
IBM Z / zOS Connect EE Client presentation/ October 2020 / © 2020 IBM Corporation

z/OS Connect Enterprise Edition

Deployment Planning Considerations

IBM z/OS Connect Enterprise Edition (z/OS Connect EE) is IBM's strategic solution for API
enablement of z/OS applications and data. Perhaps you are one of the many clients that
have created, deployed and tested your initial APIs using z/OS Connect EE. You like the ease
with which APIs can be created but you’re wondering about some of the non-functional
requirements:

• How to deploy APIs in production.
• How to secure APIs.
• How to make sure that the APIs are always available.
• How to monitor APIs.
• How to debug problems.
• What about performance.

This presentation is intended for Architects, Systems Programmers and API Developers who
are involved in planning the deployment of IBM z/OS Connect Enterprise Edition V3.0 (z/OS
Connect EE V3.0).

It is assumed that the audience is familiar with the concepts and operation of z/OS Connect
EE. The focus here is on deployment of z/OS Connect EE.

1

The current version of this presentation can be downloaded here:
http://ibm.biz/zcee-deployment-guide

1

2© 2020 IBM Corporation

•THE INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT. IBM products are warranted according to the terms and conditions of the agreements
under which they are provided. It is the user’s responsibility to evaluate and verify the operation of any other products or programs with IBM products and programs.
•Performance. Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or performance that any user will
experience will vary depending upon many factors, including considerations such as the amount of multiprogramming in the user’s job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve results similar to those stated here.
•Customer Examples. All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have achieved. Actual
environmental costs and performance characteristics may vary by customer. Nothing contained in these materials is intended to, nor shall have the effect of, stating or implying that any
activities undertaken by you will result in any specific sales, revenue growth or other results.
•Availability. Not all offerings are available in every country in which IBM operates. This document is current as of the initial date of publication and may be changed by IBM at any time.
•Trademarks. IBM and the IBM logo are trademarks of International Business Machines Corporation, registered in many jurisdictions. Java and all Java-based trademarks and logos are
trademarks or registered trademarks of Oracle and/or its affiliates. Other company, product and service names may be trademarks, registered marks or service marks of their respective
owners.

IBM’s statements regarding its plans, directions and intent are subject to change or withdrawal without notice at IBM’s
sole discretion. Information regarding potential future products is intended to outline our general product direction and
it should not be relied on in making a purchasing decision. The information mentioned regarding potential future
products is not a commitment, promise, or legal obligation to deliver any material, code or functionality. Information
about potential future products may not be incorporated into any contract. The development, release, and timing of any
future features or functionality described for our products remains at our sole discretion.

Important Disclaimer

2

/agenda

3© 2020 IBM Corporation

3

z/OS Connect EE

4

Quick intro to z/OS Connect EE

Common scenarios

DevOps
• What is DevOps?
• DevOps pipeline for z/OS Connect EE
• Building
• Testing
• Deploying

Security
• Security options
• API provider security flow
• API requester security flow
• Confidentiality / Integrity
• Authentication / Identification
• Authorization
• Auditing

Agenda
Workload management
• High availability configuration
• Policy-based API processing

Monitoring
• Real time monitoring
• End-to-end transaction tracking
• Operation analytics

Problem determination
• Messages and trace
• Debugging

Performance
• Main factors that impact performance
• Classifying API requests with WLM
• Measuring API requests with RMF
• Example performance test

More information
© 2020 IBM Corporation

4

/zos_connect_ee

5

Truly RESTful APIs to and from your mainframe.

© 2020 IBM Corporation

The focus for this presentation is on deployment of z/OS Connect EE. But let’s first review
some of the capabilities of z/OS Connect EE.

5

z/OS Connect EE

6

Use API provider to expose a z/OS asset

© 2020 IBM Corporation

IMS DB

z/OS Connect EE provides a common entry point for REST HTTP calls to reach business
assets and data on z/OS operating systems. Where these assets run is specified in the z/OS
Connect EE configuration, which relieves client applications in the cloud, mobile, and web
worlds of the need to understand the details about how to reach them and how to convert
payloads to and from the formats that the applications require. APIs can be enabled
without writing code and tooling is provided for creating the data transformation artifacts.

With z/OS Connect EE, mobile and cloud application developers can incorporate z/OS data
and transactions into their applications, whether they work inside or outside the
enterprise, without needing to understand z/OS subsystems. The z/OS resources appear as
any other REST API. This capability is referred to as the API provider support.

6

z/OS Connect EEData mapping

7© 2020 IBM Corporation

A key role of z/OS Connect EE is the mapping of REST/JSON messages to and from the
message formats expected by z/OS applications.

In this simple example, we see a mapping between a binary data structure represented in a
COBOL form and a JSON response message.

We also see the REST API request and a mapping of a URI path parameter to a field in a
COBOL copybook. z/OS Connect EE provides granular mapping of data structures, which
makes it possible to create genuinely RESTful APIs.

7

z/OS Connect EEExpose a z/OS asset

8© 2020 IBM Corporation

This chart shows the different z/OS Connect EE components that are involved in exposing a
z/OS asset as an API:
• A service in z/OS Connect EE is used by a REST API to act on a z/OS resource through

connections and data transformation functions provided through a service provider.
Information about the service is contained in a service archive (.sar) file and includes
information about the request and response JSON schemas required by the service.

• For z/OS Connect EE services, you can create REST APIs that define how an HTTP action
such as GET, PUT, POST or DELETE would act on the services. Information about the REST
APIs for a service is contained in an API archive (.aar) file that can be deployed to z/OS
Connect EE.

• The service provider forwards requests to the z/OS address space that hosts the z/OS
asset, for example, a CICS region.

To learn more about the service and API creation workflow see:
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/overview/api_design_
workflow.html

8

z/OS Connect EEAPI toolkit
API definition

The API toolkit is designed to encourage
RESTful API design.

Once you define your API, you can map
backend services to each request.

Your services are represented by .sar
files, which you import into the API toolkit.

The z/OS Connect EE API toolkit is an Eclipse-based workstation tool that you install into
IBM Explorer for z/OS to create services and REST APIs for accessing z/OS resources.

In the API toolkit, you can create two types of projects: service projects and API projects.
This chart is showing an API project.

The API Editor (part of the API toolkit) is laid out in a way that encourages you to create an
API that conforms to the REST architectural style.

A backend service is represented in the editor as a .sar file, that you can generate using the
provided tooling. You can create a CICS, IMS, Db2 and IBM MQ services in a z/OS Connect
EE service project.

9

z/OS Connect EEUse API requester to call external APIs from
z/OS assets

10© 2020 IBM Corporation

z/OS Connect EE also provides the capability that allows z/OS-based programs to access
any RESTful endpoint, inside or outside the enterprise, for example a cloud-based
microservice. This framework enables CICS, IMS and other z/OS applications to call RESTful
APIs through z/OS Connect EE. This capability is referred to as the API requester support.

Learn more about the API requester support in the z/OS Connect EE Knowledge Center:
ibm.biz/zosconnect-api-requester-overview

10

/common_scenarios
Typical connection patterns to different subsystems.

© 2020 IBM Corporation

11

z/OS Connect EEWhat assets can z/OS Connect EE map to?
And which service provider should I use?

The core service providers included with z/OS Connect EE provide
API access to a wide range of z/OS assets.

© 2020 IBM Corporation

A z/OS Connect EE service provider forwards requests to a System of Record (SoR). The
following service providers are included with z/OS Connect EE:

CICS
IMS
IMS Database
IBM MQ
REST client
WOLA (this service provider can be used by both WOLA-enabled applications and CICS to

support z/OS Connect EE V2 configurations).

Alternatively you can use a service provider that is supplied with the SoR to plug into the
framework, or you can write your own. All service providers must implement the
com.ibm.zosconnect.spi.Service SPI.

