
®

IBM Software Group

®

IBM Software Group

®

IBM Software Group

© 2021 IBM Corporation

Jon Sayles/IBM: jsayles@us.ibm.com

@Copyright IBM – May 2021

IBM Developer for z Systems – for ISPF Developers

Module 5 – Remote Systems – MVS Dataset Access & Organization

DevOps

mailto:jsayles@us.ibm.com

2

Notices and disclaimers
© 2021 International Business Machines Corporation. No part of

this document may be reproduced or transmitted in any form

without written permission

from IBM.

U.S. Government Users Restricted Rights — use, duplication or

disclosure restricted by GSA ADP Schedule Contract with IBM.

Information in these presentations (including information

relating to products that have not yet been announced by IBM)

has been reviewed for accuracy as of the date of

initial publication and could include unintentional technical or

typographical errors. IBM shall have no responsibility to update

this information. This document is distributed “as is” without

any warranty, either express or implied. In no event, shall IBM

be liable for any damage arising from the use of this

information, including but not limited to, loss of data, business

interruption, loss of profit or loss of opportunity.

IBM products and services are warranted per the terms and

conditions of the agreements under which they are provided.

IBM products are manufactured from new parts or new and

used parts.

In some cases, a product may not be new and may have been

previously installed. Regardless, our warranty terms apply.”

Any statements regarding IBM's future direction, intent or

product plans are subject to change or withdrawal without

notice.

Performance data contained herein was generally obtained in a

controlled, isolated environments. Customer examples are

presented as illustrations of how those customers have used

IBM products and the results they may have achieved. Actual

performance, cost, savings or other results in other

operating environments may vary.

References in this document to IBM products, programs, or

services does not imply that IBM intends to make such products,

programs or services available in all countries in which

IBM operates or does business.

Workshops, sessions and associated materials may have been

prepared by independent session speakers, and do not

necessarily reflect the views of IBM. All materials and

discussions are provided for informational purposes only, and

are neither intended to, nor shall constitute legal or other

guidance or advice to any individual participant or their specific

situation.

It is the customer’s responsibility to insure its own compliance

with legal requirements and to obtain advice of competent legal

counsel as to the identification and interpretation of any

relevant laws and regulatory requirements that may affect the

customer’s business and any actions the customer may need to

take to comply with such laws. IBM does not provide legal

advice or represent or warrant that its services or products will

ensure that the customer follows any law.

3

Notices and disclaimers continued

Information concerning non-IBM products was

obtained from the suppliers of those products,

their published announcements or other publicly

available sources. IBM has not tested

those products about this publication and cannot

confirm the accuracy of performance, compatibility

or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products

should be addressed to the suppliers of those

products. IBM does not warrant the quality of any

third-party products, or the ability of any such

third-party products to interoperate with IBM’s

products. IBM expressly disclaims all warranties,

expressed or implied, including but not limited to,

the implied warranties of merchantability and

fitness for a purpose.

The provision of the information contained herein

is not intended to, and does not, grant any right or

license under any IBM patents, copyrights,

trademarks or other intellectual property right.

IBM, the IBM logo, ibm.com and [names of other

referenced IBM products and services used in the

presentation] are trademarks of International

Business Machines Corporation, registered in many

jurisdictions worldwide. Other product and service

names might be trademarks of IBM or other

companies. A current list of IBM trademarks is

available on the Web at “Copyright and trademark

information” at:

www.ibm.com/legal/copytrade.shtml.

http://www.ibm.com/legal/copytrade.shtml

4

Please Note

IBM’s statements regarding its plans, directions, and intent are subject to change

or withdrawal without notice and at IBM’s sole discretion.

Information regarding potential future products is intended to outline our general

product direction and it should not be relied on in making a purchasing decision.

The information mentioned regarding potential future products is not a commitment,

promise, or legal obligation to deliver any material, code or functionality. Information

about potential future products may not be incorporated into any contract.

The development, release, and timing of any future features or functionality described

for our products remains at our sole discretion.

Performance is based on measurements and projections using standard IBM

benchmarks in a controlled environment. The actual throughput or performance that

any user will experience will vary depending upon many factors, including

considerations such as the amount of multiprogramming in the user’s job stream,

the I/O configuration, the storage configuration, and the workload processed. Therefore,

no assurance can be given that an individual user will achieve results similar to those

stated here.

5

The IDz Workbench Curriculum

▪ Module 1 – IDz Terms, Concepts and Navigation

▪ Module 2 – Editing Your COBOL Programs

▪ Module 3 – Analyzing COBOL Programs

▪ Module 4 – Remote Systems – Connect, Navigate and Search

▪ Module 5 – Remote Systems – Dataset Access and Organization

▪ Module 6 – Remote Systems – ISPF 3.x, Batch Jobs and Job Management

▪ Module 7 – MVS Subprojects – Organizing PDS Members and SCM Checkout

▪ Module 8 - The Data Tools – SQL Code/Test and DB2 Table Access

▪ Module 9 - Debugging z/OS COBOL Applications

Optional Modules
▪ IDz/Endevor Integration Through CARMA

▪ zUnit – Unit Test

▪ Code Coverage – Test quality feature

▪ Code Review – Application quality feature

▪ Menu Manager – Integrate ISPF REXX Execs and CLISTs

▪ Web Services – SOA development

6

Course Assumptions

1. You know ISPF and have used it for at least two years, doing
production work on z/OS with COBOL, PL/I or Assembler

Note that all of the workshops in this course are in COBOL – although
files exist that are Assembler and other languages for you to experiment
with – as time permits

2. You have:

No experience with Eclipse or IDz

Some experience with PC tools

▪ You have used MS-Windows applications for at least one year

IDz installed and running on your workstation at version 8.0 or later

▪ Note that all ISPF discussion/examples and screen captures
assume IBM-installed ISPF product defaults – not any 3rd party
or custom Dialog Manager applications you may have installed
on your mainframe

7

How to succeed at this class…

IMPORTANT NOTE:

If while you are taking this class your find that you do not have the time to complete the
workshops between sessions:

Do what you can to follow the instructor's demo during class - and ask questions

Show up 15 minutes early to each session - ask questions, listen to others' questions

At the end of each session we will take 15 minutes to cover additional productivity topics

FWIW - You can re-take any module in this course during a scheduled Entry Level training class

Course

1. Attend class:

- Ask questions

- Follow the product workflow

- Identify the terms, concepts
& vocabulary - and relate the
IDz tools/techniques to ISPF

- Discover the productivity
features

Workshops

2. Do the exercises
in Labs.pdf:

- Iterate thru the workflow
and practice the tool navigation
(build eclipse muscle memory)

