

IBM WW Z Security Conference October 6-9, 2020

z/OS TCP/IP Intrusion Detection Services

Chris Meyer

z/OS Network Security Architect

meyerchr@us.ibm.com

Joshua Bennetone

z/OS Communications Server Developer

jbenneto@us.ibm.com

Agenda

- Function overview
- Events detected
- IDS actions and reports
- Steps for validating IDS policy
- For more information, Q&A

Agenda

- Function overview
- Events detected
- IDS actions and reports
- Steps for validating IDS policy
- For more information, Q&A

The intrusion threat

What is an intrusion?

- Information Gathering
 - Network and system topology
 - Data location and contents
- Eavesdropping/Impersonation/Theft
 - On the network/on the host
 - Base for further attacks on others through Amplifiers, Robots, or Zombies
- Denial of Service Attack on availability
 - Single packet attacks exploits system or application vulnerability
 - Multi-packet attacks floods systems to exclude useful work

Attacks can occur from Internet or intranet

- Company firewalls and intrusion prevention appliances can provide some level of protection from Internet
- Perimeter security strategy alone may not be sufficient.
 - Some access is permitted from Internet typically into a Demilitarized Zone (DMZ)
 - Trust of intranet

Attacks can be intentional (malicious) but often occur as a result of errors on nodes in the network (config, application, etc.)

z/OS TCP/IP IDS overview

z/OS TCP/IP IDS features

IDS Events

 Scans – attempts by remote nodes to discover information about the z/OS system

Attacks – numerous types

- Malformed packets
- IP option and IP protocol restrictions
- Specific usage ICMP
- Interface and TCP SYN floods
- and so forth...
- Traffic Regulation
 - TCP limits the number of connections any given client can establish
 - UDP limits the length of data on UDP queues by port

Defensive actions

- Packet discard
- Limit connections
- Drop connections

Reporting

- IDS packet trace
- Notifications to external event managers (like IBM Z NetView and SIEMs)

- Does not replace network-based IDS/IPS!
- In-context means z/OS IDS operates as the communications endpoint, not as an intermediary
- Applies to networking protocols only does not interrogate message payloads (application data) like network IDS devices
- Can evaluate some inbound encrypted data IDS applied after decryption on z/OS especially good for IPsec ESP protection
- IDS attack probes are part of protocol processing logic very efficient not per-packet evaluation against table of known attacks
- Detects statistical anomalies realtime has stateful data / internal thresholds that are generally unavailable to external IDSs

Agenda

- Function overview
- Events detected
- IDS actions and reports
- Steps for validating IDS policy
- For more information, Q&A

z/OS TCP/IP IDS event types

Scans

- Identify potential attack vectors on the target system
- Search for things like open ports, addresses, subnet structure, software versions, etc.

Attacks

- Attempt to impact availability of an application or the system
- Could be single or multiple packets

Traffic regulation

- Protect against over-consumption of TCP connections and/or UDP queues
- From either malicious activities or unexpected peak loads

Scans: Prelude to an attack

- z/OS definition of a scanner
 - Source host that accesses <u>multiple unique resources</u> (ports or interfaces) over a <u>specified period of</u> time
 - Number of unique events (threshold) and time period (interval) are configurable in IDS policy
- Scan categories
 - Fast scan: many resources accessed in a short period of time (less than 5 minutes). Program driven.
 - Slow scan: different resources access intermittently over longer period of time (many hours). Used to avoid detection.
- Scan event types
 - ICMP, ICMPv6 scans
 - TCP port scans
 - UDP port scans

Scans: Scan policy allows you to...

