPUT.QL queue:
-bash-4.1$./amqsget OUTPUT.QL IIB10_QM2

You see the following output:
Sample AMQSGET0 start
message <XML>I am using IIBV10 and MQV8.0</XML>

You have now placed a sample message on INPUT.QL by using the AMQSPUT program. The
message flow picks the message from the INPUT.QL queue and sends it to the OUTPUT.QL queue on
IIB10_QM2. You also see the CURDEPTH change to 1.

Scenario 3: Client Channel Definition Table

In this example, the Integration node is running on a Windows system, and the queue managers
are running on a Linux system. If you choose the CCDT option, you must specify a queue
manager name and configure the MQ CCDT file on a Windows system.

Configure the MQInput node properties

To configure the MQInput node properties:

1. Update the INPUT.QL queue name:
a. Go to the MQ Input Node Properties window (Figure 16).
b. On the Basic tab, for Queue name, enter INPUT.QL.

ibm.com/developerWorks/ developerWorks®

Configure MQ connections between IBM Integration Bus v10 and
IBM MQ v8

Page 17 of 22

Figure 16. Queue name for the MQInput node

2. Update the MQ Client connection details for the IIB10_QM1 queue manager:
a. Go to the MQ Input Node Properties window (Figure 17).
b. On the MQ Connection tab, for Connection, enter Client channel definition table

(CCDT) file. For Destination queue manager name, enter IIB10_QM1.

Figure 17. Connection details for IIB10_QM1

Configure the MQOutput node properties

To configure the MQOutput node properties:

1. Update the OUTPUT.QL queue name:
a. Go to the MQ Output Node Properties window (Figure 18).
b. On the Basic tab, for Queue name, enter OUTPUT.QL.

developerWorks® ibm.com/developerWorks/

Configure MQ connections between IBM Integration Bus v10 and
IBM MQ v8

Page 18 of 22

Figure 18. Queue name for the MQOutput node

2. Update the connection details for the IIB10_QM2 queue manager:
a. Go to the MQ Output Node Properties window (Figure 19).
b. On the MQ Connection tab, for Connection, enter Client channel definition table

(CCDT) file. For Destination queue manager name, enter IIB10_QM2.

Figure 19. Connection details for the IIB10_MQ2 queue manager

Register the CCDT file with the Integration node

Copy the AMQCLCHL.TAB CCDT file from the MQ Linux server to the Windows server by using
the FTP, SFTP, or WINSCP utilities. Then, register the AMQCLCHL.TAB file with the Integration
node:

mqsichangeproperties IIBV10 -o BrokerRegistry -n mqCCDT -v "C:\Users\MVP\Documents\AMQCLCHL.TAB"

Locate the CCDT file for the Integration node registry

Specify the location of the CCDT file for the Integration node registry:

C:\Program Files\IBM\IIB\10.0.0.0>mqsichangeproperties IIBV10 -o BrokerRegistry -n mqCCDT -v "C:\Users\MVP
\Documents\AMQCLCHL.TAB"

You see the following message:

BIP8071I: Successful command completion

ibm.com/developerWorks/ developerWorks®

Configure MQ connections between IBM Integration Bus v10 and
IBM MQ v8

Page 19 of 22

Check the CCDT file allocation
After you set the mqCCDT property, restart the Integration node for all the configurations to reflect
the change. To check whether the mqCCDT property is registered to the IIBV10 Integration node, you
can use the following command:

mqsireportproperties IIBVIO -o BrokerRegistry –r BrokerRegistry

Listing 5 shows the command output.

Listing 5. CCDT file allocated to the Integration node registry
uuid='BrokerRegistry'
brokerKeystoreType='3KS'
brokerKeystoreFi1e=''
brokerKeystorePass='brokerKeystore::password'
brokerTruststoreType='JKS'
brokerTruststoreFile=''
brokerTruststorePass='brokerTruststore::password'
brokerCRLFileList=''
httpConnectorPortRange=''
httpsConnectorPortRange=''
brokerKerberosConfigFi1e=''
brokerKerberosKeytabFile=''
allowSSLv3=''
mqCCDT='C:\Users\MVP\Documents\AMQCLCHL.TAB'
modeExtensions="

Confirm the data flow engine connection
To confirm the data flow engine connection with the queue:

1. Start the MQSC commands for the IIB10_QM1 queue manager:
-bash-4.1$ runmqsc IIB10_QM1

2. Display the queue status of the IIB10_QM1 queue manager:
DIS CHS(*) all

The data flow engine (execution group) is listening, and the server-connection channel
IIBV10.SVRCONN is running in the IIB10_QM1 queue manager (Listing 6). These results
demonstrate that the MQInput node is connected to the server-connection channel, indicating
successful connectivity.
Listing 6. Flow connection to the IIB10_QM1 queue manager
AMQ8417: Display Channel Status details.
CHANNEL(IIBV10.SVRCONN) CHLTYPE(SVRCONN)
BUFSRCVD(156) BUFSSENT(5)
BYTSRCVD(10184) BYTSSENT(2152)
CHSTADA(2015-10-05) CHSTAII(12.20.00)
COMPHDR(NONE,NONE) COMRMSG(NONE,NONE)
COMPRATE(0,0) COMPTIME(0,0)
CONNAME(192.168.112.1) CURRENT
EXITTIME(0,0) HBINT(300)
JOBNAME(OOOOOFBGOOOOOIBF)
LOCLADDR(::ffff:192.168.112.131(1025))
LSTMSGDA(2015-lO-05) LSTMSGTI(12.20.00)
MCASTAI(RUNNING) MCAUSER(system)
MONCHL(OFF) MSGS(3)

developerWorks® ibm.com/developerWorks/

Configure MQ connections between IBM Integration Bus v10 and
IBM MQ v8

Page 20 of 22

RAPPLTAG(erver\bin\DataFlowEngine.exe)
SECPROT(NONE) SSLCERTI()
SSLKEYDA() SSLKEYTI()
SSLPEER() SSLRKEYS(O)
STAIUS(RUNNING) STOPREQ(NO)
SUBSTAIE(RECEIVE) CURSHCNV(1)
MAXSHCNV(10) RVERSION(08000002)
RPRODUCT(MQCC)

3. Start the MQSC commands for the IIB10_QM2 queue manager:
-bash-4.1$ runmqsc IIB10_QM2

4. Display the queue status of the IIB10_QM2 queue manager:
dis chs(*) all

As shown in Listing 7, the data flow engine (execution group) is listening, and the server-
connection channel IIBV10.QM2.SVRCONN is running in the IIB10_QM>2 queue manager. These
results demonstrate that the MQOutput node is connected to the server-connection channel,
indicating successful connectivity.

Listing 7. Flow connection to the IIB10_QM2 queue manager

AMQ8417: Display Channel Status details.
CHANNEL(IIBV10.QM2.SVRCONN) CHLTYPE(SVRCONN)
BUFSRCVD(10) BUFSSENT(9)
BYTSRCVD(2876) BYTSSENT(2844)
CHSTADA(2015-10-05) CHSTAII(12.22.05)
COMPHDR(NONE,NONE) COMRMSG(NONE,NONE)
COMPRATE(0,0) COMPTIME(0,0)
CONNAME(192.168.112.1) CURRENT
EXITTIME(0,0) HBINT(300)
JOBNAME(00001OZBOOOOOOOE)
LOCLADDR(::ffff:192.168.112.131(1026))
LSTMSGDA(2015-10-05) LSTMSGTI(12.22.05)
MCASTAI(RUNNING) MCAUSER(systam)
MONCHL(OFF) MSGS(7)
RAPPLTAG(erver\bin\DataFlowEngine.exe)
SECPROT(NONE) SSLCERTI()
SSLKEYDA() SSLKEYTI()
SSLPEER() SSLRKEYS(0)
STAIUS(RUNNING) STOPREQ(NO)
SUBSTAIE(RECEIVE) CURSHCNV(1)
MAXSHCNV(10) RVERSION(08000002)
RPRODUCT(MQCC)

5. Check the CURDEPTH for the OUTPUT.QL queue:
DIS QL(OUTPUT.QL) CURDEPTH

The message flow picked the message from the INPUT.QL queue on the IIB10_QM1 queue
manager and sent it to the OUTPUT.QL queue on the IIB10_QM2 queue manager. As shown in
Listing 8, the CURDEPTH has now changed to 1.