- Commit the U.I. and product
layout to memory

- Explore features both covered
and not covered during class

Application

3. Apply the
techniques to your
App-Dev projects:

- Master the product workflow
& navigation

- Gain more productivity and
speed over time, and use the
features to improve application
quality

https://developer.ibm.com/mainframe/idzrdz-remote-training/

8

Access to your shop’s custom
ISPF Tools and Procedures

z/OS Application
Development

Maintenance and
Production Support

Analysis

Design

Development
Construction

Build/Test

DevOps

Pipeline

Enterprise
Application

Modernization

Parallel/Agile Lifecycle

IDz Graphical Modeling Tools

Language Sensitive Editors
COBOL, PL/I, JCL, SQL,
Assembler, REXX/CLIST,
BMS,MFS Graphical Editors
Code Review

IBM Debugger & Unit Test
Code Coverage

File Manager/Fault Analyzer
DB2/SQL and IMS/DLI Tools

Batch Job Management

SOA/Web Services
API Integration

Continuous Integration

Remote and Local Search
IDz Static Analysis Tooling

IDz Across the Modern SDLC

9

Access to Host Connection Emulator

▪ From the Remote Systems view, launch Host Connection Emulator
for 3270 access to your shops ISPF panels/CLIST/REXX Execs.

▪ Use IDz for:
 Code Analysis/Project Research & Documentation

 Test/Debug & Code Coverage

 High-productivity code development

 DB2/SQL Development

 Test Data Create/Update

 ABEND Root Cause Analysis

Host Connection
Emulator

Eclipse and
Improved Screen

Real Estate

Advanced
COBOL Static
Analysis Tools

Advanced
Source Editing

Tools
Test & Debug DB2 Tools

10

UNIT

Topics:

The IDz Workbench

▪ Accessing and Organizing MVS Datasets
▪ z/OS File Mapping and Property Groups

▪ Miscellaneous Remote Systems Capabilities

▪ Appendix

https://www.ibm.com/support/knowledgecenter/SSBDYH_3.2/com.ibm.zexpl.mastermap/rseforzosintro.html

The IBM InfoCenter - on Remote Systems tools & techniques…

https://www.ibm.com/support/knowledgecenter/SSBDYH_3.2/com.ibm.zexpl.mastermap/rseforzosintro.html

11

Accessing and Organizing MVS Datasets

After connecting to z/OS, IDz provides access
to all of the Datasets you have created with your
TSO ID as the file’s high-level qualifier ➔

There are three ways to get to Datasets with
high-level qualifiers other than your TSO ID:

1. Retrieve Data Sets
▪Return a searched-for dataset name into a FIFO queue, best

for “one-off” (occasional or singular) access to a Dataset

2. MVS File Filters
▪Used to create a persistent container (filter) that groups

DSNs by some abstraction (project/task/file-type/etc.)

3. Search – and Saved Search Queries

▪Described in the last section of the course

12

Retrieve Data Sets – IDz's ISPF 3.4 – DSLIST – Feature

▪ In your application area there are (minimally) tens to
hundreds of thousands of datasets that you did not
create (they don't show up under My Datasets)

▪ To provide quick access to datasets with high-level
qualifiers other than your TSO ID, you can:

Search for and select specific Data Sets into a list of
"Retrieved Data Sets"

Select (access) the Data Sets from the:

▪ Retrieved Data Sets filter

▪ Optional added filter

▪ Retrieved Data Sets:

Are like Windows "recently accessed datasets"

Up to 10 data set names are stored in the list
▪ Data Sets that are added after 10, "bump" the least recent data set

off the list

 Can be shown in a table

 Retrieved Data Sets are like ISPF Reference Lists
▪ http://publib.boulder.ibm.com/infocenter/zos/v1r11/index.jsp?topic=/com.ibm.zos.r11.f54ug00/refl.htm

http://publib.boulder.ibm.com/infocenter/zos/v1r11/index.jsp?topic=/com.ibm.zos.r11.f54ug00/refl.htm

13

Retrieve Data Set…

From Remote Systems:
1. Right-click over MVS Files

2. Select Retrieve Data Sets - or press Ctrl+R

This opens a Retrieve Data Set dialog

From the Retrieve Data Set dialog:
3. Enter an ISPF 3.4 search pattern (* = wildcard text)

4. Press  Enter

5. Scroll down the list to find the DSN you’re looking

for
– Note that files are listed in order by type

6. Double-click to select a dataset

▪ The Retrieved Data Sets filter is populated with your selected
dataset (next slide)

14

Retrieve Data Sets – Considerations

▪ After you have successfully retrieved your data set, its DSN will be
add to a FIFO (First In/First Out) Data Set name queue

(By default) The queue holds 10 datasets

When you retrieve the 11th dataset, the first file's DSN is
removed from the Retrieved Data Sets list

▪ Note that you can specify more than 10 datasets

You can access the files in Retrieved Data Sets the same way
you'd access any file in Remote Systems Explorer
▪ The files in Retrieved Data Sets will inherit your workspace's properties for:

– z/OS File System Mapping (covered later in this PowerPoint)

– Property Groups (also covered later)
–

▪ The Retrieve Data Set names list has a hard-limit of 1,000 file
names returned.

▪ If your search arguments for DSNs can return > 1,000 DSNs use:

MVS File Filters (next topic)

Or use a more granular retrieve argument to cut down on the
size of the list

 Note: Pressing Ctrl+R from any context with in Remote Systems brings up the
Retrieve Data Sets dialog. You do NOT have to Right-Click on top of MVS Files

15

Best Practice: Create a working-subset list of libraries with disparate DSNs

Organize your libraries for efficient
Remote Systems access:

▪ MVS File Filters
Categorized by DSN wildcard patterns

▪ Retrieved Data Sets
Disparate DSNs

16

MVS File Filters

▪ If you've worked on z/OS for any length of time you have probably seen that
the sheer quantity/number of files you need to access can pose a challenge.

▪MVS File Filters - which you can think of as “persistent ISPF 3.4 search
results” can be used to:

Organize z/OS resources into separate collapsible lists

Incorporate or isolate specific z/OS resources

Share views of mainframe resources

Simplify your Remote Systems view

▪ If your <HLQ> has 100's of datasets, create filters for subsetting the DSNs
and use the filters (primarily) in your daily work

Subset (or create supersets of) files for access and analysis
▪ Filters with multiple HLQs and subset DSN lists

▪ Search within filtered files (using Remote Index Search)

▪You can use Filters to better manage your:

z/OS libraries and datasets (QSAM/VSAM/GDG files)

JES (batch) Jobs

USS files

MVS File Filters are a very
powerful organization feature
for your files and jobs

They provide a means for you
to create subsets and
supersets of files that allow
you to mix/match and isolate
just the elements you need to
work on in a large project
• Lower complexity
• Raise productivity

17

Best Practice - Custom Filters and Common SCM Libraries

▪ It is a good idea to create Filters for your primary
source libraries – whether these libraries are:

Standard PDS/PDSE datasets

▪Program source libraries, Copy/Include libraries, JCL/PROC libraries, etc.

