
z/TPF Detailed Summary
z/TPF support for MongoDB

Claire Durant
z/TPF Development

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 1



What is MongoDB?
– Document-based NoSQL database system with client support for many common 

platforms & languages.

– A MongoDB server has multiple databases. Each database contains multiple 
collections. A collection should contain documents that share the same 
purpose.

• For example, you may have a collection called "CreditCards" that contains 
every credit card in your system.

– Data is stored as hierarchical BSON (Binary JSON) documents. For example:
{
“name” : “Claire Durant”,
“job” : { 
“title” : “software engineer”,
“employer”: “IBM”

}
}

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 2



z/TPF support for MongoDB
– NOT a port of MongoDB on z/TPF!

– Interface that allows existing z/TPFDF databases to "act like" 
MongoDB collections.

• Currently supports z/TPFDF databases only.

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 3

Distributed application z/TPF

z/TPFDF
z/TPF 

support 
for 

MongoDB



Why MongoDB? 
– z/TPFDF data maps well to MongoDB’s hierarchical document model

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 4

File ID ABCD (Passengers)

Subfile

{
"PassengerNameRecord" : [

{ "PassengerName" : "DOROTHY GALE" }
],
"PassengerNumberRecord" : [

{ "PassengerNumber" : 12345678 }
],
“NotesRecord" : [

{ “Note" : “NOT IN KANSAS ANYMORE“ }
{ "Note" : "POPPY ALLERGY" }

],
"_id" : ObjectId("000000000000000018043344")

}

LREC A0 (Notes)
"NOT IN KANSAS 

ANYMORE"

LREC A0 (Notes)
"POPPY ALLERGY"

LREC 80 (Name)
"DOROTHY GALE"

LREC 90
(Passenger Num)

12345678



How does it work?
– Use the ZUDFM DESCRIPTOR command to create the initial database descriptions

• DFDL schema file describing the format of data in each LREC.

• z/TPFDF collection descriptor describing some attributes of the file’s database definition 
(DBDEF).

– Transfer files offline and customize

• Provide meaningful names to z/TPFDF files, index paths, LRECs, and fields in LRECs

• Specify appropriate data types for each field

• Format LRECs as multiple distinct fields (if not already defined in the DSECT)

• Use any supported DFDL features to accurately describe your data format

– Load DFDL schema files and collection descriptors through common deployment

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 5



z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 6

Getting Started



Creating deployment descriptors
– ZUDFM DESCRIPTOR FILE-B426

• B426 is the z/TPFDF file ID we want to access with MongoDB

– Generates B426.tpfdf.dfdl.xsd (DFDL schema file) and B426.adbi.xml (collection descriptor)

– Collection descriptor (adbi.xml) lets us:

• Name the collection, indexes, and LRECs

• Set up automatic indexing rules

• Filter LRECs out of the collection

– DFDL schema file (tpfdf.dfdl.xsd) lets us:

• Define the format of fields within each LREC

• Define the format of indexes' algorithm strings

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 7



Customizing collection descriptors
– When you create the collection descriptor, it is filled with placeholder values.

• Collection name is the DBDEF macro name. LRECs are named "lrec80", "lrec90", etc.

– You can change these names to be more descriptive. For example...

<tns:Indexes>
<tns:Index name="PnrByName" number="0" length="33" readOnly="false" description="PNRs by Name"/>
<tns:Index name="PnrByNumber" number="1" length="8" readOnly="false" description="PNRs by Number"/>

</tns:Indexes>

<tns:Lrecs>
<tns:Lrec name="PassengerNumberRecord" id="70" />
<tns:Lrec name="PassengerNameRecord" id="80" />
<tns:Lrec name="AddressRecord" id="90" />
<tns:Lrec name="FlightHistoryRecord" id="A0" />
<tns:Lrec name="PassengerEmailRecord" id="B0" />

</tns:Lrecs>

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 8



A note on DFDL
– z/TPF support for MongoDB also requires a DFDL schema file for each collection.

– Modify the DFDL schema to specify the names and data types of each field in your LRECs and indexes' 
algorithm strings.

– These DFDL schemas support all of the same DFDL features as any other DFDL schema you may use.

– Unfortunately, we don't have time to dig deep into DFDL... but here's an example of modified field 
names.

<xs:complexType name="PassengerNumberRecord">
<xs:sequence>
<xs:element name="PassengerNumber" type="xs:long" dfdl:length="8" default="0" />

</xs:sequence>
</xs:complexType>

<xs:complexType name="PassengerNameRecord" tddt:lrecId="80">
<xs:sequence>
<xs:element name="PassengerName" type="xs:string" dfdl:length="25"

nillable="true" dfdl:useNilForDefault="yes" />
</xs:sequence>

</xs:complexType>

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 9



Starting the MongoDB server
– Use common deployment to load both the collection descriptor and DFDL schema file to z/TPF.

