
®

IBM Software Group

®

IBM Software Group

© 2021 IBM Corporation

Jon Sayles, IBM - jsayles@us.ibm.com

IBM Developer for z Systems – for ISPF Developers

Module 2 – Editing COBOL Program Source

Last Revision Date: June 2021

DevOps

mailto:jsayles@us.ibm.com

2

Notices and disclaimers
© 2021 International Business Machines Corporation. No part of

this document may be reproduced or transmitted in any form

without written permission

from IBM.

U.S. Government Users Restricted Rights — use, duplication or

disclosure restricted by GSA ADP Schedule Contract with IBM.

Information in these presentations (including information

relating to products that have not yet been announced by IBM)

has been reviewed for accuracy as of the date of

initial publication and could include unintentional technical or

typographical errors. IBM shall have no responsibility to update

this information. This document is distributed “as is” without

any warranty, either express or implied. In no event, shall IBM

be liable for any damage arising from the use of this

information, including but not limited to, loss of data, business

interruption, loss of profit or loss of opportunity.

IBM products and services are warranted per the terms and

conditions of the agreements under which they are provided.

IBM products are manufactured from new parts or new and

used parts.

In some cases, a product may not be new and may have been

previously installed. Regardless, our warranty terms apply.”

Any statements regarding IBM's future direction, intent or

product plans are subject to change or withdrawal without

notice.

Performance data contained herein was generally obtained in a

controlled, isolated environments. Customer examples are

presented as illustrations of how those customers have used

IBM products and the results they may have achieved. Actual

performance, cost, savings or other results in other

operating environments may vary.

References in this document to IBM products, programs, or

services does not imply that IBM intends to make such products,

programs or services available in all countries in which

IBM operates or does business.

Workshops, sessions and associated materials may have been

prepared by independent session speakers, and do not

necessarily reflect the views of IBM. All materials and

discussions are provided for informational purposes only, and

are neither intended to, nor shall constitute legal or other

guidance or advice to any individual participant or their specific

situation.

It is the customer’s responsibility to insure its own compliance

with legal requirements and to obtain advice of competent legal

counsel as to the identification and interpretation of any

relevant laws and regulatory requirements that may affect the

customer’s business and any actions the customer may need to

take to comply with such laws. IBM does not provide legal

advice or represent or warrant that its services or products will

ensure that the customer follows any law.

3

Notices and disclaimers continued

Information concerning non-IBM products was

obtained from the suppliers of those products,

their published announcements or other publicly

available sources. IBM has not tested

those products about this publication and cannot

confirm the accuracy of performance, compatibility

or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products

should be addressed to the suppliers of those

products. IBM does not warrant the quality of any

third-party products, or the ability of any such

third-party products to interoperate with IBM’s

products. IBM expressly disclaims all warranties,

expressed or implied, including but not limited to,

the implied warranties of merchantability and

fitness for a purpose.

The provision of the information contained herein

is not intended to, and does not, grant any right or

license under any IBM patents, copyrights,

trademarks or other intellectual property right.

IBM, the IBM logo, ibm.com and [names of other

referenced IBM products and services used in the

presentation] are trademarks of International

Business Machines Corporation, registered in many

jurisdictions worldwide. Other product and service

names might be trademarks of IBM or other

companies. A current list of IBM trademarks is

available on the Web at “Copyright and trademark

information” at:

www.ibm.com/legal/copytrade.shtml.

http://www.ibm.com/legal/copytrade.shtml

4

Please Note

IBM’s statements regarding its plans, directions, and intent are subject to change

or withdrawal without notice and at IBM’s sole discretion.

Information regarding potential future products is intended to outline our general

product direction and it should not be relied on in making a purchasing decision.

The information mentioned regarding potential future products is not a commitment,

promise, or legal obligation to deliver any material, code or functionality. Information

about potential future products may not be incorporated into any contract.

The development, release, and timing of any future features or functionality described

for our products remains at our sole discretion.

Performance is based on measurements and projections using standard IBM

benchmarks in a controlled environment. The actual throughput or performance that

any user will experience will vary depending upon many factors, including

considerations such as the amount of multiprogramming in the user’s job stream,

the I/O configuration, the storage configuration, and the workload processed. Therefore,

no assurance can be given that an individual user will achieve results similar to those

stated here.

5

The IDz Workbench Curriculum

▪ Module 1 – IDz Terms, Concepts and Navigation

▪ Module 2 – Editing Your COBOL Programs

▪ Module 3 – Analyzing COBOL Programs

▪ Module 4 – Remote Systems – Connect, Navigate and Search

▪ Module 5 – Remote Systems – Dataset Access and Organization

▪ Module 6 – Remote Systems – ISPF 3.x, Batch Jobs and Job Management

▪ Module 7 – MVS Subprojects – Organizing PDS Members and SCM Checkout

▪ Module 8 - The Data Tools – SQL Code/Test and DB2 Table Access

▪ Module 9 - Debugging z/OS COBOL Applications

Optional Modules
▪ IDz/Endevor Integration Through CARMA

▪ BMS & MFS Map Editors

▪ zUnit – Unit Test

▪ Code Coverage – Test quality feature

▪ Code Review – Application quality feature

▪ Menu Manager – Integrate ISPF REXX Execs and CLISTs

▪ Web Services – SOA development

6

Course Assumptions

1. You know ISPF and have used it for at least two years, doing
production z/OS work in COBOL, PL/I or Assembler

Note that all of the workshops in this course are in COBOL – although
files exist that are Assembler, PL/I, REXX and other languages for you
to experiment with – time permitting

2. You have:

No experience with Eclipse or IDz

Some experience with PC tools

▪ You have used MS-Windows applications for at least one year

IDz installed and running on your workstation at version 8.0 or later

▪ Note that all ISPF discussion/examples and screen captures
assume IBM-installed ISPF product defaults – not any 3rd party
or custom Dialog Manager applications you may have installed
on your mainframe

7

How to succeed at this class…

IMPORTANT NOTE:

If while you are taking this class your find that you do not have the time to complete the
workshops between sessions:

Do what you can to follow the instructor's demo during class - and ask questions

Show up 15 minutes early to each session - ask questions, listen to others' questions

At the end of each session we will take 15 minutes to cover additional productivity topics

FWIW - You can re-take any module in this course during a scheduled Entry Level training class

Course

1. Attend class:

- Ask questions

- Follow the product workflow

- Identify the terms, concepts
& vocabulary - and relate the
IDz tools/techniques to ISPF

- Discover the productivity
features

Workshops

2. Do the exercises
in Labs.pdf:

- Iterate thru the workflow
and practice the tool navigation
(build eclipse muscle memory)