Endevor:

–'Endevor target files' - written to by a Endevor processor (normally a

PDS/PDSe)

CA Panvalet / CA Librarian:

–Managed PDS/PDSE datasets

Serena Changeman:

–Managed PDS/PDSE datasets

By doing this (by setting up filters for these external managed libraries), you
will simplify workflow for common source analysis

18

Steps - Create a Custom MVS Files Filter – 1 of 3

1. In the Remote Systems view, under the connection name, right click MVS Files and
click New > Filter…

2. In the Filter string field of the New Filter window, type an uppercase filter string and
click Next >

▪ The filter string is the same as the data set name level.

▪ The string must be uppercase and end in: .*

▪ For example <HLQ>.<MLQ>.CO*

– Where <HLQ> and <MLQ> are 1-8 character DSN qualifiers

I.E. A TSO ID.Dataset or ISPF Library Project.*

DDS0001.PROJT*.COB* ---- DB2V11.SDSN* ---- RTPOT41.*

Filter that will show

all of user:

RSPT126's datasets

Filter that will show all of

user: RSPT126's

COBOL datasets

1.

2.

19

3. In the Filter name field, type a name
for your filter and click: Next >

4. Read the Additional Information
about Filters, and click: Finish

Steps - Create a Custom MVS Files Filter – 2 of 3

3.

20

5. Expand the filter ➔

 Note: When you create new files that are viewed

through a filter, you will need to Refresh(F5) in order to
see newly added datasets. This is true even for your
base TSO ID Refresh "My Data Sets" or the
corresponding filter (not your z/OS connection)

Steps - Create a Custom MVS Files Filter – 3 of 3

21

Modify (Add Filter Strings to) an MVS File Filter – 1 of 2

Filter Strings allow you to create subset or super-
set organizers for your datasets by adding
additional Filters Strings. To do this – from
Remote System Explorer:

1. Select the MVS File Filter you wish to extend

2. Right-click and select Properties

3. From the Properties for … dialog:

▪ Select Filter Strings

▪ Click: New filter string and type in additional filter string

wildcard text:
– Adhere to the Filter String coding rules described on the previous slide

▪ Click Create

22

MVS Files Custom
Filtered datasets
for both RSPT126
and RSPT130➔

Modify (Add Filter Strings to) an MVS File Filter – 2 of 2

Note: The files you see

in your Remote Systems

View will be different

than those shown in this

screen capture

 Filters can include files based on
any combination of dataset
qualifiers – and
can provide you
with very specific
DSN lists.

You can remove a filter string using
the Context Menu

But note that if there
is only one Filter
String you can
change it, but not
delete it

If you delete an MVS File Filter the
datasets referenced by the Filter
are NOT deleted

23

▪Along with providing convenient access to
datasets not owned by you, File Filters can help
manage the (typically) large number of datasets
defined with your TSO ID as the high-level
qualifier.

▪ If you do have (go ahead… admit it) 100, 200, 300+
libraries and as many flat-files that you've been
hoarding over the past decade or so, the
"My Data Sets" filter becomes an inconveniently
long list of DSNs to scroll

▪Defining MVS File Filters with Filter Strings that
effectively classify your datasets into manageable
subsets can make for more efficient product use

MVS File Filters as Organizers for Your Datasets

Note: In an upcoming module of this course you will see another

powerful IDz facility for organizing files: MVS Subprojects

24

You can move your custom filters (and

the My Datasets and My Jobs filters) around
inside of MVS Files or JES:

Right-click over the filter and select:

▪Move Up (unless the filter is at the top of the list)

▪Move Down (unless the filter is at the bottom of the list)

▪This can simplify Remote Systems –
and provide quicker access to the
datasets you need

IDz Admin Note: You can export MVS
File and JES Job Filters by exporting the
Connection they’re created in

Move Your Filters – Up or Down Within MVS Files or JES Job Lists

25

UNIT

Topics:

The IDz Workbench

▪ Accessing and Organizing MVS Datasets

▪ z/OS File Mapping and Property Groups
▪ Miscellaneous Remote Systems Capabilities

▪ Appendix

Note that if you’re using IDz v14.1.3 or later you

will not need to do File Mapping.

IDz detects the file type from its contents.

26

z/OS File Mapping

▪ In order for IDz to know which editor to open and how to download the
contents of an MVS file you need to “map the file”

▪ This can be done in one of three ways:

1. Map individual PDS members

2. Map an entire PDS

3. Map every file named a certain way throughout your connection

What software

language?

Download as text or

binary (EBCDIC)

Any specific Code

Pages?

If you’re using IDz v14.1.3 or later you will

not need to do File Mapping, as the product

detects the file type from its contents.

27

▪ The simplest / easiest way to map any given PDS member is to: 1. Right-click on the member and from
Properties specify the Mapping you want for the file

Example: A member of a JCL Library mapped to jcl using Properties

1. Map individual PDS Members Using Properties

28

2. Map a PDS (Library) Using Properties

If all the members in a PDS are of the same language type you can map the entire PDS

Right-click on the library name in Remote Systems

From Properties specify the Mapping

29

3. Map MVS File Names Within a Connection

When you define a connection to a remote system, IDz provides a set of ~30 default DSN name
patterns mapped to a Workstation File Extension.

▪ Ex. default mapping associates an MVS dataset ending with COBOL to the .cbl Workstation
File Extension.

▪ All of the default system-wide mappings are listed in the z/OS File System Mapping view.

You can customize these mappings to match the naming conventions on your remote system
either through the z/OS File System Mapping view or through the Mapping pane in the
Properties window.

Z/OS File System Mapping view➔

Connection name➔

Default file mapping specifications➔

30

Set up Custom z/OS File System Mappings for your Datasets – 1 of 2

Steps
1. From the z/OS File System Map view

From the drop-down, select the System (connection)

Right-Click and select Add Data Set Mapping

2. Specify the mapping characteristics

▪ Mapping Criterion – for this example:

Each double asterisk (**) is a wildcard for a file name level

▪ And the double asterisk can also mean “any number of levels”

Each single asterisk is a wildcard as part of a dataset name

So **CUS* - means <anyHLQ>.<any2ndLevelQ>.CUS … w/any suffix

▪ Workstation file extension (as a file type label)

▪ The file transfer protocol:

Text – for ASCII source files

Binary – for test data datasets

31

Set up Custom z/OS File System Mappings for your Datasets – 2 of 2

In this example, we have created a
Mapping for all datasets named:

<anyHLQ>.