– Both files are automatically deployed; there is no need to run ZMDES DEPLOY commands for them.

– z/TPF's MongoDB server is like any other server managed through ZINET.

• zinet add s-mongo model-daemon pgm-cads xparm-options

– XPARM options include (but are not limited to):

• IP address / port to listen on

• Send and receive buffer sizes

• SSL configuration

• Timeout options

– Start the server:

• zinet start s-mongo
z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 10



z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 11

Client-Side Usage



Using MongoDB drivers with z/TPF
– z/TPF support for MongoDB is based on MongoDB version 2.6.

– MongoDB v2.6 is supported by the latest versions of the MongoDB drivers for these languages:

• C#

• Go

• Java

• Node.js

• Python

• Ruby

• Scala

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 12



z/TPF MongoDB document format
– Documents are formatted as a series of arrays of LRECs, ordered by LREC ID.

– Here's what a document returned by z/TPF support for MongoDB might look like:

{
"PassengerNumberRecord" : [

{
"PassengerNumber" : NumberLong(131509348)

}
],
"PassengerNameRecord" : [

{
"PassengerName" : "DOROTHY GALE "

}
],
"_seq" : 1,
"_id" : ObjectId("000000000000000018542ba6")

}

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 13



Querying documents
– When you search for documents with z/TPF support for MongoDB, you must search by an index or a file 

address.

– This command demonstrates locating a document by the PnrByName index:

• db.PNR.find({"_index.PnrByName": { { "name": "DOROTHY GALE" } } })

– If you have the subfile's prime file address, you can turn the file address into an ObjectID and query that 
way:

• db.PNR.find({"_id": ObjectID("0000000012345678ABCDEF00")})

• The first 4 bytes (8 digits) should be 0's. The remaining 8 bytes (16 hex digits) are the prime file address.

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 14



Inserting and finding documents
– This Python example demonstrates inserting a document and then retrieving it.
from pymongo import MongoClient
client = MongoClient('my_tpf_ip_address')
pnr_coll = client.get_database('tpfdf').get_collection('PNR')

# The Python MongoDB driver allows you to build a MongoDB document from a Python dictionary!
pnr_to_insert = {

"_index": {
"PnrByNumber": { "number": 29 },
"PnrByName": { "name": "DOROTHY GALE" }

}
"PassengerNumberRecord": [ { "PassengerNumber": 29 } ],
"PassengerNameRecord": [ { "PassengerName": "DOROTHY GALE" } ]

}

# Insert the PNR. Because we included the _index field, this also indexes the PNR in TPFDF.
pnr_coll.insert(pnr_to_insert)
# Find the PNR. 
found_pnr = pnr_coll.find_one({"_index.PnrByName": {"name": "DOROTHY GALE"}})

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 15



Projections
– On query operations, you can use projections to include or exclude specific elements from 

the document that is returned.

– You can explicitly include or exclude the _id field, the _seq field, and any LREC types.
from pymongo import MongoClient
client = MongoClient('my_tpf_ip_address')
pnr_coll = client.get_database('tpfdf').get_collection('PNR')

# Build a query request to find the PNR.
pnr_query = {"_index.PnrByName": {"name": "DOROTHY GALE"}}
# The returned document should only contain the _id and PassengerNumberRecord fields.
projection = {"_id": 1, "_seq": 0, "PassengerNumberRecord": 1}
found_pnr = pnr_coll.find_one(pnr_query, projection)

– The result: 
{ 

"PassengerNumberRecord" : [{"PassengerNumber" : NumberLong(131509348)}],
"_id" : ObjectId("000000000000000018542ba6")

}
z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 16



Replacing documents
– The simplest way to update a document is to completely replace it. This example shows 

how you can find a document, change one field, and issue a replace.

