What is Systems Management?

Jürgen Holtz STSM, IBM Z AlOps Architect

z/OS Academy, Nov 22-24, 2022 IBM Research and Development Lab Böblingen, Germany

Complexity is free

Blog: https://www.linkedin.com/pulse/complexity-free-vineet-khosla/Picture: https://rickrobinson.files.wordpress.com/2012/10/it-systems.jpg

What keeps the CIO up at night?

Outages and negative press are costly

- May lead to loss of reputation
- And loss of business
- Or even bankruptcy

Challenges

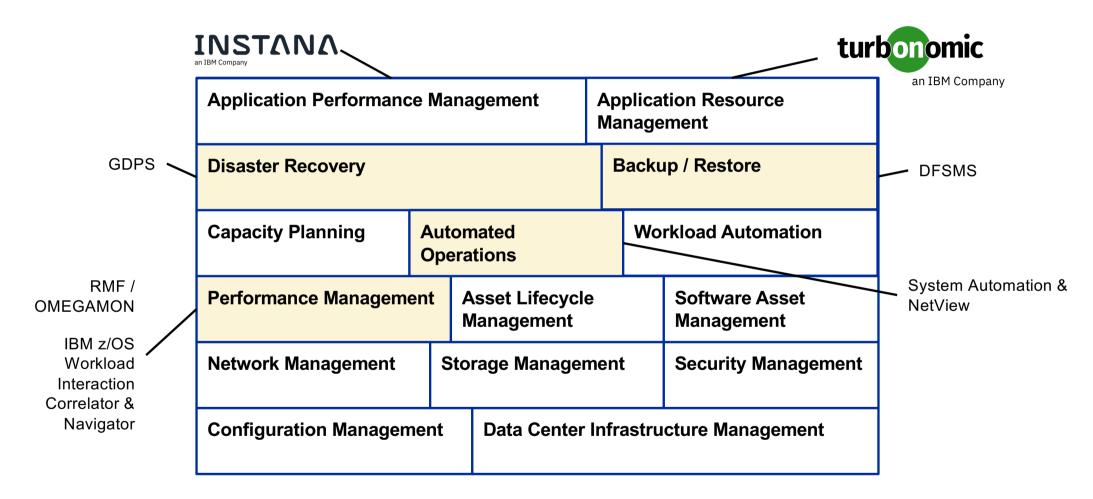
- Increasing complexity of the IT-infrastructure
- More frequent changes
- Budget pressure
- Demographic change
- 24x7 availability and resiliency

Systems Management

Centralized administration of the information technology (IT) systems in an enterprise network or data center

Visibility, control, and automation of data center ITcomponents including cloud services

Facilitates the delivery of IT as a service


Strongly influenced by network management in telecommunications

Large spectrum of systems management specializations

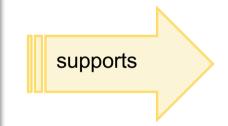
Systems Management specializations

Application Performance Management			Application Resource Management		
Disaster Recovery			Backup / Restore		
Capacity Planning	Automated Operations			Workload Automation	
Performance Manageme	Asset Lifecycle Management			Software Asset Management	
Network Management	Storage Manager	rage Management		Security Management	
Configuration Managem	Data Center	Data Center Infrastructure Management			

Systems Management specializations

Systems Management vs. Service Management

Comparison


Systems Management focus

Selection and deployment of tools to gain insights into IT-components and workloads and to control them

Operations of IT-components and workloads

- Frictionless
- Efficient
- At scale

Optimizing resource utilization within budget and availability requirements

Service Management focus

Ability to generate <u>value</u> for your customers by providing services

Joining People, Processes and Tools

Service strategy

Design, transition, and operations of services

Continues improvement

FCAPS Systems Management framework

Influenced by Network Management in Telecommunications

Evolved since the early 1980s and submitted 1992 as CCITT Recommendation X.700 Management framework for Open Systems Interconnection (OSI) for CCITT Applications (see also ISO/IEC 10040)

Five functional areas (FCAPS)

Fault management

- Error logs
- Notifications
- Tracing, isolation
- Correction

Configuration Management

- Catalog of managed systems and their parameters
- Discovery
- Plan and perform changes

Accounting management

- Measure resource consumption
- Bill user / dept. by consumption

Performance Management

- Gather statistical information
- Real-time vs.
 historical data
- Thresholding

Security Management

- Access management
- Audit log
- Incident reporting

Other influences

Two examples

Desktop Management Task Force (DMTF)

Non-profit standards organization

Defines open standards covering management of traditional IT-compute, network, and storage infrastructure

But also covering management of converged and hybrid IT, cloud and virtualization

Prominent examples are

- Common Information Model (CIM)
- Web-Based Enterprise Management (WBEM)
- Cloud Infrastructure Management Interface (CIMI)

Computer Measurement Group (CMG)

Non-profit user organization founded in 1970s

User group of professionals focusing on measuring and managing the performance of computing systems