- Commit the U.I. and product
layout to memory

- Explore features both covered
and not covered during class

Application

3. Apply the
techniques to your
App-Dev projects:

- Master the product workflow
& navigation

- Gain more productivity and
speed over time, and use the
features to improve application
quality

https://developer.ibm.com/mainframe/idzrdz-remote-training/

8

Access to your shop’s custom
ISPF Tools and Procedures

z/OS Application
Development

Maintenance and
Production Support

Analysis

Design

Development
Construction

Build/Test

DevOps

Pipeline

Enterprise
Application

Modernization

Parallel/Agile Lifecycle

IDz Graphical Modeling Tools

Language Sensitive Editors
COBOL, PL/I, JCL, SQL,
Assembler, REXX/CLIST,
BMS,MFS Graphical Editors
Code Review

IBM Debugger & Unit Test
Code Coverage

File Manager/Fault Analyzer
DB2/SQL and IMS/DLI Tools

Batch Job Management

SOA/Web Services
API Integration

Continuous Integration

Remote and Local Search
IDz Static Analysis Tooling

IDz Across the Modern SDLC

9

UNIT

Topics in this module:

IDz for ISPF Developers

▪ The IDz/Eclipse Workbench – Tools and Choices

▪ Editing with ISPF Emulation

▪ Content Assist, Editing JCL

▪ Miscellaneous Features – Hot Keys, Annotations…

▪ Appendix 1 – The Java/Eclipse Editor

10

Source Editing COBOL Programs With IDz

There are two separate source file editors packaged with IDz:

1. Java/Eclipse style editors** – for PL/I, COBOL & JCL

▪ These provide an Eclipse-editing environment that you may have used in the

past for Java, .Net, Python, C/C++ development

2. LPEX – for COBOL, PL/I, JCL, Assembler, REXX/CLIST, etc.

▪ A PC-style editor with language-sensitive tools and features

▪ Contains ISPF emulation – activated by changing the LPEX editor profile

ISPF editing
using LPEX

 ISPF Command Line

**Appendix 1 covers the

Java/Eclipse style editors

11

Preferences: Selecting ISPF as your LPEX Editor Profile

▪ The LPEX editor provides a number of different
editor profiles you can use for development

An editor profile provides emulation of an editor product
you may have used with different software:

▪ TSO ➔ ISPF

▪ VM/CMS ➔ XEDIT

▪ UNIX ➔ VI or EMACS

▪ Etc.

▪ From IDz Window > Preferences you can change
editor profiles at any time

▪ Like all preferences, your editor profile decision is
saved in your Workspace

If you create a new, or use a different workspace you will
need to return to Preferences to customize your Editor
Profile

Note that the education_workspace has
set LPEX/ISPF as the default editor

12

Window/Preferences: Set LPEX/ISPF as the Default Editor

▪ From Window

Preferences

Click:

▪ LPEX Editor
And in the Editor profile list

– Select: ispf
Click: OK

Note that the default editor
must be LPEX

Set ispf as the default LPEX editor

13

IDz’s LPEX/ISPF offers the vast majority
the ISPF features for source file Browse,
Edit or ISPF View:

85 ➔ 95% compatibility

Note that initially, things will feel different
from your 3270-typing experience

ISPF Edit Emulation

3270-Split Screen …vs … IDz Multi-Windowed Edit Views

14

ISPF Editing Using IDz

Functional elements:
 Scrollbars

 Status line – showing:

▪ Current line

▪ Columns (COLS)

▪ Current column

 Command line

 Colorized source

Notes:
 Prefix area - for

ISPF prefix commands

 PF-key assignment

 The command line

works with ISPF commands

Type a space before/after ;

 Also:

- Shift + Enter pops your cursor from the code to the Prefix Area

- The Esc (Escape) key on your PC positions your cursor in the command line

- The Up arrow key retrieves the previously executed command line command

- ISPF command line commands are NOT case sensitive

X all ; f ws-ph last 20 50

Prefix
Area

Status line

Command line

15

ISPF PF-Key Mapping

Default PF-Key assignments

F1 – Help

F5 – Repeat Find

F6 – Repeat Change

F7 – Page Up

F8 – Page Down

F10 – Page Left

When you “stack” ISPF commands on the command-line you must
separate commands with a space between the delimiter ;

From Window > Preferences > General > Keys you can customize IDz’s
PF-Key mapping: I.E. Map F3 to Close+Save

Recommendation: Wait until after class to do this – There are Advanced and Optional
Workshops which document the steps customize your key mappings.

Note that starting with
IDz v14 you no longer
need to add a space

between the delimiters

16

ISPF Prefix Commands

▪ Most of the ISPF prefix area edit
commands are supported with same
functionality

▪ For a complete list of supported prefix
commands:

Place your cursor in the prefix area

Press F1

ISPF Prefix area

commands

Including: UCn and LCn

17

ISPF Command Line Commands

• Top … Bottom … ### - go to line number (no need to type L)

• F (Find)… C (Change)

• X (Exclude)

• X ALL MOVE - Exclude all lines with MOVE in it

• DEL ALL X - Delete all excluded lines

• DEL ALL NX - Delete all non-excluded lines

• ; character used to Stack Command Line commands
• Prior to v14.1.7 you need a space on either side of the semi-colon

For Help: Press Ctrl+Spacebar with your cursor on the Command Line

18

ISPF Command Line – Picture String Editing

IDz supports the following ISPF Picture String editing commands:

▪ P '#' Numeric characters

▪ P '@' Alphabetic characters

▪ P '$' Special characters

▪ P '=' All characters

▪ P '-' Non-numeric characters

▪ P '<' Lowercase characters

▪ P '>' Uppercase characters

Note that you can move the command line to the top. This is shown later in the course

19

Issuing Regular Expressions on the ISPF Command Line - 1 of 2

You can combine the power of Regular Expressions with ISPF Find/Change

F R'[^\x20-\x7E]' all -- Find non-display (Hex) characters

F R'[^\s]' 8 8 prev -- Find the nearest previous non-space character in column 8

X ALL ; F R'PATIENT|SURGERY|COST' ALL – Find patient, surgery or cost

X ALL ; F R'IF.*ERROR'– Find lines that contain both if and pat

Note that the (?i) operator allows either upper or lower case field Regular Expression find

Notes:

▪ Literals are case-sensitive unless
you use the (?i) operator (see above)

▪ Can combine w/ISPF command line
commands

▪ The F & R are not case sensitive

20

Issuing Regular Expressions on the ISPF Command Line - 2 of 2

▪ The Education Workspace contains a number of IDz "Snippets"

▪ One drawer of Snippets contains around a dozen Regex Snippets

Most Snippets are documented – and provide for variable/text-input

Most of the Regex snippets are formatted for use on the ISPF Command Line

▪ To use them:

Select and Copy the Snippet directly into the ISPF Command Line and
run it

▪ See Snippets topic in this module for more about their use

21

Preferences – ISPF Command Line Location

You can set your command to the top
– or bottom

▪ From Window

Preferences >

▪ LPEX Editor >

– Controls

Select top or bottom

Click: OK

22

Preferences –

Unreachable Code

IDz v14.1.6 introduced "Unreachable code" annotations (markers in the Editor) as an
option in Preferences:

From Window, Preferences, COBOL, Real-Time Syntax Checking

▪ Find Unreachable Code … Select Ignore … Click OK

23

Preferences – Setting Tab Stops and Margin A/B Visual Edges

1. You can Set Tab stops:

From Window, Preferences

▪ LPEX Editor

– Tabs ➔

Press OK

2. You can enable vertical lines (visual edges) in the
LPEX/ISPF editor:

From Window, Preferences

▪ LPEX Editor

– System z LPEX Editor

– COBOL Parser

 Check all three options

Press OK

24

Preferences – Saving Your Code in UPPER-CASE

There are a number of
useful “Save Actions”
available in
Preferences, that IDz
can invoke when you:

▪ Close out of an Edit
session

▪ Press:

Ctrl+S

Ctrl+F4

Ctrl+0

25

Preferences - ISPF/IDz – Setting a Black Editing Background

3. You can change the
Editor’s background
color

You can change

individual program &

text element colors as

well using LPEX Editor

Preferences.

Steps to do this are in

the Optional Slides in

this Powerpoint

26

Changed Code Markers

▪ When you make code
changes to files, IDz
annotates the changed
lines with light-gray
rectangles in the
Markers area – a white
vertical bar to the left of
the Prefix Area in LPEX

▪ IDz also retains the
original text for the
changed lines which you
can see by mousing over
the rectangles.

▪ In the case of deleted
lines, IDz marks the
beginning of the deletion
with an underscore in
the Annotations area

Changed line
Markers

Area

Line modifications➔

Original text values in changed lines

Deleted lines – viewed by mousing over the rectangle





Notes:
• When you save the file the Annotations are removed
• But you can undo specific changes by selecting: Replace with Local

History from the Context Menu
• The Changed Code Markers exist in the COBOL & PL/I editors

27

UNIT

Topics:

IDz for ISPF Developers

▪ Editing with ISPF Emulation

▪ Editing with “Hot Keys” (Keystroke Shortcuts)

▪ Content Assist

▪ Hex Edit

▪ Editing JCL

▪ Miscellaneous Features – Hot Keys, Annotations…

▪ Appendices – Optional Topics

28

The Parsed/In-Memory Version of Your Program

When IDz opens a file from the mainframe
it goes through a two-step process:

1. Download the source

2. Parse the source using “real-time
syntax validation”

Real-Time Syntax Validation uses an
In-Memory version of your program, to
verify and provide:

Language Syntax/Semantics

Content Assist - and other
advanced editor-tooling

Your Program code
…
PROCEDURE DIVISION
…
PERFORM PARA-3…
MOVE VARIABLE-1 …
COMPUTE VAR = …
….

29

Real-Time Syntax Validation

Validation Markers
▪ When the COBOL Validator does not

understand what you've coded, a
yellow warning triangle appears in the
prefix column on the far left of the
editor

▪ If you mouse over the column marker
you get context-specific language
coding "hints"

Syntax errors exist for:

Misspelled Keywords

 Invalid expressions

Missing operators

Missing or misspelled variable
definitions

The errors show up in the editors:

Left gutter-area

Right gutter-area

30

Syntax errors and the “advanced language functionality”

“Advanced Language Functionality” – consists of actions such as:
▪ Hover

▪ Content Assist

▪ Open Declaration

▪ Refactor

▪ Source:

 Identify Unreachable Code

Open Copybook

▪ Show in:

Program Control Flow

Data Flow

…

▪ If the syntax errors in your
source code are acute ➔
There will be lots of yellow

annotations in the left and in the
right-hand side (gutter areas) of
the source code editor

The above Advanced Language
Functionality features will be
disabled (will not work)

▪ Hovering over the syntax error or
annotation will typically provide a
hint as to what is wrong with your
code

31

Content Assist (Ctrl+Spacebar) – 1 of 2

Content Assist allows you to code statements by selecting values

from a list after typing partial text and pressing: Ctrl+Spacebar

The process:
 Partially type a:

▪ COBOL keyword

▪ Variable (including 88-level)

▪ Paragraph name

 Move your cursor immediately at the end of the text you wish to use Content Assist to complete

"immediately" = the very next byte after the text

 Press Ctrl + Spacebar

 Select the completion identifier from the list – which is sorted alphabetically within type

▪ Variables – either GROUP or elementary fields

▪ Paragraph labels

▪ Language keywords

Benefits:
Makes coding faster & easier

Reduces typos and syntax errors

 Particularly helpful for less-than-meaningful & lengthy COBOL variables and paragraph identifiers

Different Content Assist options

Group field ➔

Elementary field ➔

Paragraph ➔

Keyword ➔

32

Content Assist (Ctrl+Spacebar) – 2 of 2

Content Assist is “context specific”
The proposal list presented is relative to where your
cursor is focused:

▪ Program

▪ ENVIRONMENT DIVISION

▪ IDENTICATION DIVISION

▪ DATA DIVISION

▪ PROCEDURE DIVISION

– EXEC SQL

– EXEC CICS

– EXEC DLI

▪ This means that keywords & variables/paragraph labels will only
appear as proposals if your cursor is focused
inside the PROCEDURE DIVISION ➔

▪ Also, there are custom Templates ➔

These are covered in an Appendix in this module

33

Working With Source Code Containing

Hex Values

To view or source lines that contain
embedded Hex characters – or
to enter binary values in your
source files:

 Select the source line

 Right-click and select:

▪ Source > Hex edit line

You will see:
▪ Text: Source on selected line

▪ Unicode: An international coding standard where each character is assigned a unique numeric value

▪ Native encoding Cp1252: ASCII values

▪ Source encoding Cp037: EBCDIC values

You only see EBCDIC if you open a file from a z/OS Dataset

34

Copybooks, DCLGEN Includes on the Mainframe

With Content Assist – if the referenced variable resides in a
copybook/include – you will have to define a path to
copybook/include file.