– Replace operations also support MongoDB's upsert option, which will insert the specified 
document if it doesn't already exist in the database.

from pymongo import MongoClient
client = MongoClient('my_tpf_ip_address')
pnr_coll = client.get_database('tpfdf').get_collection('PNR')
# Build a query request to find the PNR.
pnr_query = {"_index.PnrByName": {"name": "DOROTHY GALE"}}
found_pnr = pnr_coll.find_one(pnr_query)

# Change the name in the first PassengerNameRecord, and the index
found_pnr["PassengerNameRecord"][0]["PassengerName"] = "COWARDLY LION"
found_pnr["_index"]["PnrByName"]["name"] = "COWARDLY LION"

# Update the document, as a full replace
pnr_coll.update(pnr_query, found_pnr)

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 17



The $set operator
– The $set operator can come in handy to set an individual field in a document.
from pymongo import MongoClient
client = MongoClient('my_tpf_ip_address')
pnr_coll = client.get_database('tpfdf').get_collection('PNR')

# Build a query request that will be used to identify the PNR to update.
pnr_query = {"_index.PnrByName": {"name": "DOROTHY GALE"}}

# Build another dictionary representing the updates to perform
# This operation will update the Facts field in the first FactsRecord.
pnr_update = { "$set": {"FactsRecord.0.Facts": "Not in Kansas anymore..." } }

# Update the document
pnr_coll.update(pnr_query, pnr_update)

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 18



The $push and $pull operators
– You can also update documents by adding (pushing) or removing (pulling) entire LRECs.

– You can perform a combination of $set, $push, and $pull operations at once.
from pymongo import MongoClient
client = MongoClient('9.57.13.68')
pnr_coll = client.get_database('tpfdf').get_collection('PNR')

pnr_query = {"_index.PnrByName": {"name": "DOROTHY GALE"}}

# Pull an LREC and push an LREC in the same operation
pnr_update = {

"$pull" : { "AddressRecord": { "Address" : "12 Oak Road, Anytown, Kansas" } },
"$push" : { "FactsRecord" : { "Facts": "Not in Kansas anymore..." } }

}

# Update the document
pnr_coll.update(pnr_query, pnr_update)

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 19



z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 20

Authentication and 
Authorization



User security and authorization
– z/TPF support for MongoDB uses a user security database to limit access to particular 

collections to specific users.

– Each MongoDB client can use a different user ID with different permissions.

– Each user can have many roles.

– IBM provides three built-in roles:

• read: Allows the user to read documents from all collections.

• readWrite: Allows the user to read, insert, update, and delete documents in all 
collections.

• userAdmin: Allows the user to create, drop, update, and display users and roles.

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 21



Custom roles
– The z/TPF user security database also allows you to create custom roles.

– Each custom role has a number of privileges. A privilege consists of a resource and a 
number of actions.

• A resource is a database/collection pair (the only currently supported database is tpfdf)

• The available actions are "find", "insert", "update", and "remove".

– For example, the following MongoDB command creates a role that has full permissions on 
the PNR collection, and is only allowed to find on the Security collection.

db.createRole({ role: "updatePnrsReadSecurity",

privileges: [

{ resource: { db: "tpfdf", collection: "PNR”}, 

actions: [ "find", "insert", “update”, “remove”] },

{ resource: { db: "tpfdf", collection: "Security”}, 

actions: [ "find"] },
z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 22



Managing users and roles
– Any MongoDB user with the userAdmin role can use the standard MongoDB commands to 

read and update roles and users in the user security database.

• createUser(), dropUser(), updateUser(), getUser()

• createRole(), dropRole(), getRole()

– Operators can use the ZROLE and ZRUSR commands to manage roles and users, 
respectively.

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 23



Authentication
– If you specify the --auth parameter as an XPARM parameter on the MongoDB ZINET

server definition, each user that tries to connect to the MongoDB server will need to be 
authenticated.

– There are two ways to authenticate a user upon login:

• If you specify a password when creating a user, MongoDB will authenticate the user 
against the user security database.

• If you do not specify a password, MongoDB will call the UATH user exit to authenticate the 
user.

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 24



z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 25

Advanced Topics



Automatic indexing
– In previous examples, we've been managing the subfile's indexes ourselves, by specifying 

the _index field.

– If we set up automatic indexing rules, we do not have to manage the indexes.

– When we add, remove, or change fields that have automatic indexing rules, z/TPF support 
for MongoDB will keep the z/TPFDF index records synchronized with the data in the subfile.

– Automatic indexing rules are set in the collection descriptor.

– You can only define automatic indexing rules for index fields that have a direct correlation 
to fields in specific LRECs.

– Each index's automatic indexing rules can only use data from one LREC type.

• For example, you cannot set up an automatic indexing rule that uses data from both 
a PassengerNumberRecord and a PassengerNameRecord.

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 26



Custom indexes
– Typically, indexes to a file are determined by the path parameters on the DBDEF macro.

• This allows z/TPFDF to manage the indexes without requiring applications to manipulate 
the index records.

– However, if your database's indexes are managed manually, you can define custom indexes 
in z/TPF support for MongoDB.

• With custom indexes, you can write your own code to index, deindex, and locate subfiles 
that do not use the standard z/TPFDF indexing support.

– Define custom indexes by adding them to the collection descriptor.