Listing 8. OUTPUT.QL CURDEPTH

AMQ8409: Display Queue details.
QUEUE(OUTPUT.QL) TYPE(QLOCAL)
CURDEPTH(1)

6. Browse the sample message on the OUTPUT.QL queue that is on the IIB10_QM2 queue
manager:
-bash-4.1$./amqsget OUTPUT.QL IIB10_QM2

ibm.com/developerWorks/ developerWorks®

Configure MQ connections between IBM Integration Bus v10 and
IBM MQ v8

Page 21 of 22

You see the following message:
Sample AMQSGET0 start
message <XML>I am using CCDT File</XML>

Challenge with the CCDT setup
If the CCDT file configurations, such as the Channel Name or Location of the CCDT file are
incorrectly defined, you might encounter an error like the one shown in Figure 20.

Figure 20. Incorrect CCDT configurations

This error message indicates a failure in making a CCDT connection to the queue manager. To
correct this error, you must check the following areas:

• MQ Client Channel definitions
• Port numbers
• Location of the CCDT file: After you create the CCDT file, you must transfer the file in Binary

mode.
• Client/server connection channel names: The names must match before you create the CCDT

file.
• Location of the CCDT File

Important: Do not open or modify the CCDT file. Modifying the file can cause the CCDT not
to not work and can result in errors.

Conclusion
This tutorial explained the configuration and connections between the IBM Integration Bus v10
and MQ v8. It explained three options to connect an integration node to the MQ queue manager.

developerWorks® ibm.com/developerWorks/

Configure MQ connections between IBM Integration Bus v10 and
IBM MQ v8

Page 22 of 22

These options included the local queue manager, the MQ client connection properties, and the
Client Channel Definition Table. The scenarios demonstrated how to create queue managers, MQ
channels by using CCDT, and the IBM Integration node. They also explained how to configure IBM
Integration Bus message flows by using the MQ Connection properties.

Acknowledgments

A special thank you to Ganesh Gopalakrishnan, Rajish E. Pattavalapil, and Arundeep B.
Veerabhadraiah for their assistance and valuable input provided during the creation of this tutorial.

Resources
Learn more. Develop more. Connect more.

The new developerWorks Premium membership program provides an all-access pass to
powerful development tools and resources, including 500 top technical titles (more than
125 for Java developers alone) through Safari Books Online, deep discounts on premier
developer events, video replays of recent O'Reilly conferences, and more. Sign up today.

IBM MQ

• IBM Knowledge Center:
• IBM MQ Version 8 documentation
• Client channel definition table (CCDT) topic
• Creating server-connection and client-connection definitions on different platforms topic

• IBM MQ forum on mqseries.net for user questions, answers, and tips.
• IBM MQ articles and tutorials in the IBM developerWorks WebSphere zone

IBM Integration Bus

• IBM Knowledge Center
• IBM Integration Bus Version 10 documentation
• Configuring a local connection to MQ topic

• IBM Integration Community
• IBM Integration Bus articles and tutorials in the developerWorks WebSphere zone

© Copyright IBM Corporation 2016
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

https://www.ibm.com/marketplace/cloud/developer-program/us/en-us
https://www.ibm.com/marketplace/cloud/developer-program/us/en-us
http://www-01.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.helphome.v80.doc/WelcomePagev8r0.htm?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.con.doc/q016730_.htm?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.con.doc/q016690_.htm?lang=en
http://www.mqseries.net/phpBB2/viewforum.php?f=7
https://ibm.biz/BdHU6q
http://www-01.ibm.com/support/knowledgecenter/SSMKHH_10.0.0/com.ibm.etools.msgbroker.helphome.doc/help_home_msgbroker.htm
https://www-01.ibm.com/support/knowledgecenter/SSMKHH_10.0.0/com.ibm.etools.mft.doc/bc28612_.htm
https://developer.ibm.com/integration/
https://ibm.biz/BdHU6y
http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Introduction
	Set up the system
	Required skills
	System requirements
	Create the MQ objects for connectivity on a Linux server
	Create the MQ objects for connectivity on a Windows server
	Configure IBM Integration Bus on the Windows server
	Message flow

	Scenario 1: Local queue manager
	Configure the MQInput node properties
	Configure the MQOutput node properties
	Confirm the data flow engine connection

	Scenario 2: MQ client connection properties
	Configure the MQInput node properties
	Configure the MQOutput node properties
	Test the MQ client connection

	Scenario 3: Client Channel Definition Table
	Configure the MQInput node properties
	Configure the MQOutput node properties
	Register the CCDT file with the Integration node
	Locate the CCDT file for the Integration node registry
	Check the CCDT file allocation
	Confirm the data flow engine connection
	Challenge with the CCDT setup

	Conclusion
	Acknowledgments
	Resources
	Trademarks