12

z/OS Connect EEz/OS Connect EE 3rd party integrations
Additional value from the ecosystem

z/OS Connect EE is pluggable and extensible allowing 3rd Party Service Providers to expand the list of z/OS
assets you can expose as APIs

© 2020 IBM Corporation

There is an ecosystem of 3rd party plugins that extend the types of z/OS assets that can be
API enabled using z/OS Connect EE:

- The CICS service provider can be used to connect to Hogan Core Banking applications

- 3270 terminal applications can be accessed by using the REST client service provider to
call Host Access Transformation Services (HATS) JSON Services

- The REST client service provider can be used with Hostbridge to connect to CICS
programs or 3270 terminal applications. See https://www.hostbridge.com/hostbridge-
and-ibm-zcee-perfect-tag-team/

- The Data Virtualisation Manger (DVM) service provider can be used for accessing Db2,
IMS DB and VSAM Data. See
https://www.ibm.com/support/knowledgecenter/SS4NKG_1.1.0/havuga10/topics/dv
s_sg_con_zos_connect.html

- The File Manager service provider can be used for connecting to VSAM files. See
https://www.ibm.com/support/knowledgecenter/SSXJAV_14.1.0/com.ibm.filemanag
er.doc_14.1/base/fmsp-intro.html

13

z/OS Connect EECommon scenario - connect to IMS
Topology

Configure the connection to IMS through ims-connections.xml and ims-interactions.xml
in the IMS service registry.

ibm.biz/zosconnect-scenarios

© 2020 IBM Corporation

The IMS service provider connects to IMS through IMS Connect.

The IMS service registry contains the connection profiles and interaction profiles for IMS
services. It is installed into a location that is defined in the server.xml file during initial
configuration of a server instance based on the imsmobile templates.

14

z/OS Connect EECommon scenario - connect to CICS
Topology

Connection to CICS is configured in server.xml.

ibm.biz/zosconnect-scenarios

An IPIC connection must be configured in CICS.

© 2020 IBM Corporation

This CICS service provider that is supplied with z/OS Connect EE connects to CICS using an
IPIC connection which is configured in server.xml.

Both COMMAREA and channels with multiple containers are supported.

You can set the CICS transaction ID on the connection for all services. Furthermore,
individual services can override the connection's transaction ID with a transaction ID in the
service archive file, or in the server.xml configuration file using the service element under
the zosconnect_services element.

15

z/OS Connect EESample CICS catalog API

16© 2020 IBM Corporation

z/OS LPARz/OS Connect EE V3

HTTPS/
JSON

GET /items?startItemRef
GET /items/{itemRef}
POST /orders

Services

API

inquireCatalog
inquireSingle
placeOrder

GET /items?startItemRef=<value>
GET /items/{itemRef}
POST /orders + (JSON with item reference and quantity)

HTTP Verb conveys the method
against the resources; i.e., POST

is for create order, GET is for
retrieving information about

items in the catalog

URI conveys the resource
to be acted upon; i.e.,

item reference

The JSON body carries the
specific data for the action
(verb) against the resource

(URI)

DFH0XCMN

DFH0XVDS

VSAM

CICS

This chart shows a sample CICS catalog API.

For listing the catalog we use an HTTP GET request. The URI specifies a collection of items.
A query parameter is used to identify where in the catalog we want to start reading from.
The JSON response message will contain an array of items and other information including
the number of items returned. There is no JSON request message; everything is specified in
the URI.

We also use a GET request to retrieve the details of an item. A path parameter is used to
specify the item reference number. The JSON response message will contain the details of
the item (for example the price, number in stock etc.)

We use a POST request to create a new order. The JSON request message contains the item
reference number and the number of items to be ordered. The JSON response message will
contain a message that tells us whether the order has been successful.

Recommendations:

• Use consistent field names across different services
• Define enterprise API design standards and guidelines, including, use of HTTP verbs,

16

path parameters, query parameters, naming convention, use of plurals etc.
• Define guidelines for whether to do field assignment and omission in the service

interface or the API. For example, if a service is used across multiple APIs, and field
assignment and omission requirements are different for the APIs, it is recommended to
do the field assignment and omissions in each API. However, if a field always needs to be
assigned, or omitted, it is recommended to do the assignment or omission in the service
interface.

16

z/OS Connect EETop Tip!
Think carefully about your connection reference names

Mortgage Service archive file

Connection reference
DevCICS

z/OS Connect EE Development Server
Service archive file

DevCICS IPIC Connection
id=DevCICS

CICS
Development Region

Loans Service archive file

Connection reference
DevCICS

Service archive file

DevCICS
Service archive file

DevCICS

Credit Service archive file

Connection reference
DevCICS

© 2020 IBM Corporation

As well as the JSON request and response mappings for the z/OS asset, a service archive
contains a connection reference to the z/OS address space that hosts the program or data.
When the service archive is deployed to a z/OS Connect EE server, this connection
reference is associated with the id of a connection definition in the server.xml configuration
file. In this example, it’s an IPIC connection to a CICS development region. This is effectively
an association between a logical name in the service archive and a physical connection
definition in the server.

It's important that you use a logical connection reference name rather than a name based
on the environment as shown in this example. The goal is to make these environment
independent so that the same service archive can be deployed to dev, test and production
z/OS Connect EE servers.

17

z/OS Connect EETop Tip!
Think carefully about your connection reference names
DON’T DO THIS!

Mortgage Service archive file

Connection reference
DevCICS

z/OS Connect EE Development Server
Service archive file

DevCICS CICS IPIC connection
id=DevCICS

CICS
Development Region

Loans Service archive file

Connection reference
DevCICS

z/OS Connect EE Test Server

Service archive file

DevCICS

CICS IPIC connection
id=TestCICS1

CICS
Test Region 1

CICS IPIC connection
id=TestCICS2

CICS
Test Region 2

z/OS Connect EE Production Server

Service archive file

DevCICS

CICS IPIC connection
id=ProdCICS1

CICS
Prod Region 1

CICS IPIC connection
id=ProdCICS2

CICS
Prod Region 2

CICS
Prod Region 3

CICS IPIC connection
id=ProdCICS3

Credit Service archive file

Connection reference
DevCICS

Service archive file

DevCICS
Service archive file

DevCICS
Service archive file

DevCICS

Service archive file

DevCICS
Service archive file

DevCICS
Service archive file

DevCICS

X

X

© 2020 IBM Corporation

If you use a name like DevCICS for a connection reference name in the service archive, the
problem comes when you want to deploy the same archive to a test or production server.
You will not want to define a connection called DevCICS in the server.xml of a production
server. So the service will not work.

18

z/OS Connect EETop Tip!
Think carefully about your connection reference names
DO THIS! Use logical rather than physical names

Mortgage Service archive file

Connection reference
MortgageCICS

CICS
Development Region

Loans Service archive file

Connection reference
LoansCICS

z/OS Connect EE Development Server

CICS IPIC connection
id=MortgageCICS

CICS IPIC connection
id=LoansCICS

CICS IPIC connection
id=CreditCICS

Credit Service archive file

Connection reference
CreditCICS

Service archive file

MortgageCICS

Service archive file

LoansCICS

Service archive file

CreditCICS

© 2020 IBM Corporation

Instead you should use logical rather than physical connection reference names, for
example;
• MortgageCICS for a reference to the system that hosts the Mortgage application
• LoansCICS to the system that hosts the Loans application
• CreditCICS to the system that hosts the Credit application

This allows you to deploy the service archives to different environments.

On this chart, the service archives are deployed to the development system where all 3
CICS applications run on the same CICS region. The 3 IPIC connections point to the same
CICS development region.”

19

z/OS Connect EETop Tip!
Think carefully about your connection reference names
DO THIS! Use logical rather than physical names

Mortgage Service archive file

Connection reference
MortgageCICS

Loans Service archive file

Connection reference
LoansCICS

z/OS Connect EE Test Server

CICS IPIC connection
id=MortgageCICS

CICS IPIC connection
id=LoansCICS

CICS IPIC connection
id=CreditCICS

Credit Service archive file

Connection reference
CreditCICS

Service archive file

MortgageCICS

Service archive file

LoansCICS

Service archive file

CreditCICS

CICS
Test Region 1

CICS
Test Region 2

© 2020 IBM Corporation

On this chart, the same service archives are deployed to the test system where the CICS
Mortgage application runs in one test CICS region and the Loans and Credit applications
both run in another region.

20

z/OS Connect EETop Tip!
Think carefully about your connection reference names
DO THIS! Use logical rather than physical names

Mortgage Service archive file

Connection reference
MortgageCICS

Loans Service archive file

Connection reference
LoansCICS

z/OS Connect EE Production Server

CICS IPIC connection
id=MortgageCICS

CICS IPIC connection
id=LoansCICS

CICS IPIC connection
id=CreditCICS

Credit Service archive file

Connection reference
CreditCICS

Service archive file

MortgageCICS

Service archive file

LoansCICS

Service archive file

CreditCICS

CICS
Prod Region 1

CICS
Prod Region 2

CICS
Prod Region 3

© 2020 IBM Corporation

On this chart, the same service archives are deployed to the production system where the
3 applications run in different CICS regions. In this case, the 3 IPIC connections point to
different CICS production regions.