– Write your code to index, deindex, and locate subfiles with your custom indexes in the UCAD
user exit.

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 27



Filtered collections
– Setting up filtered collections for z/TPF support for MongoDB allows you to have multiple 

different views of the same z/TPFDF subfiles.

– Each filtered collection is defined with its own collection descriptor.

– You can set up several filtered collections for the same z/TPFDF file.

– Why?

• Omit LRECs that contain sensitive information

• Omit LREC types that aren't needed by the client

• Format data differently depending on the client (using a different DFDL schema for each 
collection)

• Only show LRECs that "belong" to the user

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 28



Logging
– z/TPF support for MongoDB can log requests and responses, and send the logs to another 

server.

– To start logging MongoDB requests and responses:

1. Set up a log receiver server. We recommend using Logstash. Refer to the support page 
"Using logstash with MongoDB Logging for z/TPF (PJ44239)".

2. Define a high speed connector endpoint group for the log receiver server, with a group 
name of IMONGLOG.

3. Use the ZMONG LOG SET command to specify which requests are logged for each 
collection.

4. Use the ZMONG LOG START command to start collecting logs.

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 29

https://www.ibm.com/support/pages/using-logstash-mongodb-logging-ztpf-pj44239


Operations considerations
– Use ZSTAT SYSHEAP to monitor memory used by z/TPF support for MongoDB.

• Owner names:

– IMONGO.SYSTEM.pbi, where pbi is the subsystem's program base index.

– IMONGO.SERVER.port, where port is the port that the MongoDB server is listens to.

– IMONGO.SOCKET.socketDesc, where socketDesc is a socket descriptor.

– IMONGO.CURSOR.socketDesc, where socketDesc is a socket descriptor.

– Use the TCP/IP network services database file (/etc/services) to limit the number of 
concurrent connections or number of messages to the MongoDB server.

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 30



Default keys
– In z/TPFDF, default keys are used to maintain the organization of the subfile when you add 

LRECs to the subfile.

– You must have default keys defined for the z/TPFDF file in order to perform updates using 
z/TPF support for MongoDB.

– There are two ways to define default keys:

• Using the z/TPFDF DBDEF macro.

• Using the collection descriptor.

– Example of defining default keys in the collection descriptor:
<tns:Collection reference="DR25BI" name="Number" collectionId="B425" 
PKOrg="Ascending" dfdlfile="Number.tpfdf.dfdl.xsd">

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 31



z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 32

User Exits



UCAD
– UCAD_locate: Locate a document using a custom index

– UCAD_index: Create a custom index for a document

– UCAD_deindex: Remove a custom index for a document

– UCAD_command: Process a custom command

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 33



UMON
– UMON_pre_request: Called before a request is processed.

• Allows you to accept or reject the request.

• One use could be checking system resources before allowing request to continue.

– UMON_post_request: Called after a request is processed.

• Could be used to collect stats on how many requests succeeded or failed.

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 34



UATH
– UATH_mongodb_cr: Process MONGODB-CR authentication.

– UATH_mongodb_plain: Process authentication with password in plain text.

– UATH_filtered_collection: Authorize a user against a filtered collection.

• Potential use: restrict sensitive LREC types to privileged users.

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 35



z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 36

Quiz



Question 1
– True or False: z/TPF support for MongoDB is a port of the standard open-source MongoDB 

database management system.

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 37



Question 1
– True or False: z/TPF support for MongoDB is a port of the standard open-source MongoDB 

database management system.

• FALSE!

• z/TPF support for MongoDB is an interface layer that allows MongoDB clients to interact 
with existing z/TPFDF databases.

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 38



Question 2
– Which of the following types of data can you manipulate by using z/TPF support for 

MongoDB? Select all that apply.

• A: Traditional z/TPF find/file records.

• B: z/TPFDF subfiles and LRECs.

• C: Standard MongoDB BSON documents stored on z/TPF.

• D: The z/TPF file system, using GridFS.

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 39



Question 2
– Which of the following types of data can you manipulate by using z/TPF support for 

MongoDB? Select all that apply.

• A: Traditional z/TPF find/file records.

– FALSE!

• B: z/TPFDF subfiles and LRECs.

– TRUE!

• C: Standard MongoDB BSON documents stored on z/TPF.

– FALSE!

• D: The z/TPF file system, using GridFS.

– FALSE!

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 40



Question 3
– What is the primary way to create collections for each z/TPFDF file that you want to access 

using z/TPF support for MongoDB?

• A: The ZMONG command can be used to create collections for z/TPFDF files.

• B: When you try to access a z/TPFDF file, the MongoDB server will create the 
corresponding collection for you.