On the host this is done either automatically (if you’re using
Endevor) – or through a “Property Group” – specifically,
via the SYSLIB entry in a Property Group. You will learn
more about Property Groups and SYSLIB in Module 5.

if you have access to a mainframe and someone has setup
your Property Group to point to the SYSLIB
concatenated library path you can:

▪ Right-click on a copybook and from the Context Menu
select either:

 Open Copy Member

 View Copy Member

 Browse Copy Member

You will need to define a library list & search path thru your libraries

This is done with a SYSLIB definition in a Property Group

Module 5 contains details on how to set this up

35

Other Context Menu Items – Source Options: Comment/Uncomment

When you have selected a line or some text in a line there are two useful
options under Context Menu:

Source >

Comment selected lines
▪ Comments out – with an asterisk in column 7 one or more lines of COBOL source

Uncomment selected lines

▪ Will uncomment all selected lines that are comments

36

Editing JCL

▪ LPEX provides some level of
smart-editing:

 Colorized source:

▪ Labels in black

▪ Comments in green

▪ Keywords:

– JOB/EXEC/DD - maroon

– Parameters in blue

 Keywords that are incorrectly typed
will be flagged when you move your
cursor to the next source line

▪ The Outline view shows your
EXEC steps, and is useful for
navigating large batch job
source

37

JCL Editing – Context Menu Features - 1 of 2

There are also some useful
Context menu options:

▪ Filter view – to allows you
to isolate specific areas of
your JCL to work with

▪ Submit – subs the Job to
the LPAR you are connected
- and allows you to:

Locate - navigate to the Job

Notify - receive a notification
when the Job finishes - as
well as a hyper-link to the job

OK - just submit the Job

▪ You will see the JES#

See Slide Notes

on v9

differences

38

JCL Editing – Context Menu Features - 2 of 2

Other useful Context
Menu options:
▪ Open member

You can select a QSAM file or a
PDS member (such as
PARMLIB - or report output) or
a GDG dataset – and open the
member directly into the editor

▪ Navigate to Data Set

Will select the dataset you've
focused your mouse on - in the
Remote Systems view (Module
4 in this course)

▪ Open JCL Procedure

Will open a JCL PROC directly
from within edit.

▪ Note that this is dependent on

you setting up the search path

in your "Property Group"

(Module 5 in this course)

39

JCL Templates – and Content Assist

▪ If you are using the JCL Editor (not LPEX) you can utilize Content Assist/Ctrl+Spacebar

▪ The initial set of proposals (JCL statements) is somewhat limited, but you can easily turn this
product feature into a valuable customized JCL editing facility by adding your own shop-specific
PROCs, MVS Utility code, etc.

See Optional Workshops for steps on how

to create and utilize the JCL Templates ➔

Ctrl+Spacebar

40

Editing JCL – Dedicated JCL Editor – 1 of 2

▪ If you are using IDz version9 you can utilize a
dedicated JCL editor to complete your work faster
with:

Collapsible Job Steps (EXEC statements)

Syntax errors, resolved with Quick Fix

 Toolbar editing options

Other options (next slide)

₴You can toggle back and forth between

the dedicated JCL and LPEX editors from
the Context Menu – or you can
Open With…

Hex Isolate Block

Edit Step Rectangle

editing

toggle

41

Editing JCL – Dedicated JCL Editor – 2 of 2

▪ Open a PDS member.

▪ Note that you can also browse a Load Module using this technique

 The Load Module opens in browse mode

42

The JCL Editor – Validate JCL (IDz v14)

1. Open a JCL file from Remote Systems

2. Right-Click and select Source > Validate JCL

You will be prompted
to run either a
TYPRUN=SCAN … or
a DSN validation

DSN validation errors ➔

43

Editing JCL – Can I access 3rd Party JCL Tools from IDz?

Many shops use JCL standards tools such as:

▪CA-JCLCHECK – Computer Associates

▪PRO/JCL – Allen Systems Group

▪ JCLPlus** - SEA Soft

▪SmartJCL** - HorizonT

** JCLPlus & SmartJCL can be integrated into IDz through vendor
supplied plug-ins

Other JCL 3rd Party tools & products can often be integrated into
IDz using Menu Manager – an IDz feature that installs with the
product

▪ Note that most often – Menu Manager integration provides a
batch/solution – not a TSO Edit Macro

https://community.ibm.com/community/user/ibmz-and-linuxone/viewdocument/menu-manager?CommunityKey=b0dae4a8-74eb-44ac-86c7-90f3cd32909a&tab=librarydocuments

44

UNIT

Topics:

IDz for ISPF Developers

▪ Editing with ISPF Emulation

▪ Editing JCL and Content Assist

▪ Miscellaneous Editing Features –

Hot Keys

UPPER CASE All

Local History

Bookmarks (Annotations)

Editing non-IBM source languages

▪ Appendix 1 – The Java/Eclipse Editor

45

Keyboard Editing versus Mouse-based

You're probably getting the picture that there are two distinct editing "modes"
using IDz:

1. Using your mouse:

▪ Navigation

▪ Highlighting

▪ Selection

▪ Accessing IDz tools ➔

and your keyboard for content editing

2. Using the keyboard:

▪ Navigation

▪ Highlighting

▪ Selection

▪ Accessing IDz tools

▪ Content editing

▪ Most developers feel as though it's worth mastering mouse-oriented development – as this will
not only improve your z/OS work, but also modern-development tasks (Creating Web Services,
Building contemporary web user interfaces, etc.)

▪ But the IDz editor also supports Hot-Keys for power-typing

46

Hot-Key Combinations

 The IDz editor supports an extensive collection of
Hot-Key combinations:

You can see the complete list of Hot-Keys at any time
during your edit session by pressing: Ctrl+Shift+L ➔

▪ Black entries are activated

▪ Gray entries are unavailable in the current editing context

Hot-Keys are case-IN-sensitive

▪ Alt+C ➔ Alt+c

▪ We will cover the essential Hot-Keys starting on
the next slide:

Navigation

Select Text

Copy/Paste Text

Line Options

Miscellaneous

Ctrl + Shift + L

47

IDz/ISPF Hot-Key Combinations – Part 1

IDz Hot Keys Description ISPF Equivalent
Ctrl+Home Top of file Max PF7

Ctrl+End Bottom of file Max PF8

Ctrl+2 Open same program in split-screen view PF2 - then open the source member

Ctrl+0 / Ctrl+F4 Close edit session PF3 (or CAN on the command line)

Ctrl+S Save edit session Save

Ctrl+P Print current file N/A

Ctrl+T Make current line top line in the editor PF7/PF8 with CSR as your paging option

PgUp Page up one physical page of source at a time PF7

PgDn Page down one page of source at a time PF8

PF7/PF8 Page up/down one page of source at a time PF7/PF8

Up/Down –

Right/Left Arrows

Scroll one character at a time through your source:

Up/Down – Right/Left

Up/Down/Right/Left Arrows

Ctrl+PgDn Page Right PF11

Ctrl+PgUp Page Left PF10

Ctrl+L Open Line Number feature N/A

Ctrl+G Filters out all COBOL code except the four divisions Prefix area exclude

Ctrl+W Show all filtered lines RES

Shift+F10 Show the Context (popup) menu N/A

Ctrl+Shift+L Show the list of all Hot-Key Combinations N/A

Ctrl+J Returns to the previous (most recent) edit in your source file N/A

Escape Cursor jumps to the command line N/A

48

IDz/ISPF Hot-Key Combinations – Part 2

IDz Hot Keys Description ISPF Equivalent
Ctrl+F Opens Find/Replace Dialog Find/Change ISPF Commands