It is important to create a naming convention for connection references at the beginning of
the project, because it’s difficult to change this later.

21

/devops

22

Building and Deploying z/OS Connect EE assets

© 2020 IBM Corporation

22

z/OS Connect EE

23

What is DevOps?
Development + Operations

© 2020 IBM Corporation

DevOps is a software development method that stresses collaboration between Software
Developers (Dev) and Business Operations (Ops). It provides automation for Continuous
Integration (CI) and Continuous Delivery (CD).

23

z/OS Connect EE

24

DevOps considerations
Automate the development and deployment of services, APIs, and API requesters for continuous integration and delivery.

• The build toolkit supports the generation of service archives and API archives from projects created in the z/OS Connect EE API toolkit
• The build toolkit also supports the use of properties files to generate API requester archives
• Run the build toolkit from a build script to generate the archive files
• Deploy of services, APIs and API requesters to z/OS Connect EE servers

ibm.biz/zosconnect-devops

{plan + code + test} {build} {deploy} {test} {release + operate + monitor}

© 2020 IBM Corporation

Whereas the z/OS Connect EE API toolkit is used by developers to create and deploy APIs
to development z/OS Connect EE servers, it is unlikely that you will use the API toolkit to
deploy APIs to production servers. Instead, API toolkit project files will be stored in a
Source Control System (like GitHub for example) and then the z/OS Connect EE build toolkit
is used to generate the service, API and API requester archive files. The generated archive
files are normally stored in an artifact repository, and an automated deployment script
(using Jenkins for example) deploys the APIs or services to test and production servers
using the z/OS Connect RESTful administration interface.

Below is a brief description of the different phases of a CI/CD pipeline:

Plan + code + test
- Think about which APIs to create, naming conventions, versioning (see next chart) and

which Source Control Management (SCM) system to use
- Develop guidelines for using the API toolkit
- Decide on testing tools to use i.e Swagger UI, REST clients like Postman, Curl, httpie

Build
- Build .aar, .sar, .ara files using the build toolkit. Develop scripts using build pipeline tools

24

Deploy
- Deploy .aar, .sar, .ara files using the RESTful administration interface or Zowe CLI, or by

copying the archives to the resources directories and refreshing the server – as part of a
build pipeline (for example with Jenkins, UrbanCode Deploy, Maven)

Test
- Perform performance tests and enable API testing as part of the build pipeline

Release + operate + monitor
- Define guidelines for deployment across multiple z/OS Connect EE instances
- Define and document operational procedures
- Agree a monitoring strategy (for example using IBM OMEGAMON for JVM) and consider

requirements for analytics and transaction tracking

24

z/OS Connect EEAPI and service versioning example

© 2020 IBM Corporation 25

Consider whether you need to assign a version to your APIs and services.

Assigning a new API version is necessary only if there are any breaking changes. For minor
changes that do not break existing users, you can update the operations in place and use
the version field in the API editor to track these minor version increments. For example, an
operation can be added to an API or an optional field can be added to a schema without
breaking the existing usage of an API.

Recommendations:

• Consider including a version identifier at the end of the service name (for example
name-of-service_v2.1.0) to facilitate service versioning

• Consider including a version identifier at the end of the API name (for example name-
of-API_v2.1.0)

• A version is usually described with 3 levels (M.m.p) where M=Major, m=minor and
p=patch.

• A patch and a minor change should not change the interface and should therefore be
backward compatible, however, to exploit the new functions added by a minor change,
the REST client application may need to be updated. Therefore the version in the base

25

path does not need to include the minor and patch qualifiers.
• Include the version in the base path of the API (for example /catalogManager/v2) to

facilitate API versioning. This method requires a separate API project for each version but
has the advantage of producing separate Swagger documents, one for each version.

• Whereas a major change is expected to be disruptive and to modify the interface, thus
the REST client application must be updated to call the new version of the API.

Note: A service version does not have to be related to an API version

For more information on API and service versioning see
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/designing/api_versionin
g.html

Important: Each API name, service name, and base path name must be unique within a
server.

25

Top Tip!
An API versioning strategy for the enterprise will have been decided by the

enterprise API management team in your organization

GO TALK TO THEM!

Consider z/OS Connect EE API and service versioning from the beginning.
It’s difficult to change it later

© 2020 IBM Corporation 26

26

z/OS Connect EE

27

DevOps Pipeline using z/OS Connect EE

ibm.biz/zosconnect-devops© 2020 IBM Corporation

This chart shows an example DevOps pattern.

Recommendations:

- The API toolkit should be used to build and deploy .aars and .sars to development
servers. This is intended as a developer tool to help them to quickly develop APIs.

- When development work is complete, the related project files should be stored in a
Source Control Management (SCM) system.

- API and service projects and properties files should be treated as source code and
managed by the SCM.

- Archive files (.aar, .sar and .ara) should NOT be stored in SCM but in an artifact
repository

- The build toolkit should be used as part of build automation scripts to build .aars, .sars
and .aras for test and production.

- Deployment Orchestration Automation is then used to deploy the stored archive files to
test and production servers.

- Archive files are deployed either using the z/OS Connect EE RESTful administration
interface or by copying the files to the designated directories for automated deployment

27

z/OS Connect EEUsing Git + Jenkins + Artifactory with z/OS Connect EE

28
Exclude specific files from Git using a .gitignore file

© 2020 IBM Corporation

The developer commits the Eclipse API toolkit project in a Source Control Management
(SCM) system like Git. And then a continuous integration tool like Jenkins clones the
project, uses the z/OS Connect EE build toolkit to generate the deployable artefact (e.g an
API archive) and stores it in an artefact repository like Jfrog Artifactory.

Note that the *bin directory in service projects should not be stored in the SCM.

Jenkins can be configured to monitor SCM repositories and automatically run builds when
changes occur. This chart shows a simple script that uses the build toolkit to build sars and
aars, which can then be stored in an artifact repository such as Artficatory, using further
steps in the pipeline.

28

z/OS Connect EE

29

Using UrbanCode Deploy with z/OS Connect EE
Example implementation

© 2020 IBM Corporation

The z/OS Connect EE build toolkit can also be used with IBM UrbanCode Deploy (UCD).
UCD can also group artefacts together and deploy them across different environments, for
example, qualification, pre-production and production environments.

See the following blog for a sample implementation using Git repositories to store source
code, and IBM UrbanCode Deploy (UCD) to run the z/OS Connect EE build toolkit to
generate the archive files and deploy them:
https://community.ibm.com/community/user/ibmz-and-linuxone/blogs/yun-han-
li1/2020/08/12/sample-workflow-with-ibm-urbancode-deploy-and-git

Note: Other technologies are also available for building an API deployment pipeline.

29

z/OS Connect EE

30

z/OS Connect EE integration with Zowe
z/OS Connect EE and Zowe API Catalog – Administration API

© 2020 IBM Corporation

A Zowe CLI can be used to script automated deployment and/or control of z/OS Connect EE
resources such as APIs (AAR files), Services (SAR files) and API requesters (ARA files).

z/OS Connect EE also integrates with the Zowe API Mediation Layer which provides a single
place where you can find all the APIs that are available on your mainframe and access them
from a single well known HTTP endpoint. When you first install Zowe, you get the APIs for
working with data sets, Jobs, z/OS MF and the API mediation layer itself. If you want to add
your own APIs, such as the administration APIs for a z/OS Connect EE server, you can use
Zowe to add an existing API without having to change anything in the server that provides
the API. The blogpost link discusses how this is achieved using a sample configuration (see
next slide).

See the following blog for more information on exposing z/OS Connect EE APIs in Zowe API
Mediation Layer
https://community.ibm.com/community/user/ibmz-and-linuxone/blogs/samantha-
catling1/2020/08/11/expose-zos-connect-ee-apis-in-zowe-api-mediation-l

30

z/OS Connect EE

31

z/OS Connect EE integration with Zowe
z/OS Connect EE Zowe CLI – Working with APIs

github.com/zosconnect/zowe-cli-zosconnect-plugin
© 2020 IBM Corporation

This slide shows the Zowe CLI syntax for working with APIs (aka AAR files). The GitHub link
provides you with access to the Zowe CLI plugin that delivers the support for z/OS Connect
EE.