<any2ndLevelQ>.

FILES

Ex. DDS0001.TEST.FILES

And if the file is a PDS?

- All members inherit the mapping

Don't forget to select your connection
(System) before mapping your dataset

 After you successfully add a new z/OS File Mapping

for dataset, the default icon associated with file will change

32

Mapping Members in “Generic” Source Libraries with a Naming Pattern

▪ You may have generic mainframe source libraries which contain:

COBOL

Copybooks

JCL

Assembler

BMS

MFS

etc.

▪ In order to map disparate member names to the appropriate IDz editor, from
z/OS File System Mapping

Select the Mapping Criterion

Right-click and select Add Member Mapping

From the wizard, enter a wildcard string that
provides the correct mapping criteria for
member names to the associated for their type

33

OPTIONAL TOPIC - Using Dataset Aliases to Map Members

▪ Some shops either; 1. Don't enforce member name mappings, or 2. Utilize naming
conventions that can be a problem to map with the member (*) wildcard.

▪ One option for solving this problem is to define dataset Aliases for the different types in your
libraries, and access PDS members through the aliases.

▪ Here's how this can be done – assume you have a library with COBOL, BMS, and Assembler
code:

 (Using the Context Menu) Define Dataset aliases.

 Name the aliases such that either they pick up the default z/OS File System mappings shipped with RDz
for COBOL, BMS and Assembler, or define a Dataset level mapping for each Alias

 Access the files through dataset aliases. Note that the proper mapping will be enforced for the
workstation file type, and that Locate and other PDS navigation tooling works

Dataset

Alias ➔

Notes:

DDS0001.TEST.SRCJCL maps to:

**JCL in the RDz z/OS File System

Mapping defaults

These Aliases are "nicknames" for

z/OS datasets.

As such, there may well be

restrictions or guidelines for

defining them (please check with

your systems staff).

34

OPTIONAL TOPIC – What if I delete the “My Data Sets” Filter?

Don’t sweat it.Just create a new MVS File Filter named My Data

Sets(<yourtsoid>.*) – that includes all your data sets.

1. Kick off the dialog

2. Specify the file filter

3. Name the filter then

4. Move the Filter up (or down) in the list

35

UNIT

Topics:

The IDz Workbench

▪ Accessing and Organizing MVS Datasets

▪ Property Groups
▪ Miscellaneous Remote Systems Capabilities

Property Groups are XML files that configure IDz features & functions for use
on your company’s LPAR and development environment

Property Groups:
• Resolve access to specific datasets within your LPAR
• Customize IDz product DevOps features – for zUnit & Git access
• File Tailor JCL – for your JES, DB2, CICS, IMS, COBOL, PL/I, HLASM use

36

Property Group Usage and Configuration – Considerations

Property Groups are XML files that configure Context Menu
actions so that they can be used on your company’s LPAR:

SYSLIB and Search Library path specification – source file editing:

▪ Copybook and include dependencies

▪ Open/browse called modules

▪ JCL PROC lookup

▪ Embedded SQL syntax checking

Language Compiler properties:

▪ Remote Syntax Check

▪ Build dependency reports

▪ MAP Assembly

Integration with 3rd Party products – that require a Pre-processor:

▪ CA-IDMS

▪ CA-Telon, Netron-Cap, , CA-Meta Cobol, DTB COBOL, etc.

▪ Report Writer

DevOps functionality:
▪ zUnit (Unit Test)

▪ Code Coverage

37

SYSLIB: MY.COPYLIB TEST.COPYLIB PROD.COPYLIB DCLGEN.PDS…
JCL: Job Card, PROC-Search-PDS-1 PROC-Search-PDS-2

COBOL: Compile-PARMS, SYSLIB, Called-Pgm-Lib-1 Called-Pgm-Lib-2

PLI: Compile-PARMS, Includes, Called-Pgm-Lib-1 Called-Pgm-Lib-2

…

Use Case#1 – Edit Program Source – Workflow and Property Group

1. Open a member in a program source library

2. IDz Server returns program source and parses it for COPY and INCLUDE statements

3. IDz Client passes SYSLIB (PDS Search List) from Property Group to IDz Server – then

passes each COPY/INCLUDE Member-Name found in the program source to the Server

4. IDz Server searches PDS list in SYSLIB for each COPY/INCLUDE Member
• When found, IDz server returns the member to the IDz Client

• If not found IDz Client builds error list

IDz

Server

Property Group

38

SYSLIB – 1 of 2: Create the Property Group

Change: <HLQ> …to… <USERID> Alternatively, you can hardcode the full DSN for the library

Press Ctrl+S To save your

Property Group edits

For IDz to return COPYBOOK and INCLUDE references found your program
source, you must specify SYSLIB (the library search list)

Steps:
▪ From the Property Group Manager view

Select your connection

Right-click and select: New Property Group

 Edit SYSLIB – specify the ordered PDS Search List

39

Once your Property Group has been edited,
save your edits and assign (Associate) it to
MVS Files in Remote Systems

Steps:

▪ From Remote Systems:

Right-click over MVS Files

Select Property Group > Associate
Property Group…

Un-check and Check your named
Property Group

Click OK

Test your work:
 Open <USERID>.TEST.COBOL(TRTMNT)

 Find and Open a Copy file

 Check variable references:

▪ Scroll to find some variable defined in a

copybook

– PATIENT-ID, VALID-BILLABLE-TYPES

▪ Right-click over the variable name and select

Open Declaration

Right-Click on MVS Files

Select:

- Property Group

- Associate Property Group…

SYSLIB – 2 of 2:

Assign the Property Group

40

Use Case #2 – Set up the default JCL Job Card for your LPAR

Remote z/OS File Search invokes SuperC in Batch (through JCL).
So you need to provide a valid Job Card for your LPAR

Steps:

▪ Expand MVS Files

▪ Expand a JCL (source library) file

▪ Double-click and open the file

From within the open JCL file:

▪ Select your Job Card

 All parts of it: //JOBLIB, etc.