Ctrl+Z Undo last change UNDO (if Recovery On)

Ctrl+Y Redo last change N/A

Shift+Down Arrow Select text from the current cursor position downward in the source
file

Prefix Area Command: CC … CC PF7

Shift+Up Arrow Select text from the current cursor position upward in the source file Prefix Area Command: CC … CC PF7

Ctrl+Shift+Right Arrow Select word N/A

Shift+End Select text from cursor position to end of line N/A

Shift+Home Select text from cursor position to beginning of line N/A

Ctrl+A Select all text in the source file Prefix Area Command: C99999

Alt+U Unselect selected text N/A

Ctrl+C Copy currently selected source lines Prefix Area Command: C or CC

Ctrl+X Cut currently selected source lines Prefix Area Command: M or MM

Ctrl+V Paste currently copied source lines Prefix Area Command: A or B

Ctrl+J Find previous edit change N/A

Ctrl+Right Arrow Locates cursor at the beginning of the next COBOL word N/A

Ctrl+Backspace Delete Current line Prefix Area Command: D

Ctrl+D Repeat Current line Prefix Area Command: R

Ctrl+/ or Ctrl+\ Comment or Uncomment current line N/A

Ctrl+Enter Insert new line Prefix Area Command: TS or I

Ctrl+Delete Delete (Truncate) to end of line Erase (EOF) key

F5 and F6 Find and Repeat Find, Change and Repeat Change PF5 / PF6

49

Common Editing Techniques – Split & Join Lines

Split and Join lines:

1. Split lines:

Position Cursor

Press: Ctrl+Enter

2. Join lines:

▪ Position Cursor

▪ Press Alt/J

Leading blanks can cause line joins to shift to the right (moving text past column 80).

A better solution for joining lines might be:

Select and cut the text to join ➔

Paste the text



50

Common Editing Techniques – Move/Overlay to Join Lines

Using the ISPF Prefix commands M / O is an effective way to join two lines.

Enter the "O" on the line you wish to join "to"

Enter the "M" on the line you wish to join

Press  Enter

You can also use traditional GUI editing techniques…

▪ Starting on the top line – hold the Shift key down and press the down
arrow key on your PC to select the line below

▪ Press the Delete key

51

Common Editing Techniques - Erase(EOF)

You're probably used to Erase (EOF)

Using IDz press: Ctrl+Delete

Other useful PC-key combinations:

1. Select text to the end-of-line

Shift+End

2. Move your cursor to the end and beginning of a statement

Position your cursor inside a statement ➔

Press

▪ End

▪ Home

Ctrl+Delete

52

Common Editing Techniques - Undoing Mistakes (undo & Ctrl+z)

Options for undoing source code edits:
▪ Press: Ctrl+z

Undoes the most recent editing change in a LIFO order

Note that after you save a module, if you are still in the module, Ctrl+z is still active and you
can Ctrl+z out all the changes even though you just saved the code

▪ Type: undo on the command line

▪ Use Compare or Restore from Local History

See slides in this module on “Local History”

▪ Use the eclipse last-modified line annotation

Mouse over the gray annotations in the left-hand gutter area

Move your mouse into the pop-up annotation

Press Ctrl+A ... then Ctrl+C

53

Changed Code (Modified Line) Annotations

▪ When you make code
changes IDz annotates
the changed lines with
light-gray rectangles in
the Annotations area – a
white vertical bar to the
left of the Prefix Area

▪ IDz also retains the
original text for the
changed lines which you
can see by mousing over
the rectangles.

 You can move your
mouse into the yellow
rectangle, Ctrl/A then
Ctrl/C to copy the original
text

 This technique allows
you to undo specific
changes - not just undo
or Ctrl/Z changes in the
reverse order they were
made in your source

▪ In the case of deleted
lines, IDz marks the
beginning of the deletion
with an underscore in the
Annotations area

Changed line
Annotations

Area

Original text values in changed lines

Deleted lines – viewed by mousing over the

rectangle





Note that:
• When you save the file the Annotations are removed
• You can return a file to its previous version by selecting: Replace with

Local History from the Context Menu

54

Optional Topic – Local History – 1 of 3

▪ IDz provides historical versions of your saved source file changes

▪ This allows you to:

Return a source file to a
previous version

Compare a source file with a
previous version

▪ To compare versions:

From any file open in the
editor

▪ Right-click

▪ Select: Compare With

▪ Local History…

▪ To replace versions:

From any file open in the
editor

▪ Right-click

▪ Select: Replace With

▪ Local History…

55

Local History – Source Programs – 2 of 3

From the Compare screen
▪ Double-click the

Revision time

 This is down at the
bottom of the screen

 This loads the
selected version
into a file compare
frame

▪ Verify the version's
changes

▪ Click Replace

… or …

Cancel

56

Local History Preferences – 3 of 3

You can specify how long IDz maintains Local History files

From Window > Preferences

▪ Expand General

▪ Expand Workspace

▪ Select Local History

▪ Click OK to save

57

Optional Topic –

Uppercase all
Many mainframe shops require

COBOL keywords and
variable names to be in
Upper Case.

A Context Menu option will do
this without changing the
case of:

Literals

Comments

Value clauses.



Note that Variable Names, Paragraph Names

and Keywords were changed to Upper-Case –

but not Value Clauses, Comments and Literals

58

Editing Source Languages Other Than: COBOL, PL/I, Assembler

▪ In this section of the course you have seen that IDz provides extensive language-specific tools for work on:

 COBOL, PL/I, Assembler, JCL, SQL – you will learn more about this in the next module

 And there are many others supported by LPEX (REXX, Fortran (!!), Java, RPG, etc.)

▪ But, what if you needed maintain or develop in a language other than one of these?

▪ You have all of the ISPF LPEX editing features (you've learned about) and in addition you have access to:

 Multiple Eclipse views

 Search - with Regular expressions, incremental find, search AND'ng and OR'ng for complex search
requirements - and Pinned search results (recall for doing Data Flow Analysis)

 Local History

 File compare

 Changed and deleted lines in the editor

 Rectangle vs. line source selection

 Etc.

▪ And (as you will see in the next few sections of this course) you also have all of IDz advanced
functionality specific to z/OS datasets:

 The ability to transfer SAS programs:

▪ From LPAR to LPAR

▪ From PC --> Mainframe --> PC

 The ability to do things like the following, with concurrent and GUI development tools:

▪ Edit a program

▪ Save changes

▪ Submit compile JCL without having to open a JCL member – and without having to close your edit session

 The ability to work with MVS Subprojects – including work offline to save development MIPS

59

Optional Topics and Workshops For This Section

▪ If you have time, and are comfortable with the material just
covered, feel free to read through the Optional Topic slides –
and/or try out the techniques shown using IDz and the sample
programs.