This makes deployment even easier!

See the following blog for more information on using the Zowe CLI with z/OS Connect EE:
https://community.ibm.com/community/user/ibmz-and-linuxone/blogs/samantha-
catling1/2020/08/11/zowe-cli-plug-in-for-zos-connect-ee-v11

Download the plugin here:
github.com/zosconnect/zowe-cli-zosconnect-plugin

31

z/OS Connect EETesting of APIs

32

Manual and automated testing

© 2020 IBM Corporation

This chart shows how Swagger UI can be used to test an API. It also shows some of the
commonly used testing tools.

Note: other technologies are available for testing APIs.

32

/security

33

Securing APIs with z/OS Connect EE

© 2020 IBM Corporation

33

z/OS Connect EE

High level security options available in z/OS Connect EE

34http://ibm.biz/zosconnect-security© 2020 IBM Corporation

This chart shows the options provided by z/OS Connect EE for implementing the common
security principals.

Confidentiality
Confidentiality ensures that an unauthorized party cannot obtain the meaning of the
transferred or stored data. Typically confidentiality is achieved by encrypting the data.

Integrity
Integrity ensures that transmitted or stored information was not altered in an unauthorized
or accidental manner. Typically it is a mechanism to verify that what is received over a
network is the same as what was sent.

Authentication
Authentication is the process of validating the identity that is claimed by the accessing
entity. Authentication is performed by verifying authentication information that is provided
with the claimed identity. The authentication information is generally referred to as the
accessor's credentials. A credential can be the accessor's name and password. It can also
be a token provided by a trusted party, such as a JSON Web Token (JWT) or an X.509
certificate.
Authentication is usually one of the earliest steps in a request workflow. When

34

authenticated, an identity can be asserted to the downstream process steps, meaning that
these steps trust that the identity was successfully authenticated by the upstream steps.

Identification
Identification is the ability to assign an identity to the entity attempting to access the system.
Typically the identity is used to control access to resources. Depending on the security model
in which the identification is performed, the identity may come from the authentication
credentials or it might be asserted from another server.

Authorization
Authorization is the process of checking whether an authenticated identity is to be given
access to the resource that it is requesting. A typical implementation of authorization is to
pass to the access control mechanism a security context that contains the authenticated
identity.

Auditing
Auditing provides you with the ability to capture and record events such as an API request so
that you can analyze them later, perhaps after a breach of your security has occurred.

We look at the options for enabling these security requirements in the following charts.

34

z/OS Connect EE

API provider security flow

35

1. Client credentials
2. Identity passed on connection
3. Authenticate the client
4. Map authenticated identity to a user ID

5. Authorize the authenticated user ID
6. Audit the request
7. Secure connection to System of Record
8. Use asserted identity in System of Record

http://ibm.biz/zosconnect-security© 2020 IBM Corporation

The API provider security flow includes the following security steps that can be performed
by z/OS Connect EE
1. The credentials provided by the client. This can be a user ID and password, a third-party

token or a TLS certificate.
2. The identity is passed on the connection between the client and the z/OS Connect EE

server. This is typically a distributed ID, such as an X.500 distinguished name and
associated LDAP realm, that originates from a remote system. Alternatively the identity
could be a SAF user ID. The data sent on the connection can be encrypted using TLS.

3. Authenticate the client. This can be within the z/OS Connect EE server or by requesting
verification from a third party server.

4. Map the authenticated identity to a user ID in the z/OS Connect EE user registry.
5. Authorize the authenticated user ID to connect to z/OS Connect EE and to perform

specific actions on z/OS Connect EE APIs or services.
6. Audit the API or service request.
7. Secure the connection to the System of Record (SoR) and (optinally) assert an identity

to be used to invoke the program or transaction in the SoR.
8. The program or transaction runs in the SoR using the asserted identity.

35

z/OS Connect EE

Confidentiality / Integrity

36http://ibm.biz/zosconnect-security© 2020 IBM Corporation

You can secure communications between a REST client and a z/OS Connect EE server by
using the Transport Layer Security (TLS) protocol. TLS provides transport layer security that
includes confidentiality, integrity, and authentication to secure the connection between a
client and a z/OS Connect EE server.

z/OS Connect EE uses Java Secure Sockets Extension (JSSE) as the TLS implementation for
secure connections. JSSE provides a framework and Java implementation that handles the
handshake negotiation and protection capabilities that are provided by TLS.

Alternatively you can use Application Transparent Transport Layer Security (AT-TLS), a
capability of z/OS Communications Server, for transport layer security with z/OS Connect
EE.

Note: z/OS Connect EE is an unaware AT-TLS application and therefore does not have
access to the partner certificate. This means that a z/OS subsystem cannot use a client
certificate to authenticate with z/OS Connect EE when the connection between the z/OS
subsystem and z/OS Connect EE is secured using AT-TLS.

Recommendations:
• Specify a Common Name (CN) for the z/OS Connect EE server certificate that is the same

36

as the hostname that will be used by the REST API clients.
• Share key rings and certificates across a set of cloned z/OS Connect EE instances.
• The latest version of TLS (TLS v1.2) provides for the most secure range of ciphers.
• Control what ciphers can be used in the z/OS Connect EE server rather than in the REST

client.
• Asymmetric encryption is much more expensive than symmetric encryption due to the

large key sizes required, so it is important to minimize the number of TLS handshakes by
persisting connections.

36

z/OS Connect EE

Authentication / Identification

37http://ibm.biz/zosconnect-security© 2020 IBM Corporation

Three methods are provided for authentication between clients and a z/OS Connect EE
server:
• Basic authentication (Recommendation: Use https so that the user’s password is

encrypted)
• Client certificate authentication
• Third-party authentication (most commonly used). Recommendation: Use

authentication filters to enable different authentication options to be used depending
on the request

Third party options:
- JSON Web Token (JWT) is the most popular third-party authentication token used with

z/OS Connect EE
- OAuth 2.0 access token - the OAuth 2.0 protocol facilitates the authorization of one

site to access and use information that is related to the user's account on
another site.

- Security Assertion Markup Language (SAML) token
- Lightweight Third-Party Authentication (LTPA) token

A JWT consists of a:

37

1. Header – algorithm, token type
2. Payload – claims (issuer, subject, audience, expiry)
3. Signature – for integrity

For more information on authenticating with a JWT see
https://www.ibm.com/support/knowledgecenter/en/SS4SVW_3.0.0/securing/provider_th
ird_party_auth.html#provider_third_party_auth__section_authenticate_jwt

37

Top Tip!
A lot of the security requirements will have been decided by the enterprise

security architects in your organization

GO TALK TO THEM!

You’ll then know which options you need to implement!

JSON Web Token (JWT) is the most popular third-party authentication
token used with z/OS Connect EE

© 2020 IBM Corporation 38

38

z/OS Connect EE

Authorization

39© 2020 IBM Corporation http://ibm.biz/zosconnect-security

The z/OS Connect EE roles allow for separation of responsibilities for different users.

Admin
All z/OS Connect EE actions are allowed, including all Operations, Invoke,
and Reader actions.

Operations
Ability to perform all z/OS Connect EE operations and actions except for Invoke.
The following actions are allowed:
- Obtain a list of APIs. For an individual API, get details and API Swagger document, deploy,
update, start, stop, and delete.
- Obtain a list of services. For an individual service, get details, request and response
schemas, statistics, deploy, update, start, stop, and delete.

Invoke
Ability to invoke APIs and services. Invoke authority does not provide access
to z/OS Connect EE Operations actions.

Reader
Ability to: Obtain a list of APIs. For an individual API, get details and API Swagger document.

39

Obtain a list of services. For an individual service, get details, request and response schemas.

Note: Authorization requires authentication first to be successful.

Recommendations:
Configure interceptors at the global level so that APIs do not need to be individually defined
in server.xml.