▪ Right-click and copy the selected text into the Windows paste-buffer

41

Set up the default JCL Job Card for your LPAR – continued

From the JCL tab within your Property Group

1. Click the JCL tab

2. From the JCL tab – Paste your copied Job Card into the JCL job

card area above. Ensure that there are no extra blank lines below the Job

Card statements, and save changes to the Property Group (press Ctrl+S)

Copy a Job Card that works on your LPAR to here

0. Select your Property Group

42

Use Case #3 – Additional Productivity Benefits

▪ When you have successfully setup your Property Group and
associated it with MVS Files experiment with these options

Show Dependencies

▪ DDS0001.TEST.COBOL(TRTMNT)

Compare With

▪ DDS0001.TEST.COBOL(IDAT1) and IDAT1OS

Replace With

▪ Open IDAT1 and make a trivial source change

▪ Close and Save your change

▪ Try out Replace With ➔ Local History…

Generate JCL

▪ Generate compile/link JCL for TRTMNT

▪ Submit and Locate the Job

▪ Double-click the Job (in JES Retrieved Datasets) to open the spool file in the editor

Remote Syntax Check

▪ IDAT1

Individual program Search

▪ DDS0001.TEST.COBOL(BNCHS601) use Regular expression: (MOVE.*PATIENT-ID)
– Find all lines with MOVE and PATIENT-ID on them

43

Remote Syntax Check

▪ Right-Click over a program in Remote Systems and
select: Remote Syntax Check

▪ This will:
 Invoke your mainframe compiler

 Populate the Remote Error List view with hyper-linked lines that
contain syntax errors

44

Viewing and resolving syntax errors found by Remote Syntax Check

▪ In order to view any errors discovered by Remote Syntax Check – you must explicitly
open the Remote Error List view. This is done from: Window ➔ Show View ➔

45

Scan for Compatibility - Detect Incompatible Call/Linkage Parameter Definitions

1. Select Calling/Called program files
2. Right-Click and select: Scan for Compatibility

46

Let’s get the Open PROC function
to work…

From your Property Group:
1. From the JCL tab

2. From JCL procedure data
sets

1. Enter the DSN of one or
more JCL PROCLIBs

2. each separated by a space
- if entering multiple DSNs

• Test your work:
• Open a JCL file that references

a PROC

• Find the PROC statement and
select (double-click) the called
PROC name

• Right-click and select
Open JCL Procedure

• Repeat the above for a JCL
Include

2.

1.

Add PROC and INCLUDE Library

Lookup Path

47

You can open called subroutines
accessed from:
• Static CALL statements

• Dynamic CALL statements – provided the name is
defined in Working Storage

• XCTL

• CICS Call

To do this - From your Property Groups:
1. From the COBOL tab

2. Select Editor Configurations

3. From File-look-up paths; enter the DSNs of
COBOL source libraries, where called sub-
module source is found

• Test your work by opening a program that has static or
dynamic Call statements:

• TRTMNT.cbl

• Find a CALL statement

• Select the called program name

• Right-click and select Open Program “…”

3.

2.

1.

File Lookup Paths - Open the source for a

called subroutine

48

Use Case #4 – Customizing Property Groups for Build

▪ This dialog shows all of the
possible languages, 3270
screen technologies and batch
link and run-time options you
might wish to customize during
this editing session as tabs.

▪ Note that the Categories tab
contains checkboxes you can
de-select to remove
configuration settings for
technologies and run-times
you don't need for your work

Languages

Products

The "GO" step in batch JCL

Etc.

49

Property Group Entries for Build –
Customized properties, specific to your LPAR
SYSLIB: My-Copy-PDS Test-Copy-PDS-Test Prod-Copy-PDS DCLGEN-PDS

JCL: Job Card, PROC-Search-PDS-1 PROC-Search-PDS-2

COBOL: Compile-PARMS, SYSLIB, Called-Pgm-Lib-1 Called-Pgm-Lib-2

PLI: Compile-PARMS, Includes, Called-Pgm-Lib-1 Called-Pgm-Lib-2

LINK: PARMS, Link Libraries, Load Library

ZUNIT: AZURES-PDS, AZUCFG-PDS, COBOL-TestCase-Gen-PDS

BMS: DSCTLIB-PDS, Object-PDS, //SYSLIB

MFS: FORMAT-PDS, Listing-PDS, //SYSLIB

…

ELAXFCOC

ELAFLNK

ELAXFPL1

ELAXFASM

AZUZUNIT

USER.PROCLIB

Installed IDz PROCs

Overrides for DD Cards

IDz Client passes Property Group entries to the IDz server
which File-Tailors the installed IDz PROCs

IDz

Server

50

Customizing Property Groups for Build

▪ This dialog shows all the
possible languages, 3270
screen technologies and batch
link and run-time options you
might wish to customize during
this editing session as tabs.

▪ Note that the Categories tab
contains checkboxes you can
de-select to remove
configuration settings for
technologies and run-times
you don't need for your work

Languages

Products

The "GO" step in batch JCL

Etc.

51

Customizing Property Groups for Build

The COBOL Settings tab has several sub-tabs and
options:

 Runtime Environments:

▪ Check for each that apply:

– Ex. CICS and DB2, or IMS and DB2

 Procedures and Steps

▪ Allows you to customize your compile PROCs

(details on the next slide)

 Local Compiler Options

▪ Allows you to customize the compiler settings

for local COBOL (Windows executable)

applications

 Local Preprocessor

▪ Use for custom code preprocessing such as:

– Substituting copy statements for ++INCLUDE for

Local Syntax Check

– Not used for EXEC CICS or EXEC SQL

 JCL Substitution

▪ Allows you to over-ride (add, edit and remove

custom variables) from the default JCL

generated through the wizards

▪ These are accessed through a SET statement

 Editor Configurations

▪ Provides a mechanism to setup and configure

support for custom/macro pre-processing:

– Remote (REXX) pre-processor support

– Local (C++ or Java) pre-processor support

▪ Specifying program library concatenation for

opening Called programs

52

Customizing Property Groups for Build

▪ Info on the DB2 Co-processor

 http://pic.dhe.ibm.com/infocenter/comphelp/v111v131/index.jsp?topic=%2Fcom.ibm.aix.cbl.doc%2FPGandLR%2Fconcepts%2Fcpdb203.htm

▪ When you click the Procedures and Steps option you have access to three
JCL Procs – that were installed and customized by your MVS Systems
Programming staff when they installed and configured the IDz z/OS
components.