• C: MongoDB collections are generated by the DBDEF macro for each z/TPFDF file.

• D: Customize common deployment descriptors that are generated by the ZUDFM 
DESCRIPTOR command.

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 41



Question 3
– What is the primary way to create collections for each z/TPFDF file that you want to access 

using z/TPF support for MongoDB?

– The correct answer is:

• D: Customize common deployment descriptors that are generated by the ZUDFM 
DESCRIPTOR command.

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 42



Question 4
– Which of the following are required to read and update a collection with z/TPF support for 

MongoDB? (Select all that apply).

• A: A z/TPFDF database.

• B: A DFDL schema file.

• C: A collection descriptor.

• D: A filtered collection.

• E: Default key definitions on either the DBDEF macro or collection descriptor.

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 43



Question 4
– Which of the following are required to read and update a collection with z/TPF support for MongoDB? (Select all that 

apply).

• A: A z/TPFDF database.

– TRUE!

• B: A DFDL schema file.

– TRUE!

• C: A collection descriptor.

– TRUE!

• D: A filtered collection.

– FALSE!

• E: Default key definitions on either the DBDEF macro or collection descriptor.

– TRUE!

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 44



Question 5
– True or False: You can manage MongoDB users, roles, and permissions by loading a 

configuration file to common deployment.

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 45



Question 5
– True or False: You can manage MongoDB users, roles, and permissions by loading a 

configuration file to common deployment.

• FALSE!

• MongoDB users, roles, and permissions are managed by MongoDB user and role 
management commands, as well as the ZRUSR and ZROLE commands.

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 46



Question 6
– Which of the following are potential use cases for filtered collections? (Select all that apply).

• A: Restrict sensitive data to privileged users.

• B: Reduce size of messages by omitting LRECs that clients do not need.

• C: Allow different clients to connect on different ports.

• D: Only allow users to access data that "belongs" to each user.

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 47



Question 6
– Which of the following are potential use cases for filtered collections? (Select all that apply).

• A: Restrict sensitive data to privileged users.

– TRUE!

• B: Reduce size of messages by omitting LRECs that clients do not need.

– TRUE!

• C: Allow different clients to connect on different ports.

– FALSE!

• D: Only allow users to access data that "belongs" to each user.

– TRUE!

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 48



Question 7
– How do you configure logging options for z/TPF support for MongoDB?

• A: Use the ZMONG LOG SET command.

• B: Create a customized log4j2.xml file that suits your logging needs.

• C: You can't; z/TPF support for MongoDB either logs everything or nothing.

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 49



Question 7
– How do you configure logging options for z/TPF support for MongoDB?

– The correct answer is:

• A: Use the ZMONG LOG SET command.

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 50



Question 8
– True or False: All subfiles that you use with z/TPF support for MongoDB must have indexes 

that are managed by z/TPFDF.

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 51



Question 8
– True or False: All subfiles that you use with z/TPF support for MongoDB must have indexes 

that are managed by z/TPFDF.

– The correct answer is:

• FALSE!

• You can use custom indexes to handle indexing and locating subfiles that do not have 
z/TPFDF-managed indexes.

• z/TPF support for MongoDB does not require any indexing when working with fixed-file 
z/TPFDF databases.

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 52



Thank You!

Questions or Comments?

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 53



z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 54



IBM, the IBM logo, ibm.com and Rational are trademarks or registered trademarks of International Business Machines Corp., registered in 
many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM 
trademarks is available on the Web at “Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.  
Notes
Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a 
controlled environment.  The actual throughput that any user will experience will vary depending upon considerations such as the amount 
of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed.  Therefore, no 
assurance can  be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.
All customer examples cited or described in this presentation are presented as illustrations of  the manner in which some customers have 
used IBM products and the results they may have achieved.  Actual environmental costs and performance characteristics will vary 
depending on individual customer configurations and conditions.
This publication was produced in the United States.  IBM may not offer the products, services or features discussed in this document in 
other countries, and the information may be subject to change without notice.  Consult your local IBM business contact for information on 
the product or services available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and 
objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their published announcements.  IBM has not 
tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products.  Questions on 
the capabilities of non-IBM products should be addressed to the suppliers of those products.
Prices subject to change without notice.  Contact your IBM representative or Business Partner for the most current pricing in your 
geography.
This presentation and the claims outlined in it were reviewed for compliance with US law.  Adaptations of these claims for use in other 
geographies must be reviewed by the local country counsel for compliance with local laws.
Icons created by Smashicons & Pause08, from www.flaticon.com.

Trademarks

z/TPF | October 13 – November 19, 2020 | © 2020 IBM Corporation 55