39

z/OS Connect EE

Auditing

40© 2020 IBM Corporation

• SMF123_SERVER_SECT_VERSION: 1
• SMF123_RESERVED_02: 000000
• SMF123_SERVER_SYSTEM: ZT01
• SMF123_SERVER_SYSPLEX: ZT00PLEX
• SMF123_SERVER_JOBID: STC07299
• SMF123_SERVER_JOBNAME: MOPZCEP
• SMF123_SERVER_STOKEN: 5686536700910
• SMF123_SERVER_CONFIG_DIR: /var/zosconnect/servers/MOPZCEP/
• SMF123_SERVER_VERSION: 3.0.30.0

• SMF123_REQ_DATA_VERSION: 1
• SMF123S1_REQ_TYPE: 1
• SMF123S1_HTTP_RESP_CODE: 200
• SMF123S1_RESP_FLAGS: 0
• SMF123S1_RESERVED_04: 000000
• SMF123S1_USER_NAME: NicolasBoss
• SMF123S1_USER_NAME_MAPPED: ZCOBOSS
• SMF123S1_CLIENT_IP_ADDR: 9.101.139.230
• SMF123S1_API_NAME: catalog_v1.0
• SMF123S1_API_VERSION: 1.0.0
• SMF123S1_SERVICE_NAME: inquireCatalog_v1.0
• SMF123S1_SERVICE_VERSION: 1.0.0
• SMF123S1_REQ_METHOD: GET
• SMF123S1_REQ_QUERY_STR: startItemRef=0
• SMF123S1_REQ_TARGET_URI: /catalogManager/v1.0/items
• SMF123S1_REQ_PAYLOAD_LEN: 0
• SMF123S1_RESP_PAYLOAD_LEN: 1923

Server Section

Request Data Section

• SMF123S1_TIME_ZC_ENTRY: 2020-03-09|13:29:53.105249
• SMF123S1_TIME_ZC_EXIT: 2020-03-09|13:29:53.162643
• SMF123S1_TIME_SOR_SENT: 2020-03-09|13:29:53.142812
• SMF123S1_TIME_SOR_RECV: 2020-03-09|13:29:53.144512
• SMF123S1_SP_NAME: CICS-1.0
• SMF123S1_SOR_REFERENCE: CICSMOB1
• SMF123S1_SOR_IDENTIFIER: MOPZT00.CICSMOBP
• SMF123S1_SOR_RESOURCE: MZIC,DFH0XCMN
• SMF123S1_REQ_ID: 13
• SMF123S1_TRACKING_TOKEN: C2C1D80100…
• SMF123S1_REQ_HDR1: User-Agent:PostmanRuntime/7.22.0
• SMF123S1_REQ_HDR2: Host:9.212.143.123:50743
• SMF123S1_REQ_HDR3:
• SMF123S1_REQ_HDR4:
• SMF123S1_RESP_HDR1:
• SMF123S1_RESP_HDR2:
• SMF123S1_RESP_HDR3:
• SMF123S1_RESP_HDR4:

CICS subsystem

Auditing allows for accountability for who has done something.

This chart illustrates the SMF record information written by z/OS Connect EE for each API
request.

Note: For version 2, records are written every 20 requests.

For more information on the structure of the message, see
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/configuring/auditing_i
ntro.html

You can also use the IBM Common Data Provider for z Systems to stream z/OS Connect EE
audit records to an analytics platform like Splunk. See the Monitoring section of this
presentation.

40

z/OS Connect EE

API requester security flow

41

1. z/OS program can provide user ID & password
2. Send request on secure connection
3. Authenticate the credentials
4. Authorize the authenticated user ID

5. Audit the request
6. Obtain token from authorization server
7. Secure connection to API provider with security token
8. RESTful API runs in API provider

http://ibm.biz/zosconnect-security© 2020 IBM Corporation

The security principles also apply to API requester.

The API requester flow includes the following security steps that can be performed by z/OS
Connect EE
1. A user ID and password can be provided by the CICS, IMS or z/OS application.

• The user ID and password can be used for basic authentication by the z/OS
Connect EE server.

• The user ID and password can also be used to obtain a token from an
authorization server to use on the request to the RESTful API.

2. The connection between the CICS, IMS, or z/OS application and the z/OS Connect EE
server. The data sent on the connection can be encrypted using TLS.

3. Authenticate the CICS, IMS, or z/OS application.
4. Authorize the authenticated user ID to connect to z/OS Connect EE and to perform

specific actions on z/OS Connect EE API requesters.
5. Audit the API requester request.
6. Pass the user ID and password credentials to an authorization server to obtain a

security token.
7. Secure the connection to the external API provider and provide security credentials

such as a security token to be used to invoke the RESTful API.
8. The RESTful API runs in the external API provider.

41

/workload management

42

High availability

© 2020 IBM Corporation

42

z/OS Connect EEHigh Availability

43

Topology

ibm.biz/zosconnect-ha-concepts ibm.biz/zosconnect-scenarios© 2020 IBM Corporation

An HA z/OS Connect EE environment can use TCP/IP load balancing technologies to
distribute connections from clients across multiple servers.

TCP/IP port sharing enables a group of cloned z/OS Connect EE servers running on the
same LPAR to listen on the same port. The shared point is defined in the TCP/IP profile as
below:
1100 TCP ZCTACX* SHAREPORT ; Z/OS CONNECT EE HTTPS PORT

It is possible to combine the use of Sysplex Distributor with TCP/IP port sharing for a high
availability configuration. Then the Sysplex Distributor distributes requests across LPARS,
and port sharing distributes requests across different subsystems within an LPAR.

New connections are distributed across the servers using a weighted round-robin algorithm
based on the efficiency of the server application in accepting new connection requests and
managing the socket backlog queue. Alternatively, the SHAREPORTWLM option can be
used so that the server selection is based on WLM server-specific recommendations.

Recommendation: The cloned servers should share the same TCP/IP port for API invocation
requests, however, each server will need a specific admin port if the RESTful administration
interface is to be used so that admin (e.g deploy API) requests can be targeted at specific

43

servers.

It is also necessary to plan for variations in workloads, especially increased workloads, when
it might be necessary to increase the capacity of the system. The system must respond in a
predictable way to workload variation to meet SLAs. For z/OS Connect EE, scalability can be
achieved by manually increasing the number of servers.

For a more detailed high availability scenario, see
ibm.biz/zosconnect-scenarios

43

z/OS Connect EE

44

Example high availability configuration
• Use TCP/IP load balancing technologies to distribute connections from clients across multiple servers
• Naming convention for z/OS Connect EE servers, proc names , user IDs etc. is important
• Use different ports for API invocations and RESTful administration interface requests
• Share resources like config files, APIs and services, and SAF keyrings and certificates across servers

© 2020 IBM Corporation

Recommendation: Use a server naming convention that allows you to define a shared port.
Using this configuration, a workload of API requests will be balanced across the z/OS
Connect EE servers ZCTACX1 and ZCTACX2 .

Recommendation: For planned outages of a z/OS Connect EE server that is running as part
of an HA environment, consider using the following MVS command to pause the HTTP port
being used by the server:
MODIFY <jobname>.<identifier>,PAUSE,TARGET=’httpendpoint’

For IP-based service providers (CICS, IMS, REST) an API request received by a z/OS Connect
EE instance in LPAR1 can be sent to a backend system on the same LPAR or another LPAR.

Recommendation: Consider using the Sysplex distributor OPTLOCAL keyword (on
VIPADISTRIBUTE statement) which sets preference to local (in-LPAR) connections over
remote connections. This will reduce cross-LPAR communication.

When you have many cloned z/OS Connect EE servers configured to manage workload, you
can share resources across the clones, including:
• Configuration files
• API, service and API requester directories

44

• TCP/IP ports
• STC user IDs
• RACF keyring and certificates

Recommendation: If a set of cloned servers are sharing resources then, the RESTful
administration interface should be used to deploy the API to only one of those servers and
then the Modify refresh command should be issued to the other cloned servers.