ELAXFCOP – A Proc which invokes the DB2 Pre-processor

ELAXFCOT – A Proc which invokes the CICS Pre-processor

ELAXFCOC – A Proc which invokes a COBOL Compile/Link/Bind

ELAXFCOC also will invoke:

▪ DB2 Co-processor (used instead of the Pre-processor if the right levels of system

software installed on your z/OS) – and if EXEC SQL statements are in your code

▪ CICS Translation

You will typically only use the ELAXFCOC Proc ➔

http://pic.dhe.ibm.com/infocenter/comphelp/v111v131/index.jsp?topic=%2Fcom.ibm.aix.cbl.doc%2FPGandLR%2Fconcepts%2Fcpdb203.htm

53

Customizing Property Groups

for Build

From the Procedure and Step Table,
Open ELAXFCOC, select COBOL
and customize:

▪ The compile Proc name

▪ The compile resolved-JCL Proc step name

 By default: COBOL

▪ Compiler options

▪ Various compiler DD cards for:

 Listing dataset

 The OBJ library PDS

 //SYSLIB - The library for copybooks and includes

 A sequential file for Compiler Errors (Error Feedback)

▪ Best Practice: Hard code your TSO ID (see Additional Notes)

 //DBRMLIB – if you've selected DB2 as a run-time option

▪ Click: Check Data Sets – to verify spelling

▪ Even better – you can drag & drop a dataset name from
the Remote Systems view, to populate the dataset name
fields (next slide)

Additional Notes:
<HLQ> will resolve to the High Level Qualifier of the Dataset you've
selected from Remote Systems Explorer. This means that if you select:
MYCORP.TEST.COBOL(DTEVAL) for Remote Syntax Check, the <HLQ>
variable resolves to MYCORP for all Property Group entries. This could
be significant for the Compiler Errors Data Set – as you will need create
authority against MYCORP as a high-level qualifier.

You can concatenate datasets in Copy Libraries by entering
additional dataset names to the right of existing DSNs separated by a
space (blank)

TEST

54

Customizing Property Groups for Build

▪ If the datasets exist for your compile outputs, you can just select, left-click hold, drag and drop them from the
Remote System view into the appropriate Data Set name fields. This will be more productive and help avoid
JCL errors due to typos

▪ When you are finished working,
close the Edit Area, and save changes

55

LINK Customization

▪ You will probably need help from
your Systems Programming staff
to discover:

Library DSNs

Link Options in use in your shop

Any necessary ENTRY Points

Link Tab

IDz Link PROC

56

Property Groups and CICS System Copy Files – DFHEIBLK, DFHCOMMAREA

▪ If your shop depends on the CICS pre-compiler to supply system copybooks you will
need to:

Check the CICS box, in the COBOL Property Group tab

Select your CICS TS version – in order that IDz unpacks the correct release of the
copybooks for your application code

57

Another Option - Import a Property Group

▪ If you are using IDz at a company, it is
likely that someone has already set up
your Property Groups

▪ However you still may be called upon
to customize some of the entries, so
let's find out how to import a property group
and see what the settings are all about

From the Window menu, select:

Show View >

Properties

▪ This opens the Property Group Manager view
which lists your connections.

 Right-click over the connection you wish to
create properties for, and select Import…

 Click Browse, and select the property.xml file you wish to use

Note: For this class it is easier to create New

Property Group files than to Import. But if your

company has a specific set of Property Groups

you should import them – as this could save a lot

of time.

58

UNIT

Topics:

The IDz Workbench

▪ Accessing and Organizing MVS Datasets

▪ Property Groups

▪ Miscellaneous Remote Systems Capabilities

▪ Browse Load Module

▪ zSystems Data File Editor

▪ Change Password

59

Browse Load Module

▪ Using IDz you can:
 Browse a load module

 Scroll and search

 Open multiple load modules in multiple windows

 View in Hex

 Filter and exclude lines

Note that File Manager has an excellent
Load Module/Browse and Analyze wizard

60

System z Data File Editor

▪ You can edit QSAM (sequential) files
– containing binary data

▪ Must map file to tdat
Workstation File Extension

▪ Can configure certain
Preferences:

61

System z Data File Editor - Options

Full Screen

Hex Edit

Easy record navigation

Several standard record editing
features

62
6262

Find/Replace in System z Data File Editor

▪ You can search and/or replace data - in ASCII or HEX

▪ Found word will be highlighted with light gray background color

▪ Can also search within a column range, within various record scope,

forward/backward, etc.

63
6363

Editing Data Files with Long LRECLs – IDz v14.1.1

▪ You may have data files with long LRECLs

▪ Prior to v14.1.1 – the Data File Editor was limited to 1,000 byte LRECLs

▪ Starting with v14.1.1 you can now edit files with long LRECLs
 Use Jump To: to navigate thru the records within a file

 Use the Move To: to navigate within a Record

64

Change Password

▪ You can change your mainframe password
anytime from the Remote Systems Context
Menu

Select your named connection

Select Change password

65

UNIT

Topics:

The IDz Workbench

▪ Accessing and Organizing MVS Datasets

▪ Property Groups

▪ Preprocessing 4GL Programs:

▪ Report Writer

▪ Telon

▪ DTB COBOL

▪ …

66

Preprocessing 4GL Code – for use with IDz

If your application was built using TELON, Report Writer, NetronCap, CA-MetaCOBOL;

1. You can still edit the 4GL code with IDz

2. However you will have to modify your property group, configuring it to call the 4GL
Preprocessor in order to remove the plethora of syntax errors because of the 4GL (non-
COBOL) reserved words

A Report
Writer
program
loaded
into the
editor

67

Preprocessing 4GL Code – Configuration Steps

1.Find your Preprocessor JCL and understand the
library, program and DD card names needed to
invoke it

2.Create a REXX to invoke the Preprocessor:

 Foreground/TSO

 Batch/JCL

3.Configure your Property Group to invoke the REXX

4.Open the code and from the Context Menu: “Identify
using configured preprocessor”

68

Preprocessing 4GL Code – 1. Preprocessor JCL

1.Find your Preprocessor JCL and understand the
library, program and DD card names needed to
invoke it

//TSOIDP JOB ,

// MSGLEVEL=(1,1),MSGCLASS=H,USER=&SYSUID,

// NOTIFY=&SYSUID,TIME=1,REGION=70M

//*

//STEP1 EXEC PGM=SPCRWCOB,REGION=70M,

// PARM='/RPTOPTS(ON),ALL31(OFF),STACK(,,BELOW)’

//*

//STEPLIB DD DSN=COBOLRW.V1R4M0.SCXRPREC,DISP=SHR

//SYSPRINT DD SYSOUT=*

//*

//PHSLIBA DD DSN=COBOLRW.V1R4M0.SCXRCOBA,DISP=SHR

//SYSUT1 DD UNIT=SYSDA,SPACE=(512,(1600,100))

//SYSIN DD DISP=SHR,DSN=xxx.yyy(&MEM)

//SYSINS DD DISP=SHR,DSN=xxx.yyy.zzz(&MEM)

REPORT WRITER PREPROCESSOR

REPORT WRITER LOAD LIBRARY

Additional //DD Cards required for Preprocessing

REPORT WRITER Parm File

69

Preprocessing 4GL Code – 2. REXX to invoke the Preprocessor

IBM provides a sample REXX for you to reference your 4GL Preprocessor JCL. You
will need to modify the REXX using:

▪ Passed Parameter options from your Property Group (next step)