- Obtain notification and documentation of scan activity
 - Console and syslogd messages
 - Trace potential scan packets
- Define scan event parameters
 - Fast and slow scan intervals
 - Threshold for triggering IDS scan events
- Reduce number of false positives
 - Exclusion lists for "known scanners"
 - Sensitivity levels for different event types

Scans: Event counting and sensitivity

- Each event is internally classified as normal, suspicious or very suspicious (see <u>z/OS</u>
 <u>Communications Server IP Configuration Guide</u> for details)
- Sensitivity determines whether an event is "countable"

Sensitivity from policy	Normal event	Suspicious event	Very suspicious event
Low			Count
Medium		Count	Count
High	Count	Count	Count

• Scan events are counted against the source IP address. If the number of counted events reaches threshold value, a scan event is triggered and policy determines actions

Feb 20 16:47:39 EVILMF TRMD.TCPIP[50397191]: EZZ8643I TRMD SCAN threshold exceeded:02/20/2020 16:47:22.56,sipaddr=172. 30.0.234,scantype=F,pthreshold=5,pinterval=1,vs=0,ps=10,norm=0,correlator=5,probeid=0300FFF1,sensorhostname=EVILMF.EVI LMAINFRAME.COM

z/OS TCP/IP IDS event types

Scans

- Identify potential attack vectors on the target system
- Search for things like open ports, addresses, subnet structure, software versions, etc.

Attacks

- Attempt to impact availability of an application or the system
- Could be single or multiple packets

Traffic regulation

- Protect against over-consumption of TCP connections and/or UDP queues
- From either malicious activities or unexpected peak loads

Attacks: TCP/IP stack defenses vs. IDS

- The TCP/IP stack always silently defends itself against many attacks
- IDS allows you to...
 - control recording of intrusion events and to provide supporting documentation
 - detect and disable uncommon or unused features which could be used as an attack vector
 - in some cases, specify additional defensive actions

Attacks: TCP/IP attack categories

- Malformed packets (incorrect or partial IPv4 or IPv6 packet headers)
- Inbound fragment restrictions (attempts to create invalid IP packets by manipulating IP fragmentation)
- IPv4 and IPv6 protocol restrictions (detect use of unexpected IP protocols)
- IPv4 and IPv6 option restrictions (detect use of unexpected IP options)
- ICMP, ICMPv6 redirect restrictions (detect attempts to modify routing tables)
- UDP perpetual echo (detect attempts to exploit known UDP applications that unconditionally respond to every inbound datagram)
- Outbound RAW socket restrictions (detect application-crafted invalid outbound packets)

- Flood events
 - Detect SYN floods from spoofed remote addresses
 - Detect high volume of discarded packets on physical IPv4 and IPv6 interfaces
- Data hiding (detect attempt to "leak" data inside of IP packet header and extension fields)
- TCP queue size (detect queue size constraints for individual connections)
- TCP global stall (detect cases where large number and percentage of TCP connections are stalled)
- Enterprise Extender specific attacks:
 - Malformed packets
 - LDLC check
 - Port check
 - EE XID flood

Attacks: Attack policy allows you to...

- Control attack detection for one or more attack categories independently
- Generate notification and documentation of attacks
 - Console and syslogd messages
 - Trace potential attack packets
- Generate attack statistics on time interval basis (normal or exception)
- In some cases, control defensive action in case of attack

Attacks: Example: Interface flood detection (1 of 3)

- A high percentage of discarded packets may indicate that a physical interface or the host it belongs to is under attack.
 - A packet discarded by the TCP/IP stack -- for any reason -- will count against the flood threshold
 - The ability of the interface to keep up with traffic is not a factor
- Notification and (optionally) traces are generated in this case
- Information provided:
 - Interface under attack (so you can take defensive action)
 - Source MAC of the prior hop for OSA QDIO and LCS devices
 - Source IP address from outer IPsec header if packet was protected by tunnel-mode IPsec (could help narrow source closer than prior hop if source address is a gateway or firewall)

Attacks: Example: Interface flood detection (2 of 3)

- Flood attack policy specifies two attributes:
 - Minimum number of discarded packets (default 1000)
 - Discard percentage (default 10%)
- On a per-physical interface basis:
 - IF
 - the minimum number of discards is reached within a one minute interval AND
 - The discard rate (discards_during_interval / inbound_packets_during_interval) meets or exceeds configured discard percentage