For information on how to share files across different z/OS Connect EE server instances see
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/highavailability/share_s
erver_config.html

44

Top Tip!
Create an enterprise z/OS Connect EE Installation Standards document

UPDATE THE DOCUMENT REGULARLY

And ensure that different teams follow the same standards

© 2020 IBM Corporation 45

45

z/OS Connect EEIPIC HA

46© 2020 IBM Corporation

• The CICS Service Provider supports high availability IPIC connections

• CICS regions listen on two end points

• Generic port shared by all regions in the cluster (connections can be balanced)

• Specific port used exclusively by a specific region

• Specify sharedPort=true on zosconnect_cicsIpicConnection in server.xml

z/OS Connect EE

z/OS Connect EE

z/OS LPAR

CICS

CICS
2222 (G)

2222 (G)

1091 (S)

1092 (S)

Port
Sharing

Enquire on generic port (G)
to identify specific port (S)

Establish connection to CICS
specific port (S) and flow
requests

When using IPIC HA, a z/OS Connect EE server connects to a CICS region in the cluster by
using the generic end-point. The connection request to the generic end point is intercepted
by the connection-balancing mechanism and is routed to a generic TCPIPSERVICE that
belongs to one of the CICS regions in the cluster. The selected CICS region then returns the
IP address and port of its specific end point to the z/OS Connect EE server, and the
connection is established to the specific end point.

The IPCONN may be auto-installed, or pre-defined.
Recommendation: When using security, ensure that the generic and specific TCPIPServices
specify the same security credentials.

z/OS Connect EE sends a heartbeat request every 30 seconds. If it has not heard from CICS
in the last 30 seconds, and if it does not get a response from a heartbeat request, it closes
the connection. If this is an IPIC HA connection then normally the connection will get re-
established to a different CICS. However, if it tries to re-establish the connection back to
the same CICS and a pre-defined IPCONN resource definition has been configured, this can
fail if the IPCONN has not been released.

Recommendation: If predefined IPCONNs are used, do one of the following:
• If the IPIC connection does not have sharedPort=true, disable the heartbeat by

46

setting heartbeatInterval=0 on the cicsIpicConnection
• Create your own version of mirror transaction (CSMI) with SPurge set to YES, and specify

this in the service configuration or in the transid attribute on the cicsIpicConnection

Note: If an IPIC HA connection to CICS1 fails, it is re-established to a different CICS (CICS2).
However, when CICS1 is restarted, it will not receive requests until IPIC HA reestablishes a
connection from zCEE to CICS1, either because the connection to CICS2 becomes
unresponsive and is closed or drops, or it is manually released from the CICS side

46

z/OS Connect EEPlan for failure scenarios

47© 2020 IBM Corporation

API
Gateway

Other
channels

Web

Mobile

REST/HTTPS API
Gateway

AORTOR

TOR

APIs
(.aar)

Services
(.sar)

STC (ZCTACX2) USR(UCZTAC)

Deploy API

APIs
(.aar)

Services
(.sar)

TOR

TOR

APIs
(.aar)

Services
(.sar)

APIs
(.aar)

Services
(.sar)

Shared port

Admin ports

DevOps

Operator

List
services

AOR

AOR

AOR

STC (ZCTACY1) USR(UCZTAC)

MRO

REST/HTTPS

REST/HTTPS

STC (ZCTACX1) USR(UCZTAC)

STC (ZCTACY2) USR(UCZTAC)

IPIC (MTLS)

IPIC (MTLS)

Like with any new infrastructure it is necessary to plan for failures and scheduled outages.
This chart shows the type of failures to consider, and below we give some general
recommendations for different failure scenarios.

Recommendations:
z/OS Connect EE server failure
 Ensure z/OS Connect EE connections do not persist indefinitely so that a restarted z/OS

Connect EE server receives new requests. Set maxKeepAliveRequests on the
httpOptions element.

 For planned outages, pause HTTP ports before shutting down the z/OS Connect EE
server

CICS AOR failure
 Use dynamic routing of DPL requests from TORs to AORs

CICS TOR failure
 Enable IPIC HA

47

 Note that a manual procedure is required in order to reconnect z/OS Connect EE instance
1 to TOR 1 after the TOR is restarted

z/OS Connect EE server slowdown
 Monitor API response times (for example using OMEGAMON for JVM)

 Monitor JVM metrics (for example using OMEGAMON for JVM or the IBM Health Center)

 Heap size (current and max)

 Number of GCs

 Consider option to use WLM based algorithms for Sysplex Distributor and TCP/IP port
sharing – connection requests can be routed based on whether servers are meeting their
WLM performance goals

CICS AOR slowdown
 Consider use of DTIMOUT to timeout deadlocked transactions in AORs

 Specify appropriate timeout period to timeout zCEE requests by setting
asyncRequestTimeout (default timeout is 30 seconds)

 Ensure that CICS max tasks is set sufficiently high and consider use of TRANCLASS for TOR
transactions to protect against specific poorly performing service

 Monitor API response times

CICS TOR slowdown
 Specify asyncRequestTimeout to timeout API requests

 Consider use of TRANCLASS for TOR transactions to protect against specific poorly
performing service

 Monitor API response times

47

z/OS Connect EEPolicy-based API processing

ibm.biz/zosconnect-policy-intro

Policy-based API processing gives you an effective way to manage client requests that need to drive different
behaviours in the backend program depending on variations in an HTTP header of the API request.

This gives you the ability, for example, to handle application affinities, where API requests need routing to specific
regions.

Currently supports CICS, IMS
and Db2 services.

Policies can be configured
globally for every API in the
server or for individual APIs

© 2020 IBM Corporation

You create rule sets to define the condition and actions, then enable z/OS Connect EE
policies to apply those actions to API requests. A rule set contains one or more rules that
define the condition and actions.

Some example use cases are:
• Determine which CICS, IMS or DB2 system to connect to based on the value of the HTTP

header
• Determine which CICS or IMS transaction code to use DB2 collection name based on the

value of the HTTP header

Learn more about this feature here:
ibm.biz/zosconnect-policy-intro

48

/monitoring

49

Real time monitoring, transaction tracking and operational analytics

© 2020 IBM Corporation

49

z/OS Connect EEExtending z/OS Connect EE for monitoring

50© 2020 IBM Corporation ibm.biz/zapi-monitoring

As you prepare to deploy APIs to z/OS Connect EE, you might be considering how to
monitor API workloads, track API requests across the enterprise and perform operational
analytics. This chart shows how the interceptor framework of z/OS Connect EE can be used
with monitoring solutions to support all these requirements.

50

z/OS Connect EEMonitoring APIs with OMEGAMON for JVM

51

Monitoring APIs and services

Monitoring connections to SoRs

Monitoring SoR resources

© 2020 IBM Corporation ibm.biz/zapi-monitoring

How do you monitor a z/OS Connect EE API workload?

IBM OMEGAMON for JVM V5.4.0 supports z/OS Connect EE request monitoring by
providing the System of Record (SoR) element of total response time, as well as API
response time metrics.

The ‘top level’ OMEGAMON for JVM views of the Enhanced 3270 UI allow operations staff
to see a quick health status of z/OS Connect EE. This chart shows the following views:
1. Monitor the APIs and services - this screen shows a top-level view of the APIs deployed

to a z/OS Connect EE server. The screen shows the catalog and phonebook APIs. It
shows request counts for the different HTTP methods used to invoke each API, for
example, the catalog API is invoked using the GET and POST methods. It also shows that
there are no errors.

2. Connections in server.xml – this screen shows the request counts for the different
connections defined in server.xml

3. Monitor SoR resources – this screen shows more information on the SoR resources, for
example, for the CICS service provider the SoR resource consists of the CICS trans ID and
program name and for the IMS service provider, the SoR resource is the IMS trans ID

51

Recommendations:
• Use OMEGAMON for JVM to identify response time issues and to monitor the JVM heap

size and garbage collection frequency
• Configure OMEGAMON for JVM to create alerts when abnormal events occur e.g API

response time greater than 1 second.
• Integrate OMEGAMON for JVM with Systems Automation so that situations can be

identified quickly and automated corrective actions can be taken.

51

z/OS Connect EE

52© 2020 IBM Corporation

End-to-end transaction tracking

ibm.biz/zapi-monitoring

How do you track requests from a REST client application to z/OS Connect EE, and all the
way through to the System of Record (SoR)?

AppDynamics is an Application Performance Monitoring (APM) tool that automatically
discovers, maps, and visualizes business transactions as they are processed across multiple
servers. This chart shows how you can use AppDynamics to track API requests processed by
z/OS Connect EE. The tracking information that is being used in this example is coming
from Z APM Connect.

In this example, we see the Online banking application making API requests to a z/OS
Connect EE server. We also see that the CICS Service Provider is being used to send
requests to 4 CICS regions. We can monitor the number of requests and response times.