▪ Standard REXX syntax

//TSOIDP JOB ,

// MSGLEVEL=(1,1),MSGCLASS=H,USER=&SYSUID,

// NOTIFY=&SYSUID,TIME=1,REGION=70M

//STEP1 EXEC PGM=SPCRWCOB,REGION=70M,

// PARM='/RPTOPTS(ON),ALL31(OFF),STACK(,,BELOW)’

//STEPLIB DD DSN=COBOLRW.V1R4M0.SCXRPREC,DISP=SHR

//SYSPRINT DD SYSOUT=*

//PHSLIBA DD DSN=COBOLRW.V1R4M0.SCXRCOBA,DISP=SHR

//SYSUT1 DD UNIT=SYSDA,SPACE=(512,(1600,100))

//SYSIN DD DISP=SHR,DSN=xxx.yyy(&MEM)

//SYSINS DD DISP=SHR,DSN=xxx.yyy.zzz(&MEM)

Note that this example queues and submits Batch JCL

Foreground TSO REXX processing is preferable

70

Preprocessing 4GL Code – 3. Property Group Modifications

Configure your Property Group to invoke the REXX

Output Library for post-
processed COBOL

REXX that invokes the
Preprocessor

4GL Program (next step)

LIB.QUAL.COBOL()

71

Property
Group

Pass DSNs to your
REXX as Parms

Execute the Preprocessor from the
REXX – Download the Postprocessed
code to the in-memory COBOL model
in the Editor

No syntax errors

4. Edit your 4GL Code - Invoke the Preprocessor

72

Retrieve Data Set - Add New Filter

▪ You can ask IDz to automatically create
a persistent MVS File Filter for the
Datasets found for your retrieve data
set name pattern

▪ The File Filter will be created within Remote Systems
Explorer ➔

73

Retrieve Data Set – additional options…

▪ You can remove Data Set names (DSNs) from the
Retrieved Datasets list without deleting the MVS files

Right-click over Retrieved Data Sets

Select Manage…

▪ Work with the DSNs

▪ Increase/Decrease the max number of DSNs

▪ You can also Remove individually selected DSNs from
the Retrieve Data Sets list (without physically deleting
the MVS files)

Remove… only clears the name

from the Retrieved Data Sets list

74

Retrieve Job – Fast Access to JES for all Batch Jobs in Your System

With batch jobs there are typically dozens to hundreds of jobs
in the JES/JES system and yet only a handful that you
frequently access

▪ To better support that usage model, starting in IDz Version
8.0 and later you can:

 Search for, and select Jobs into a list of "Retrieved Jobs" – by
Job number or Job name prefix

 Open a Job – directly from the search list

 (Optionally) Add Jobs into an automatically-created "Filter" for a
specified Job name pattern:

 Select (access) the Jobs from the:

▪ Retrieved Jobs filter

▪ Optional added filter

 Show the Retrieved Jobs in a table

 Automatically populate the Search entry field upon Submit

▪ As per Retrieved Data Sets, up to 10 Retrieved Jobs
are maintained in the list

▪ Your IDz z/OS installation must be at version 8.0 to use the
Retrieved Jobs feature

 With Retrieved Data Sets your IDz client installation has to be
at version 8.0 but the server version could be any supported
back-level (7.6, etc.)

Job Name, Number, Date/Time and Return Code

75

Find Member

▪ Extends functionality of Retrieve Dataset
to finding specific members within a PDS

▪ Member name pattern field pre-filled with
previous selection from Retrieve Data Set

Three use cases:

1. Fully-qualified DSN, partial member name
(with *wild-card):

 Press Enter to obtain member list

 Select member and press Open button

 Opens the file in the editor

 Click OK button

 Adds DSN to Retrieved Datasets

76

Find Member - Use cases continued

2. Fully-qualified DSN and
complete member name

 Open button opens file

immediately in editor

3. Fully-qualified DSN and
(brand-new member
name) Click Open

▪ Open button launches

Member Creation

confirm

77

Retrieve Dataset + Find Member – Hot Key Technique

▪ Easy access to any Dataset is an important aspect of z/OS development

▪ From Retrieve Data Set:

 Enter (type) a space or left-paren (- at the end of a DSN

 Immediately the Find Member dialog appears –
with an * wildcard filled in for you

Type a space after .COBOL

78

▪MVS File Filters organize datasets: Libraries, VSAM files, GDGs and QSAM files –
but not individual library members

▪You will probably want to create Filters for PDS members. This is done as follows:

1. Right-click over MVS Files and select: New > Member Filter…

2. Name the Member Filter

3. Type a member naming pattern

4. Select libraries that contain the members you
want added to the Member Filter

• My Data Sets

• Other existing Filters

• Other contexts (specific named libraries in your LPAR)

5. Your Member Filter will be created in “My Favorites”
along with any saved search queries

Library Member Filters –

IDzV14 and Later
1.

2.

3.

4.

79

Custom Filters for JES Job Lists

You can also create custom filters for:
z/OS UNIX Files

Your PC's (Local) Files

JES Jobs – Filter by Job including these criteria:
▪ Owner

▪ Name Prefix

▪ Status

▪ Class

▪ Output Class

▪ JES Job Filters can be very
helpful during application
test cycles

80

Other Common/Useful File Mapping Criterion String Examples

▪ Specify a string in the Mapping Criterion field. Data sets with
names matching this string will be included in the file mapping
construct:

Use ** as a wild card for matching across name level
boundaries (qualifiers) and * as a wild card for matching
within name level boundaries.

Use a period (dot) to separate dataset name qualifiers

▪ Examples
▪ DDS0001.TEST.SRCELIB matches one dataset

▪ **.TEST.SRCELIB – matches any dataset with any high-level

qualifier, with TEST in the 2nd level qualifier and with SRCELIB

in the 3rd qualifier

▪ **.**.SRCELIB – matches any dataset with any 1st and 2nd

level qualifier names – but with SRCELIB in the 3rd level

qualifier

▪ USER.**COB* - matches any data sets with a high-level

qualifier of "USER" that also has a low-level qualifier

containing "COB".

▪ **.GEN*.SRCE - matches any dataset with any name in the

high-level qualifier, any dataset with a name that begins with

GEN in the 2nd qualifier – and has SRCE in the 3rd level

qualifier

81

Mapping *** as the Default for QSAM Datasets

While most of your source files will probably have a common set
of naming conventions you can successfully map, your "data
datasets" will not

The best practices approach to solving this problem is to add the
criterion: *** mapped to tdat and transferred as binary ➔
 Add this new mapping to (or near) the bottom of the

Criterion list

 If you need to lower the priority of this "all DSNs" Criterion
first disconnect from your LPAR (System)

R
S

E
's

 D
S

N
 l
is

t
w

it
h

 *
*

*
/

td
a
t

a
s
 t

h
e
 d

e
fa

u
lt

 f
o

r
 u

n
m

a
p

p
e
d

 t
y
p

e
s

82

Accessing Copybooks - Assembler

Your programs most likely contain
copybook files.