▪ The development techniques covered in these slides can make
your standard z/OS Maintenance, Production Support and
Development tasks much easier, and make you more
productive.

▪ So at some point – perhaps after class consider returning to
these optional topics to build out your IDz skills.

▪ Also – if you have access to IDz installed on your mainframe
and time permits, please try out the techniques shown using
your own application source.

60

Spell–Checking Program

Comments

You may want to Spell-Check

program comments.

Here’s how:

▪ Right-click inside the file

during edit, and select:

Open With ➔ Text Editor

 Note that from Preferences, you

can modify the Text Editor’s

spelling options

61

Spell–Checking Comments in Large Programs

The IDz Text Editor max’s out at 9,999 errors per/file. Here’s how to Spell Check comments in a large program:

▪ Set the Maximum number of problems reported… to: 9999

▪ Open your source file and from the Filter view – filter to Comments

▪ Select all (Ctrl+A) and Copy (Ctrl+C) all of the Comment lines

▪ Paste the copied Comment lines into a new source file (you might need to create a new file)

▪ Open the new source file in the Text Editor – and stack the windows next to each other

▪ From the Text Editor window, you can use the Context Menu to Quick Fix spelling errors

62

Filters in preferences and other places

You can use the filtering areas of many IDz tools to

streamline access to target features

From Window > Preferences type the following into the
filter area and press  Enter

▪ editor

▪ HLASM

▪ sql

… note the effect these filters have on the Preferences shown

From Window > Show view > Other…
type the following into the filter area and
press  Enter

▪ rem

▪ ta

▪ cics

▪ z/

Filter ➔

63

Hard Core ISPF Editor User Interface Colors

▪ If you really want to modify the look and feel of IDz you can get very close to a 100%
green-screen look and feel, using the LPEX Editor Preferences on the previous slides

3270 Emulator

64

Optional Topic - Changing Editor Colors to "Green Screen"

▪ You might also wish to customize your editor view colors – to closely match those you use on
ISPF. This is easy to do, and the steps are shown on the next slide.

 Note that the screen captures throughout the rest of this course are IDz default, not customized

65

Optional Topic - Changing Editor Colors

▪ First – open any file in the editor (StartApp.cbl will do)

▪ Next, from: Window > Preferences LPEX Editor Appearance

Set customized attributes. After each operation, click: Apply and look at your
editor view

▪ Palette: Black

▪ Current Line – click: Foreground, and from the Color Palette, select aqua (or green),

then click: OK on the Color Palette

▪ prefixArea – click: Foreground, and from the Color Palette, select aqua (or green),

then click: OK on the Color Palette

▪ selection – click: Foreground, and from the Color Palette, select Black. Click

Background and from the Color Palette select: Gray then click OK on the Color Palette

66

Steps - Changing Editor Colors

▪ From: LPEX Editor, Parsers, Parser Style

Set some more customized attributes.

After each operation, click: Apply and look at your editor view

▪ Ensure that Document parser is set to: cobolZosSqlCics

▪ Set the following Style attributes (Foreground) to aqua (or green)

– User defined word

– Reserved word

– Function

– Picture string

– Non-numeric literal

– Comment

– Numeric literal

– Sequence number

▪ Click OK ➔

▪ If you don't like your changes, there's a
"Restore Defaults" button
you can click that returns the editor to the install colors

Under: Preferences, LPEX Editor, Parsers, Parser Style and LPEX Editor, Appearance

Note also that, if you would like to customize the above COBOL program elements to different colors
(instead of all aqua or green) feel free to return to the Parser Style attributes, and experiment with different
Foreground colors for User defined word (variables and paragraph names), etc.

67

From: Window > Preferences > LPEX > Appearance

▪ Select Change Font…

▪ Press Apply then OK

Optional Topic - Changing the LPEX Editor’s Font Sizes

68

ISPF Command Line Commands – COBOL Source Numbering

▪ IDz's statement numbering is slightly different than ISPF

▪ The default source mode is without COBOL numbers. You can display your
code with the following options:
num on – like ISPF – turns the Prefix Area into 6 digit sequential line numbers,

incremented by 100

num cobol – turns columns 73-80 into COBOL line numbers

num off – returns the Prefix area to line numbers incremented by 1

unnum – turns off the line numbers in columns 73-80

1. For both num off and unnum you must be in num on mode (like ISPF)

2. The commands must entered in all caps NUM OFF or in lower-case num off

COBOL

Line

Numbers

Cols
73----80

See Slide Notes

For additional

Info on COBOL

Numbering



69

Optional Topic – Save As…

▪ Sometimes you will want to save a file “as” – to a new dataset.

▪ Steps:

1. From the File menu, select Save As…

2. From the Save As dialog:

▪ Select the platform you wish to save the file within

▪ Name the new file

▪ Press OK

70

Optional Topic – Emulating a

Cross-Hair Cursor

▪ Some developers like to do
their editing using a cross-
hair cursor to provide.

▪ To provide this, from:

Window > Preferences

LPEX Editor > System z
LPEX Editor

Controls

 Enable a vertical line that …

You could also consider changing

the background color of the

current-line in order to bring out

the cursor position more acutely

71

Optional Topic – Finding COBOL “Semantic” Syntax Errors

The IDz internal parsed
model of your source
code validates basic
“spelling-level”
COBOL syntax.

You can find additional
(“semantic-level”)
COBOL syntax
errors:

▪ Right-click in the code,

▪ And from the Context Menu,
select

Syntax Check ➔ Remote

Note that you may need
to open the Remote Error
view. Do this from:
Window ➔ Show View ➔

Remote Error List



Note 2: There is a Local

Syntax Check option.
This requires you to have
opened the source from
(what is called) an MVS
Subproject – a topic that
we’ll cover later in the
course

Note 1: This option

requires you have your
“Property Group” file
setup correctly – and for
the source to be opened
from the mainframe

72

Concepts – Editing COBOL Programs With IDz's COBOL EDITOR

▪ The COBOL editor has a number of very powerful features

It is very eclipse-centric (i.e. behaves like Java-style editors)

Contain a large number of leading-edge coding features:

▪ Collapsing/Isolating code sections, source formatting, more visual editing

experience

The COBOL editor is well-suited for developers with little-to-no ISPF
experience, and is covered in the Appendix of these slides

▪ But if you wish to try the COBOL editor:

Using IDz v8.5

▪ Right-click your source file name

▪ Select: Open With > COBOL Editor

Using IDz v9

▪ You can open the COBOL editor

from the Context Menu:

V9 Context Menu ➔

73

Switching from LPEX to the COBOL Editor

If you are using IDz v9 or later, you may switch from one editor to another
from within the Context Menu

From within edit on a file:

▪ Right-click

▪ Select:

Open With

COBOL Editor

▪ If/When you’re using the COBOL editor to switch to LPEX:

▪ Right-click

▪ Select:

Open With

System z LPEX Editor

74

Optional Topic – Block (Rectangle) Edit – LPEX – 1 of 2

▪ Sometimes it's useful to select and copy a block of source (essentially, a

rectangle of text … for example: a group of PIC clauses). LPEX supports block copy

Steps to copy a block of source:
1. Open a COBOL program and locate a block of text to copy

 Position your mouse cursor at line 1/column 1 (top left corner) of the block to be
copied

2. Press Alt+R – to get into Block-copy mode

3. Move your mouse – or the PC arrow keys to select the block

Top left corner
of the block

75

Optional Topic – Block (Rectangle) Edit – LPEX – 2 of 2

4. After selecting your rectangle click your mouse, or use Alt+Left-Click to
position the cursor to line 1/column 1 of
where you want the block copied…

5. Press one of the following:

 Alt+C to copy/insert the block to the new location

 Alt+M to move/insert the block

 Alt+Z to overlay the new location with the
contents of the block

▪ The Context Menu also provides a reminder of the above block copy
options:

Top left corner of

the block “copy to”

area

76

Optional Topic – COBOL Editor Block (Rectangle) Edit

The COBOL Editor’s Block Editing is considered easier to use than LPEX’s

Steps:

▪ Open the COBOL Editor

 Right-click on the file and select: Open With > COBOL Editor

 Remember that if you’re using IDz v9 you can use the Context Menu during an
LPEX edit session to Open With the COBOL Editor (and vice versa)

▪ From the toolbar, click the icon that toggle block selection mode

▪ From there you can:

 Left-click and drag to select a rectangle

 Cut/Copy/Paste the selected block

▪ Context menu

▪ Hot keys

77

Optional Topic and Workshop – Nested Logic Selection with Ctrl+M

▪ In understanding complex nested IF statements, it can be extremely useful
to be able to visualize each sub-division of the conditional logic – Ctrl+M
can help with this.

Position your cursor on a bracket (any kind: ()[]{}) – and press Ctrl-M

LPEX finds the balanced bracket and selects anything between the two

 To try this out:

Open PATLIST.cbl

From the command line, do a find on CTRL+M

In the nested IF statement, position your cursor outside of the open parenthesis
and press Ctrl+M. Try this again, starting with an inner-parenthesis

78

Optional Topic – Sorting Data Within a File – Based on Column Data

▪ You may wish to sort the data inside of a file while editing. Here's how you can sort
using LPEX and IDz:

Switch to the lpex editor profile:

Open SAM1V.cbl

From the Context Menu go to Preferences

Switch to (select) the lpex editor profile ➔

Click OK

Example: Sort SAM1V.cbl

On the command line, type the following:

sort columnRange 12 20

Scroll down through the sorted file. Note that spaces (ASCII X'20') sort to the top

Optionally try other sorts: sort columnRange 12 20 descending

▪ Note that LPEX commands are case sensitive

▪ See slide notes for an example of sorting on two columns

Switch back to the ISPF editor profile:

From the Context Menu go to Preferences

Switch back to the ispf editor profile ➔

Click OK

79

Optional Topic – Sorting Data Within a Column Range

▪ You can also sort just the data inside of column-range

▪ For this you can use the ISPF editor

Make sure that ISPF is your editor profile:

Open your program

Enter: BNDS xx yy on the command line

Type Sort

▪ Optionally can sort descending: sort D

To set BNDS off type: bnds

on the Command Line

80

Optional Topic – Navigating the Eclipse Views – with Hot Keys

▪ Some developers truly prefer to stay "hands on" with their keyboards

▪ In order to fully do this, you need to know how to navigate Eclipse with
hot-keys. Here's how:

Ctrl+F7
Opens a pop-up, that allows you to select a view

Ctrl+F6
Provides the same facility, but to select one of several open edit sessions

 Press Ctrl+F6

 Use the arrow keys to select an editor session

 Press Ctrl+F7

Use the arrow keys to select a view ➔

81

Advanced Topic - Custom User Key Actions – 1 of 2

Preferences > LPEX Editor > User Key Actions
You can setup combinations of Ctrl/Alt + a

function key to customize the IDz/LPEX
editor functionality

1. In the Key area, type (lower case):

a ➔ Alt … or …

c ➔ Ctrl

- (dash to connect to keys)

f1 ➔ f12

Or any other key that isn't already in use or
mapped to some LPEX function (recall that
Ctrl+Shift+L will list all in-use hot keys)

2. Select an Action from the
drop-down list

3. Click Set (don't forget this ☺)

4. Click OK

Test out your functionality in the LPEX editor

Recommendation:
Set c-c (Ctrl+c) to Copy

Example to emulate M/PF8 M/PF7 functionality

82

Advanced Topic - Customizing your Hot Keys – 2 of 2

▪ Available from Window > Preferences > LPEX Editor > User Key Actions

▪ Feature:

 You can define custom "User key
Actions" for any LPEX Action in
the drop-down list

 This allows you to assign hot
keys to things such as:
▪ Filtering what's selected

▪ Open the Hex Editor

▪ Steps:

 Type the Keys
▪ Lower-case

▪ Separate with dashes for multiple keys

 Select the Action from the drop-
down list

 Press Set then click OK

▪ Notes:
 You can only map keys to Actions in

the list

▪ The Help topics provide a good

explanation of the available editor

actions

 Keys that are already mapped by
Eclipse or LPEX either won't be able
to be mapped or must be re-mapped
with Keys (next topic)

▪ However, you can often use multiple

keys to support a function (see

example)

83

Advanced Topic - Re-Mapping Keys – 1 of 2

▪ Available from Window > Preferences

▪ Steps:
- Select the key from the Command

column

- Click on the field area for Binding.

- Press the key or key combination that
they desire to set for that command

- Select a category in the When drop-
down list

- Click Apply

- See screen shot on next slide for an
example of mapping Ctrl+Q to newline
in Host Connection Emulator

▪ Notes:
 You will not be able to map the CTRL key

itself since Eclipse does not allow the CTRL
key to be remapped.

 You can only remap a combination of the
CTRL key + some other key

Notes:
1. if you have mad java skills, you can even define

custom Actions as Eclipse plugins. However this
topic is well beyond the scope of the course.