The tracking information that is being used in this example is coming from IBM Z
Application Performance Management Connect (Z APM Connect). Z APM Connect provides
transaction tracking information and resource monitoring metrics from a wide range of
z/OS subsystems (including z/OS Connect EE) to APM solutions including AppDynamics and
IBM Application Performance Management.

52

z/OS Connect EE

53

JOBNAME ARRIVAL-DATE ARRIVAL-TIME TARGET-URI SERVICE-OR-API METHOD USER-NAME MAPPED-USER-NAME
MOPZCEW 2019/05/14 12:44:31.78 /catalogManager/v1.0/orders catalog_v1.0 GET JeanLeclerc EMPLOY1

© 2020 IBM Corporation

Operational analytics

ibm.biz/zapi-monitoring

How do you collect operational data from z/OS Connect EE and stream it, in a consumable
format, to an analytics platform such as Elasticsearch, Apache Hadoop or Splunk?

The IBM Common Data Provider for z Systems provides the infrastructure for accessing IT
operational data from z/OS systems and streaming it to an analytics platform. It monitors
z/OS log data and SMF data (including z/OS Connect EE audit logs, SMF data record type
123) and forwards it to the configured destination. A web-based configuration tool is used
to specify what data you want to collect from your z/OS system, where you want the data
to be sent, and what form you want the data to arrive in at its destination. This
configuration information is contained in a policy.

This chart shows a sample Splunk dashboard that provides a view of a z/OS Connect EE API
workload.

The API Requests chart shows the number of requests per minute for the different APIs of
the workload (catalog, customer and phonebook APIs). The search string for this chart is
shown below:

* sourcetype="zos-smf_123*" | timechart count(SM123SSI) by API_SERVICE_NAME

53

The sourcetype defines the type of data being searched, timechart defines the type of chart,
SM123SSI represents the type of subsystem (z/OS Connect EE in this case) and records are
counted by the API-SERVICE-NAME which represents the name of the API.

The customer API by HTTP method chart shows the different HTTP methods used to invoke
the customer API.

The catalog API by version chart shows a breakdown of requests for the different versions of
the catalog API. This chart allows us to monitor whether older versions of an API are still
being used.

The catalog API by channel chart shows a breakdown of requests for the catalog API across
different channels. This chart gives us a view of API requests across the Call Center, Mobile,
Partner and Web channels. We use the request user ID to distinguish between the different
channels.

53

Top Tip!
The ability to identify performance issues quickly and to take corrective

actions is a primary requirement for IT Operations

AVOID BLIND SPOTS!

© 2020 IBM Corporation 54

54

/problem determination

55

Messages, logs and trace options

© 2020 IBM Corporation

55

z/OS Connect EEWhere to find information when there is a problem?

© 2020 IBM Corporation

SYSLOG - Console messages
• Operator commands
• SAF violations

STC SYSOUT – JES message log

messages.log

FFDCtrace.log

There are multiple places to look for information when a problem occurs:

1. SYSLOG – Console messages are written to SYSLOG and are intended for direct human
consumption or automated operations. Note that you can use the Liberty zOSLogging
element to redirect certain z/OS Connect EE messages to SYSLOG. Specify the
wtoMessage attribute with a comma-separated list of message IDs to be written. For
more information see
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphe
re.liberty.autogen.zos.doc/ae/rwlp_config_zosLogging.html

2. SYSOUT – Output of the STC. A subset of these messages are also written to SYSLOG.
The granularity of messages is controlled by the consoleLogLevel attribute. The valid
values are INFO, AUDIT (default), WARNING, ERROR, and OFF.

3. messages.log - This file contains all messages that are written or captured by the
logging component: it contains detailed server log for API requests. All messages that
are written to this file contain additional information such as the message time stamp
and the ID of the thread that wrote the message. This file does not contain messages
that are written directly by the JVM process. The location of messages.log is controlled
by the logDirectory attribute (default location is WLP_OUTPUT_DIR/serverName/logs
by default). You can use the DD statement //MSGLOG DD SYSOUT=* to redirect
messages to the STC SYSOUT.

56

4. FFDC – First Failure Data Capture records include the exception stack and optional
additional data that is recorded when an unexpected exception is caught by z/OS
Connect EE

5. trace.log – Tracing is normally only enabled in development servers or at the request of
IBM Service. You set logging options by adding a logging element to the server
configuration file e.g <logging
traceSpecification=“SSL=all:SSLChannel=all:com.ibm.wsspi.webcontainer*=all"/>. For a
list of z/OS Connect EE trace components see
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/troubleshooting/tra
ce.html
The location of the trace file is controlled by the traceFileName attribute (default
location is WLP_OUTPUT_DIR/serverName/logs)

56

z/OS Connect EEDebugging common problems

© 2020 IBM Corporation

A B C

A

• Connectivity
• TLS handshake
• HTTP 302 - use of HTTPS required
• HTTP 404 - incorrect path
• HTTP 401 - unauthenticated user
• HTTP 403 - unauthorized user

B

• HTTP 503 – service unavailable
• HTTP 400 - Missing mandatory

parameter/ bad request
• Error in data mapping
• Subsystem reference not defined

C

• Connectivity
• TLS handshake
• Unauthenticated user
• Unauthorized user
• Malformed data

This illustrates common problems encountered with API provider. This is not an exhaustive
list.

When trying to debug a problem with z/OS Connect EE, it is crucial to know where the
error is coming from.
One would generally check the following elements:
1/ HTTP status code returned by the call & returned JSON response
2/ z/OS Connect EE messages.log
3/ z/OS Connect EE STDOUT
3/ z/OS syslog
4/ Subsystem log

The error can be of different nature: network, security, z/OS Connect EE application,
subsystem application. For each category, there are certain tests that can be performed or
messages to check.

Network: ping test, hostname resolution test, check TCP port binding, use network sniffing
tool, verify TLS handshake (verify SSL configuration, trust store, key store, certificate
expiration)

57

Security: check messages.log, check SAF messages in STDOUT or syslog, check subsystem
log, verify provided credentials, verify access rights

z/OS Connect EE: check messages.log, enable specific traces to validate data, check service
project and API project

Subsystem: check messages.log, check subsystem log, debug transaction with breakpoints

For more information on problem determination see
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/troubleshooting/trouble
shooting.html

57

z/OS Connect EETop Tip!
Look out for common problems

© 2020 IBM Corporation

 Configuration errors?
Check configuration spelling

Check if XML syntax is correct

Check error/warning messages

Check default values

Check updateTrigger values i.e. how modifications are picked up

 Slow response times?
Are there any traces enabled ?

Is polling enabled ?

Are connections persisted ?

Consider using AsyncIO

58

This illustrates common problems related to configuration and slow response time.

Regarding ignored configuration :
1) When an element name, an attribute or a value is misspelled it is ignored.
2) When editing the server.xml it is recommended to use an XML editor like the z/OS
Explorer as it would help to visualize the configuration with syntax coloring and highlight
XML elements that are not properly opened/closed, missing double quotes for values,
comments.
3) When attributes are not set, it doesn’t mean that they are not used but rather that a
default value has been used. These default values can be found on the z/OS Connect EE and
Liberty Knowledge Center pages.

Regarding slow response time :
1) When Java or Liberty debugging are configured and print traces, it does impact the

responsiveness of the z/OS Connect EE server
2) Polled is one of the values that the updateTrigger attribute can take, it implies that the

server would frequently check if the monitored resources have been modified
3) By default, the z/OS Connect EE server does persist the connections with clients. The

number of HTTP requests that can be used in a connection and the duration during
which the connection can stay idle can both be configured. Make sure that the clients

58

are also configured to persist the connections
4) The Liberty server can be authorized to use z/OS native asynchronous TCP/IP sockets to

improve performance and be more scalable. See
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/performance/perfor
mance_best_practices.html#performance_best_practices__asyncio

For more information performance see
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/performance/performan
ce_best_practices.html

58

/performance

59

Measuring API performance

© 2020 IBM Corporation

59

z/OS Connect EE

60

 Length and complexity of JSON messages

 zIIP availability

 Persistent connections

 Security
– TLS
– Client authentication
– Authorization

What are the main factors that impact performance?