THEN an interface flood condition is raised

- Once a flood condition is raised, flood statistics are computed and reported at one minute intervals
- Flood condition ends when:
 - Discards for a subsequent interval fall below minimum OR
 - Discard rate for a subsequent interval is less than or equal to ½ of configured percentage

Attacks: Example: Interface flood detection (3 of 3)

Example: Assume that interface flood policy specifies

Minimum Discards = 2000 and Interface Flood Percentage = 10%

		Time Interval	Inbound Count	Discard Count	Discard Rate	Notes
		> 1 minute	13,000	2,000	N/A	Took longer than 1 minute to reach minimum discard count, so not a flood
Эe		< 1 minute	30,000	2,000	6.6%	Discard rate is < configured percentage (10%), so not a flood
time		< 1 minute	20,000	2,000	10%	Interface flood condition raised . Begin collecting flood statistics at 1 minute intervals until flood condition ends.
		+1 minute	40,000	3,000	7.5%	Flood condition continues, reset 1 minute interval timer and continue collecting statistics.
	,	+1 minute	50,000	2,500	5%	Interface flood condition ends . Discard rate is $\frac{1}{2}$ of that specified in policy.

z/OS TCP/IP IDS event types

Scans

- Identify potential attack vectors on the target system
- Search for things like open ports, addresses, subnet structure, software versions, etc.

Attacks

- Attempt to impact availability of an application or the system
- Could be single or multiple packets

Traffic regulation

- Protect against over-consumption of TCP connections and/or UDP queues
- From either malicious activities or unexpected peak loads

TCP Traffic Regulation (1 of 3)

- Controls number of inbound connections from a single host
 - Can be specified on a per-application (port) basis
 - Allows independent policies for applications sharing a port (like telnetd and TN3270)
- Connection limit expressed as
 - Port limit for all connecting hosts AND
 - Individual limit for a single connecting host
- "Fair share algorithm"
 - Based on percentage of available connections
 - Each host allowed at least one connection as long as port limit not reached
 - QoS connection limit overrides TCP TR useful for concentrator sources like web proxy servers

TCP Traffic Regulation (2 of 3)

If a new connection request is received and:

- A=0, the request is rejected
- A>0 and the request is from a source that does NOT have an existing connection to the port, allow the connection
- A>0 and the request is from a source that already has connections with this port (IP@x in this example), then:

If X+1 < CP * A then
Allow the new connection
Else
Deny the new connection

Goal: The number of connections allowed to any given source IP address shrinks as the connection limit is approached.

TCP Traffic Regulation (3 of 3)

Example: Source address IP@x has four connections. It is now attempting its fifth connection

Scenario	Total Allowed	Existing Connections	Available Connections	Connections allowed by CP=20%	Allowed?
A	100	60	40	8	
В	100	80	20	4	

- A If we currently have 40 connections available (A=40) and a controlling percentage of 20% (CP=20%), when IP@x tries to establish its fifth connection, it will be allowed: 40 * 20% = 8, so 5 connections is less than the regulated limit.
- If we have 20 connections available (A=20) and CP is still at 20%, when IP@x tries to establish its fifth connection, it will be rejected: 20 * 20% = 4, so 5 connections would exceed the regulated limit.

UDP Traffic Regulation

- Controls allowable length of inbound UDP receive queues on a per-application (port) basis
- UDP TR policy supersedes UDPQueueLimit in TCP/IP profile (global limit for all UDP queues)
- If neither UDP TR or UDPQueueLimit are used, a stalled application or a flood on a single UDP port could consume all available buffer storage
- Queue limits expressed in abstract terms:
 - SHORT or VERY SHORT for applications that tend to receive data faster than they can process
 it
 - LONG or VERY LONG for fast or high priority applications with bursty arrival rates

Agenda

- Function overview
- Events detected
- IDS actions and reports
- Steps for validating IDS policy
- For more information, Q&A