Provides education, networking about methodology and forum for ideas and requirements

Its technical publications include many legendary papers on performance

z/OS System Management **Facility**

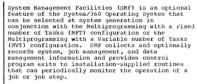
z/OS component for collecting and recording system and job-related information for billing, activity and reliability reporting, profiling and security

Since /360 days (1960s)

De-facto standard on z/OS and backbone for any of today's systems management task on z/OS

z/OS V2.5 distinguishes 129 different record types with more than 150 subtypes

Rich ecosystem of "post-processing" tools, both onplatform and off-platform


File Number S360-31 Form C28-6712-1

Systems Reference Library

IBM System/360 Operating System

Planning for System Management Facilities

This publication:

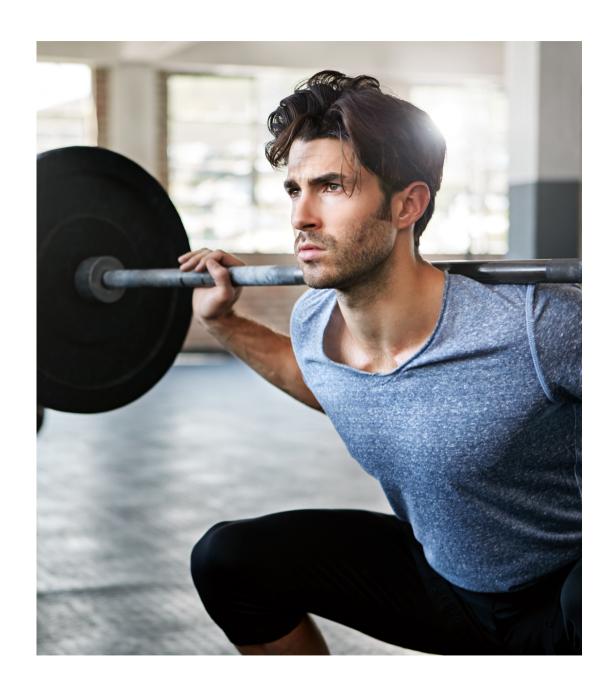
- · Introduces basic SMF concepts.
- · Describes SMF records, control program exits, and data management requirements
- · Tells how to plan, write and test the installation-supplied exit routines.
- · Gives procedures for incorporating SMF into
- · Describes IPL and data management procedures that must be performed by the operator.
- · Describes SMF record formats.
- · Explains SMF messages.

System Management Facilities can be used with the Model 65 multiprocessing (M65MP) option of MVT and the Remote Job Entry (RJE) and Graphic Job Processor (GJP) options of MFT and MVT.

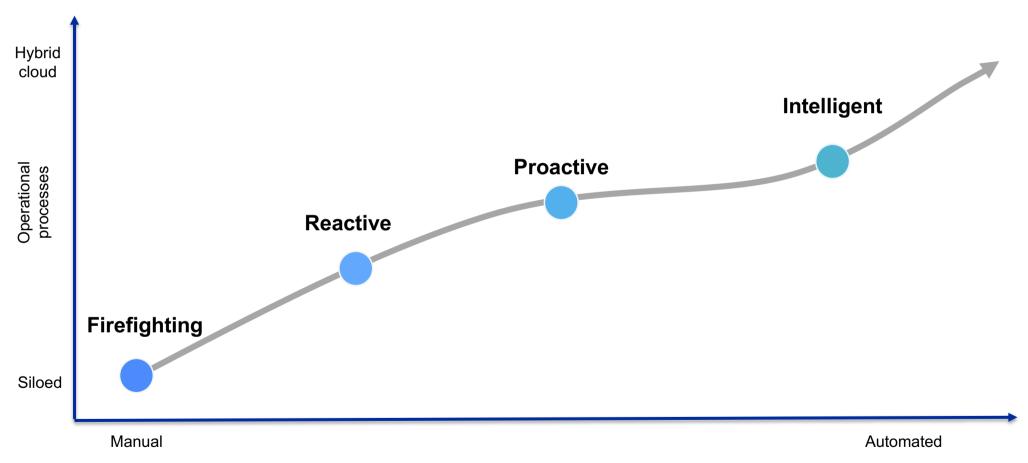
This publication is a planning aid only. It is intended for use prior to the availability of System Management Facilities and shall be replaced by reference documentation when that option

Systems Management isn't a Free Lunch

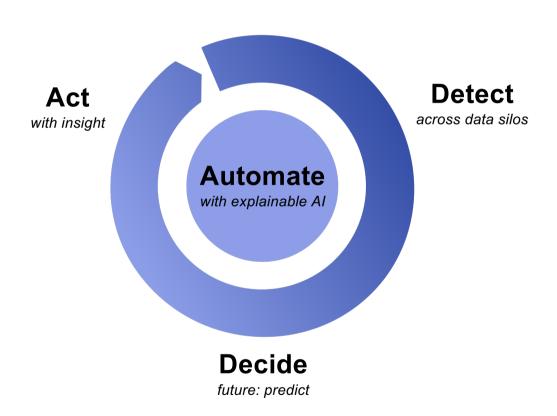
Cost of acquiring, deploying, and running systems management tools