To open these files using IDz:

Set your mouse-focus inside the
reference:

Right-Click

Select: Open Declaration

83

Other Copybook Development Facilities – Show Dependencies – Assembler

Besides opening copybook/include files, it can be
useful to understand the "build dependencies"
necessary for your Assembler program to compile
successfully

From z/OS Remote Systems:

Right-Click over the file you want to run the report
against

Select: Show Dependencies…

84

 Double-click an error

message. This loads the

program into the editor,

and selects the error line

Other Remote Systems Facilities – Remote Syntax Check – Assembler

Besides opening copybook/include files and providing a list of dependencies (Macros
and Copybooks), IDz can Remote Syntax Check your program – Assembling it on the
host, and returning a hyper-text linked list of errors to be resolved/fixed before doing
a Build.

From z/OS Remote Systems:

Right-Click over the file you want to Syntax Check

Select: Remote Syntax Check

85

Managing Property Groups

You may need to create new Property Groups,
delete them, export them for sharing among
team members, etc.

▪ You do this from the Property Group view

▪ From the Window menu, select:

Show View >

Other…

From the Show View dialog, type: property group

▪ Select: Property Group Manager

– This opens the view

From there you can open your remote or local
projects, and work with their property groups

86

TEST,M,OP,S,AG,XREF,NOT('¬'),OR('¦'),MAR(2,72,1)

Property Groups for PL/I

▪ Property Group specification for PL/I
work is no different than for COBOL,
with the following caveats:

You may need or want to over-ride the
default PL/I Compiler Options

▪ Example:

Your Listing Output Data Set DCB must
conform to the Enterprise PL/I compiler
version invoked in the PROC

▪ For PLI v3r2 use ➔

▪ Note that IDz will specify the proper DCB

for your listing dataset (by PL/I compiler

release) if you Allocate using Remote

Systems Explorer

87

Property Groups for Assembler

▪ Property Group specification for
Assembler is no different than for
COBOL, with the following caveats:

You may need or want to over-ride the
default Assembler compiler options in the
PROC:

▪ Example: NOLIBMAC, NOOBJECT, etc.

Instead of SYSLIB you specify your
Assembler Macro libraries

88

Generate JCL (1 of 2)

▪ If your Property Group is specified
for Build, you generate JCL for
z/OS:

COBOL Compile

Compile/Link

Compile/Link/Go

An option, but impractical

From z/OS Projects:
Select the program you wish to

generate JCL for

Right-click and from the Context Menu
select the option you want

(optional) You can over-ride the
generated dataset names

89

Generate JCL (2 of 2)

▪ The previous step will submit a job that
generates JCL.

▪When it finishes:

From the Remote System view:
Expand the PDS you generated in to

Open (double-click) the JCL member name (by
default, same name as the COBOL program)

90

Submit the JCL to Run the Job

▪With the JCL generated you can now submit it, to finish your build process

From the editor:
Right-click over the JCL

▪ Select Submit from the Context Menu

…or…

Type submit in the command line

▪ Press  Enter

▪Note the JOBID: - so you can
pick it up in the JES Filter

http://images.google.com/imgres?imgurl=http://blog.micfo.com/wp-content/uploads/2008/10/z10-system-ec.jpg&imgrefurl=http://blog.micfo.com/news-current-release/ibm-releases-junior-version-of-system-z10-enterprise-class-mainframe/&usg=__4thq6RobWUnb1l2ODC8VJDRlKNg=&h=1600&w=1280&sz=119&hl=en&start=2&sig2=06TL_p4W4NQi1XCpLzyzaQ&tbnid=MrIUswUyZ8BF8M:&tbnh=150&tbnw=120&prev=/images%3Fq%3Dibm%2Bz/10%26gbv%3D2%26hl%3Den&ei=hZJxStPkKs3bmQfetO32Cg

91

Additional JCL – Handling Unique Batch Job Requirements

▪ You can use the Procedures and Steps Additional JCL: entry area for PROCs or run-stream
JCL that is integrated into the eventual Compile JCL.

▪ You could use this for:

 Launching additional JCL processes

▪ Scanning source

▪ Promoting, etc.

 Adding DD cards to your Property Groups

▪ COPY xxx IN DDname syntax

▪ Here's an example of this:

 In Additional JCL we've added a DD card
pointing to a specific PDS with a DD that is
referenced in the COBOL COPY statement
enabling correct:

▪ Generate JCL

▪ Syntax Check

▪ Open/Browse Copy Member

92

Property Groups for –INC or ++Include Files

In order to support programs with –INC or ++INCLUDE, you will need to:

1. Add a step in your property group for a COBOL compile.

2. Add a step, and move it above the compile, using the UP button.

3. Change the name of the compile proc from ELAXFCOC to ELAXFCP1.

4. Change the default step name from STEP1 to PREPROC1

5. Add the preprocessor option LANG(COBOL)

6. Check "Supports Error Feedback" and enter
a valid qualifier from the XML error feedback
dataset

▪ Note - <HLQ> as a variable in the
error feedback dataset is not supported

See Slide Notes for

additional insights on this

IDz supported feature

93

JCL Substitution – 1 of 3

IDz provides two sets of JCL substitution variables – to make
certain development techniques simpler:
User Variables – which populate JCL SET statements, and which are commonly employed

when you are invoking your own user PROC from IDz

Global Variables – which allow you to substitute various values from the currently selected
(context) Remote Systems menu item (PDS or Member name, or HLQ, or your USERID,
etc.)

94

JCL Substitution – 2 of 3

▪ Typical Use cases for Global Variables include:
Preprocessor configuration

▪ Note: () = Use currently selected PDS member name ➔

COBOL Build and SYSLIB

Additional JCL

BIND SYSTSIN names

95

JCL Substitution – 3 of 3

▪ User Variables create JCL SET statements typically
required when you substitute your own Compile PROC –
use with IDz

▪ The easiest way to understand how these work is to
Generate Compile JCL and open the generated JCL

▪ Note that Global Variables are also passed
into the generated JCL

Everything should be in
Upper-Case

96

Substituting Your Own PROC for Option #4 – Property Group Build

▪ It is possible to use your own PROC for the "Generate JCL" option. The things that
need to be done would be to use the same variables that ELAXFCOC uses, as
these are generated by the workbench and (at this point in time) must be used as is

▪ The variables your proc has to accept are:

 CICS

 DB2

 COMP

▪ Then you could press the Edit << button
in the property group to change the
Proc to your own custom Proc name