Actions: Recording actions

- Controlled by IDS policy action specification. Each of the following options independently selectable
 - Event logging
 - syslogd number of events recorded in 5 minute interval can be limited per attack type (for most attack types)
 - Console recording suppressed if number of console messages reaches thresholds specified in policy
 - Statistics written to syslogd for normal or exception conditions (configurable)
 - IDS packet trace
 - Activated after an attack is detected
 - Standard packet trace format, but for suspected attack packets
 - Number of packets traced is limited
 - Amount of data traced is configurable (header, full, byte count)
- All recorded IDS events contain a probeid and correlator
 - probeid indicates point at which the event was detected
 - correlator allows association of related syslog, console and packet trace records

Actions: Configurable defensive actions by event type

- Attack events
 - Packet discard
 - These events ALWAYS result in packet discard, regardless of IDS policy action
 - Malformed packets
 - TCP SYN floods
 - Discard for most attack events controlled by IDS policy action
 - ICMP redirect restrictions
 - IPv4, IPv6 option restrictions
 - IPv4, Ipv6 protocol restrictions
 - IP fragmentation
 - Outbound raw restrictions
 - UDP perpetual echo
 - Data hiding
 - EE malformed, LDLC and port checks
 - Reset connection
 - TCP queue size
 - TCP global stall
 - No defensive action defined for interface floods beyond what TCP/IP always does to protect itself

- Scan events
 - No defensive actions defined
- Traffic Regulation events
 - TCP connection limiting
 - UDP packet discard

Defense Manager for dynamic defensive filtering

- Defensive filters enable dynamic defensive actions in case of attack
- NOT policy-based: Created, managed and controlled through the ipsec command
- NOT part of IDS, but can be used within automation for IDS event processing
- DENY only (but also "simulate mode")
- Installed "in front of" all other IP filters
- Maintained on DASD to protect restarted stacks from the time they come up
- Limited lifetime (~2 weeks max)
- Selectable scope:
 - Local applies to a specific stack
 - Global applies to all stacks on LPAR
- One Defense Manager Daemon per LPAR

Reports: IDS log reports

- trmdstat command produces reports based on IDS data recorded through syslogd
- Types of reports for logged events:
 - Overall summary reports for IDS
 - Event type summary reports for Attacks, Floods, Scans and Traffic Regulation (TCP and UDP)
 - Event type detail reports for the same
- For logged statistics, detail reports are available for Attacks, Floods, and Traffic Regulation (TCP and UDP)

Reports: IBM Z NetView support for IDS events

- IBM Z NetView supports Comm Server IDS events
- Traps IDS messages to z/OS console or syslogd
- Can take predefined actions based on event type
 - Route IDS messages to designated NetView consoles
 - e-mail notification to security administrator
 - Run trmdstat and attach output to e-mail
 - Use ssh to issue ipsec command to enable dynamic defensive filters

Agenda

- Function overview
- Events detected
- IDS actions and reports
- Steps for validating IDS policy
- For more information, Q&A

Steps for deploying and validating IDS policy

Tip: The z/OS Communications Server Network Configuration Assistant provides a very good initial set of IDS rules on which you can build

- 1. Configure policy for reporting actions only (no defensive actions)
- 2. Install policy on target z/OS system (recommend using default IDS policy)
- 3. Start pagent, syslogd and TRMD
- 4. Issue pasearch command to verify the correct policy is installed
- 5. Keep policy active for a trial period
- 6. Issue NETSTAT IDS to view active IDS policy and statistics
- 7. Run trmdstat reports to verify syslog messages for IDS events
- 8. Adjust the IDS policy as appropriate
- 9. Add defensive actions if necessary

Agenda

- Function overview
- Events detected
- IDS actions and reports
- Steps for validating IDS policy
- For more information, Q&A

For more information...

URL	Content	
http://www.youtube.com/user/zOSCommServer	IBM Communications Server on You Tube	
http://tinyurl.com/zoscsblog	IBM Communications Server blog	
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.csf/csf.htm	IBM Communications Server library	

Questions?

IBM WW Z Security Conference October 6-9, 2020

z/OS TCP/IP Intrusion Detection Services

Chris Meyer

z/OS Network Security Architect

meyerchr@us.ibm.com

Joshua Bennetone

z/OS Communications Server Developer

jbenneto@us.ibm.com