Training of IT-staff

Tools must be upgraded as rest of system changes

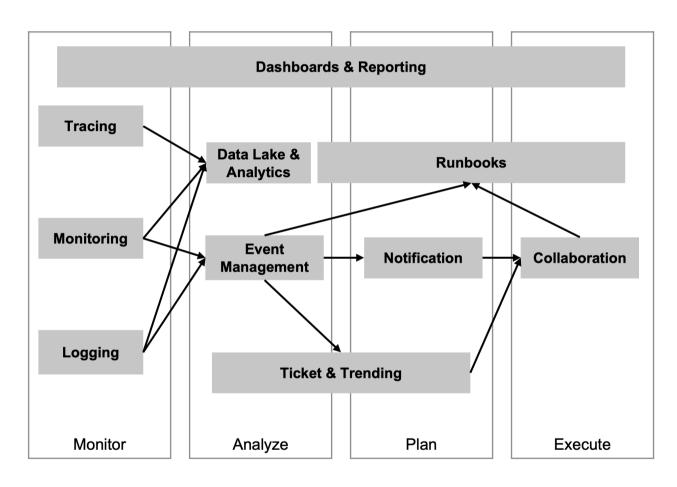

Security

Interoperability of tools, e.g., across platform


Lack of automation in tools and processes

Journey to AlOps – Four stages of maturity

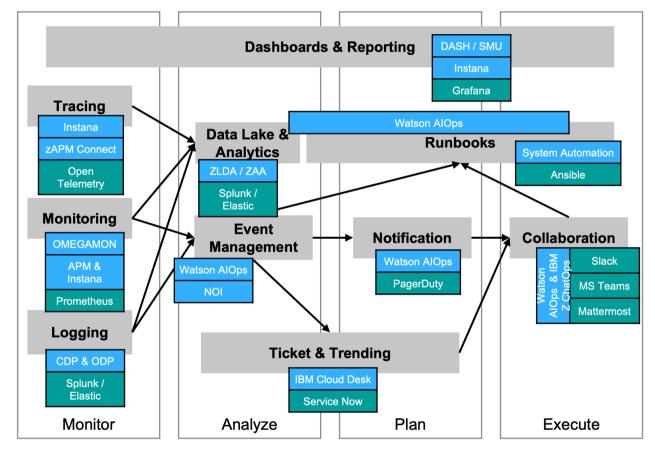
Al-powered automation drives operational resiliency and speed


Detect: Monitor hybrid infrastructure and applications and detect issues and anomalies

Decide: Analyze issues and anomalies to isolate problems and identify root causes

Act: Rapidly respond to reduce impact on the customers with improved resiliency

Example: Incident Management


Incident
Management is
optimized to
restore the
normal service
operations as
quickly as
possible, thus
ensuring the best
levels of service
quality and
availability are
maintained.

Example: Incident Management

Incident
Management is
optimized to
restore the
normal service
operations as
quickly as
possible, thus
ensuring the best
levels of service
quality and
availability are
maintained.

AlOps on IBM zSystems Framework

Monitoring & observability

Application performance management

Anomaly detection

Full-stack monitoring with best practices for early detection of Z incidents

End-to-end tracking visibility across hybrid cloud application

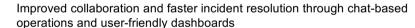
Intelligent anomaly detection to avoid costly incidents

Cross-domain metrics & trace analysis

Log analytics

Anomaly correlation

Performance & capacity planning


Detect bottlenecks in code, server resources or with external dependencies Accelerate hybrid incident identification with real-time operational analytics

Correlate anomalous activities across z/OS subsystems

Performance analysis, capacity forecasting and modelling

Collaborative incident remediation

Intelligent automation

End-to-end, goal-driven and policy-based system automation for a consistent and reliable automation across the enterprise

Predictive workload automation

End-to-end workload automation with embedded predictive scheduling for SLA management

Storage automation

Machine aided storage resource management and automated storage tasks across the enterprise for improved SLAs

References

- https://en.wikipedia.org/wiki/Systems management
- https://en.wikipedia.org/wiki/FCAPS
- https://www.ibm.com/it-infrastructure/z/capabilities/it-operations-management
- https://www.ibm.com/downloads/cas/VQODEXLX
- https://www.techtarget.com/searchitoperations/definition/systems-management
- https://www.pcmag.com/encyclopedia/term/systems-management
- https://www.dnsstuff.com/it-systems-management-software
- https://www.pcwdld.com/systems-management#wbounce-modal

Thank you

Jürgen Holtz STSM, IBM Z AlOps Architect

Phone +49-7031-16-3832 holtz@de.ibm.com

IBM Germany Research and Development GmbH Schönaicher Str. 220 71032 Böblingen Germany