© 2020 IBM Corporation

This chart is a summary of some of the main performance considerations for z/OS Connect
EE:

• As the length of message and number of array elements in a message increases, so will
the response time the CPU processing time required to handle the request.
Recommendation: Use the API toolkit to reduce the size of your JSON payload by
excluding unused fields or renaming fields.
Recommendation: If your payload contains arrays, optimize the JSON payload by using
OCCURS DEPENDING ON (ODO) in COBOL, and REFER in PL/I, or use array counters, or
both.
For more information, see
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/performance/perfor
mance_payload_size.html

• z/OS Connect EE is a Java-based product and typically over 99% of MIPs are eligible for
zIIP offload.
Recommendation: Use performance data to monitor zIIP offload and to ensure
sufficient zIIP capacity.

• When HTTPS is used for inbound requests to z/OS Connect EE, the use of persistent

60

connections outperform the use of non-persistent connections. When using persistent
connections, the client can reuse the underlying socket connection and the TLS
handshake is avoided.
Recommendation: Configure persistent sessions by setting the keepAliveEnabled,
maxKeepAliveRequests and persistTimeout attributes on the httpOptions element in
server.xml.

• Often security is at odds with performance, because the most secure techniques often
involve the most processing overhead. The type of security model used can have a
significant impact on CPU cost.
Recommendation: By default, when https is used and client authentication is enabled,
z/OS Connect EE attempts to map the provided client certificate to a user ID. This
mapping can be expensive. Third-party authentication (for example with a JWT) can
override the client certificate mapping which will provide better performance.

For more information on performance best practices, see
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/performance/performan
ce_overview.html

Download the z/OS Connect EE performance reports here ibm.biz/zosconnect-performance-
report

60

z/OS Connect EEClassifying API requests with WLM

61

*bin directory in service projects should not be stored in SCM.

Assign API requests to transaction classes

Monitoring connections to SoR’s defined in server.xml

Configure WLM service and report classes

<wlmClassification>
<httpClassification transactionClass="TCTMZIC" method="GET"

resource="/catalogManager/items?startItemID*" />
<httpClassification transactionClass="TCTMZIS" method="GET"

resource="/catalogManager/items/*" />
<httpClassification transactionClass="TCTMZPO" method="POST"

resource="/catalogManager/orders" />
</wlmClassification>

© 2020 IBM Corporation

A transaction class provides a granular approach for classifying API requests. For instance,
you can classify requests for different API operations inside the same z/OS Connect EE
server depending on the request URI.

A transaction class for z/OS Connect EE is enabled using the zosWlm-1.0 feature. After
adding this feature, validate that the z/OS Connect EE server is authorized to use the
feature by checking for the message ‘CWWKB0103I: Authorized service group ZOSWLM is
available’ in the messages log.

Transaction classes are defined in the server.xml file. Example 1 shows an example
classification of 3 API operations for the sample catalog API. we assign transaction class
TCIC to the inquire catalog API operation which is invoked using an HTTP GET request with
URI /catalogManager/items. We also assign transaction classes to the inquire single and
place order API operations.

API requests received by a z/OS Connect EE server can then be classified using the CB
classification type. The processor activity of z/OS Connect EE transactions is reported to
WLM and RMF and so can be measured in RMF Workload Activity reports for service
classes and report classes.

61

Recommendation: Define at least one transaction class for z/OS Connect EE API requests, so
that you can differentiate between CPU consumption related to API activity (e.g data
mapping) and CPU consumption related to server activity (e.g TLS and garbage collection).

See the following blog for more information on classifying API requests using WLM:
https://developer.ibm.com/mainframe/docs/managing-api-workloads/measuring-api-
workloads/measuring-api-workloads-wlm/

61

Top Tip!
Classify API requests using WLM

This is INVALUABLE for performance analysis

Even if you use a single classification rule for all API requests

© 2020 IBM Corporation 62

Classify API requests using WLM so that you have information on:
- Number of API requests
- Response times
- CPU consumption
- Whether CPU is being consumed on zIIPs or GPs
- Whether CPU is being consumed by API processing or server tasks (TLS, GC etc.)

62

z/OS Connect EEMeasuring API performance with RMF
REPORT BY: POLICY=WLMPOL REPORT CLASS=RTCTMZIC

DESCRIPTION =CB RC for inquire catalog API

-TRANSACTIONS- TRANS-TIME HHH.MM.SS.TTT SERVICE TIME ---APPL %---
AVG 0.27 ACTUAL 5 CPU 19.733 CP 3.29
MPL 0.27 EXECUTION 5 SRB 0.000 AAPCP 0.00
ENDED 30390 QUEUED 0 RCT 0.000 IIPCP 3.17
END/S 50.65 R/S AFFIN 0 IIT 0.000
£SWAPS 0 INELIGIBLE 0 HST 0.000 AAP N/A
EXCTD 0 CONVERSION 0 AAP N/A IIP N/A
AVG ENC 0.27 STD DEV 0 IIP N/A

• An average of 50.65 inquire catalog API requests were executed per second during the recording interval (10
minutes)

• The average response time for each request is 5ms which includes the CICS transaction response time
• A total of 19.733 seconds of CPU time was consumed by the API
• The total CPU consumed is equivalent to 3.29% of a CP of which 3.17% is zIIP eligible

Note: The IIPCP value represents the percentage of a CP that could have run on a zIIP if a zIIP had been available on the
system.

© 2020 IBM Corporation

This chart shows an extract of an example RMF Workload Activity report for the report
class RTCTMZIC. It shows:

• An average of 50.65 inquire catalog API requests were executed per second during the
recording interval (10 minutes)

• The average response time for each request is 5ms which includes the CICS transaction
response time

• A total of 19.733seconds of CPU time was consumed by the API during the reporting
interval (10 minutes).

• The total CPU consumed by the API is equivalent to 3.29% of a CP, out of which 3.17% of
the CP is zIIP eligible.

63

z/OS Connect EEExample performance test – Catalog Manager

Service Layer

CICS

COBOL

API Layer

z/OS Connect EE

http

WLM, SMF, RMF

IPIC

JSON

API GP per request (ms)
API zIIP eligible per request (ms)
z/OS Connect EE server GP per request (ms)
z/OS Connect EE server zIIP eligible per request (ms)

Total z/OS Connect EE CPU cost per request = 0.672ms of which 99% is zIIP eligible

Important: Actual performance, cost, savings or other results in other operating environments may vary.

GET /catalogManager/items?startItemID=0

API consumers

© 2020 IBM Corporation

This chart shows some example performance measurements.

Given that the z/OS Connect EE server was only running the catalog API at the time of the
measurement, we can measure the CPU cost of the API by adding the CPU for the API
report class RCBTCIC to the CPU for the z/OS Connect EE server report class RSTCZCEL .

The pie chart shows the breakdown of CPU usage across these two report classes and
separated into GP ms and zIIP eligible ms.

Important: the test machine used for these tests did not have zIIPs configured.

Recommendations: If you are experiencing performance problems, consider the following
potential optimizations:
• Disable polling. If you need to update your server.xml file, use the Modify refresh

command
• Configure persistent connections using the keepAliveEnabled, maxKeepAliveRequests

and persistTimeout attributes on the httpOptions element in server.xml

64

• Configure hardware cryptography if a large number of TLS handshakes are occuring
• Minimise JSON message lengths and complexity

64

/questions?

65

Please contact the authors of this presentation if you have questions:

nigel_williams@uk.ibm.com
aymeric.affouard@fr.ibm.com

eric.phan@fr.ibm.com

© 2020 IBM Corporation

Thanks to the following people for their contributions to this presentation:
• Sue Bayliss
• Demelza Farrer
• Alan Hollingshead
• Mitch Johnson
• Edward McCarthy
• Anthony Papageorgiou
• Kate Robinson
• Kenishia A Sapp

65

z/OS Connect EEResources

66

Downloads

Explore the docs

Where to get help

z/OS Connect EE open beta runtime

z/OS Connect EE workstation tooling

z/OS Connect EE Knowledge Center

IBM Z and LinuxONE Community

dW Answers

z/OS Connect EE open beta forum

ibm.biz/zosconnect-open-beta

ibm.biz/zosconnect-tooling-download

ibm.biz/zosconnect-kc

ibm.biz/zosconnectcommunity

ibm.biz/zosconnect-dw-answers

ibm.biz/zcee-beta-forum

© 2020 IBM Corporation

Here is a list of useful resources for z/OS Connect EE.

(Don’t forget to download the runtime and the workstation tooling.)

dW Answers and the open beta forums are regularly monitored by the development team.

66