2. The Alt and the Ctrl keys are considered
“Modifier Keys” by Eclipse – and cannot be used
by themselves as “actions”

84

Advanced Topic – Re-Mapping Keys – 2 of 2

▪ Map c-numpadEnter to the  Enter key

1. From Window > Preferences > General > Keys

2. Type: enter into the keys filter and select: c-numpadEnter

3. Click your mouse into the Binding field and press the  Enter key

4. Open the When: combo-box, and select LPEX/ispf

5. Press OK – and test your customized key mapping by editing a source file

2

1

4

2

3

85

Optional Topic - Creating New Programs Using Templates

▪ There are several ways to create new programs from scratch

▪ The "Best Practice" method is to use IDz's COBOL program templates

 From File, New > Other…

…in the Wizards panel,

- Type: cobol

- Select COBOL Program

- Click Next >

…in the COBOL Program panel,

- Name the Program

- Click Next >

▪ Finally you specify which folder to create the program:

 Select the cobol folder

 Click Next >

86

Creating New Programs From Templates

– continued

You can add CICS or DB2 template
sample code to your new program:

Check the features you'd like

Click Finish

▪ A few things happen:

Your new program is created ➔

The Snippets view is opened

▪ Snippets information can be found

in Appendix B of these slides

 Note that you can customize the

templates used to create new programs

From Window, Preferences, select:

COBOL

– Code Templates

– Features

87

Advanced Topic – Create a New Program Targeted to z/OS

▪ You can create new programs using the New COBOL Program wizard,
provided you are connected to a z/OS LPAR, and that you have created a
z/OS Project/MVS Subproject (see Location: in the screen capture below).

MVS SubProjects

and z/OS Projects

are covered in

another module of

this course

88

Creating New Programs Using Copy/Paste

Instead of using pre-defined templates, you may be used to "cannibalizing" pre-
existing programs, by creating a new PDS member from an existing program, then
editing OUT the code you don't need for your new development work.

+ Pluses:

+ Fast

– Minuses:

- Must clean-up PDS member fragments

- More difficult with SCM (instead of PDS)

- Most useful if copying either the entire program or one long contiguous

block of code

There are two development patterns that you will want to employ to do this with IDz

1. Create a new empty file – saved as <newFileName>.cbl

2. Open a second (existing) COBOL program and

3. Copy all of the existing program into the new file.cbl

…or…

1. Create a new empty file – saved as <newFileName>.cbl

2. Open a second (existing) COBOL program and

3. Copy/Paste only specific portions of the existing program into the new file.cbl

Both have their uses, so let's have a look at how to proceed with them

89

Creating New Programs Using Copy/Paste Code Blocks

Often it's easier to create new programs from non-contiguous blocks of code,
cannibalized from an existing program.

 Example – grab specific SELECT/ASSIGNS, Useful WORKING-STORAGE fields not
part of COPY or INCLUDE, a (couple of) paragraphs or a lengthy computation, etc.

This is easily done combining mouse-based copy/paste with the previous new
program technique or (even better) starting from a Template:
1. Open an existing to-be-copied program in the editor (we'll call this: From-Program)

2. Start from a program template, or create a new empty program as before (we'll call this: To-Program)

3. Maximize your Editors

4. Find and Select copy source within: From-Program

5. Paste the copied source into the appropriate area of: To-Program

6. Scroll down and find the next piece of code to copy in From-Program – repeat steps 5 & 6

90

Optional Topic - JCL Templates and Content Assist – 1 of 2

From Window > Preferences > JCL > Templates

 Click New…

Add this template

//ALLOC EXEC PGM=IEBGENER,COND=(0,NE)
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT1 DD DSN=DDS0001.TEST.UNCATLG.DATA2,DISP=(NEW,CATLG,DELETE),
// VOL=SER=DMEPG1,UNIT=3390,SPACE=(TRK,(1,1),RLSE),
// DCB=(LRECL=80,BLKSIZE=800,RECFM=FB,DSORG=PS)
//SYSUT1 DD DSN=DDS0001.TEST.UNCATLG.DATA3,DISP=(NEW,CATLG,DELETE),
// VOL=SER=DMEPG1,UNIT=3390,SPACE=(TRK,(1,1),RLSE),
// DCB=(LRECL=80,BLKSIZE=800,RECFM=FB,DSORG=PS)
//SYSUT2 DD DSN=DDS0001.TEST.UNCATLG.DATA4,DISP=(NEW,CATLG,DELETE),
// VOL=SER=DMEPG1,UNIT=3390,SPACE=(TRK,(1,1),RLSE),
// DCB=(LRECL=80,BLKSIZE=800,RECFM=FB,DSORG=PS)
//

Use this code

91

Optional Topic - JCL Templates and Content Assist – 2 of 2

From IDzClass, from the - jcl folder, open BR14.jcl

▪ Open a new line somewhere in the file

▪ Press Ctrl+Spacebar

▪ Select your IEBGENER JCL template

92

Optional Topic – Default and Template "Proposals"

▪ IDz's Content Assist has been improved to provide access to customize-
able "templates" – code proposals you can add into your workspace to:

Meet corporate standards

Make common coding patterns part of Content Assist (i.e. calls to common
corporate sub-routines, use of common variable groups, etc.)

Improve productivity (cut down on typing)

▪ To access the Content Assist Template Proposals, hit Ctrl+Spacebar a 2nd

time - from within your code, where you'd normally hit Ctrl+Spacebar

This will bring up a deeper – and sometimes different list

▪ Examples of Content Assist Template Proposals:

SQL statements

SQL statements with access to DB2 tables, views, column-names, etc.

Customized templates (from preferences)

▪ Your customized statements

▪ In-the-box templates (from IBM) at Level 2 of Content Assist

93

Optional Topic - IDz's Customize-able Content Assist Templates

▪ In version 8.0 – you can
customize the template
"proposals" offered in the
Content Assist

▪ You access this from:
 Window

▪ Preferences

– COBOL

– Templates

▪ Customization options
include:

Modify (Edit…) an existing
template

Add a (New…) template

Remove a template

Export all templates – so that
other team members can
share

 Import…

Restore Removed (un-delete)

Revert to Default (un-modify)

You can customize a template's:
- Content - Pattern - Context - where it's
applicable - Description – hover help

94

Optional Topic – Template Content Assist

▪ From: Window, Preferences, COBOL, Templates

View (scroll through) the existing Templates

Close preferences

Steps:
▪ Open your program in the editor

▪ Using the Outline view, find a paragraph

▪ Insert a new (blank) line immediately below the paragraph label

▪ Type: PER and press Ctrl+Spacebar

▪ Press Ctrl+Spacebar a second time, and select PERFORM X TIMES

▪ For "arg1" in the list:

 Double-click and delete the text

 Press Ctrl+Spacebar two times – to bring up a list of variables.

 Select a variable from the list (any variable – it doesn't matter for this exercise)

▪ In the empty (blank line) in the middle between PERFORM and END-PERFORM

 Add an IF-THEN-ELSE-END-IF template

 Create a valid conditional statement using Content Assist

similar to what is shown here ➔

95

Optional Topic – EXEC CICS and EXEC SQL Content Assist

▪ Open PATLIST.cbl

▪ Using Content Assist (template
proposals):
 Add the EXEC SQL statement shown just

below the 740-WRITE-PAT-DETAIL

paragraph ***

 Add the EXEC CICS XCTL statement shown
just below the EXEC SQL statement

*** Note that, when we show you to connect to DB2 in
a subsequent module of this course, we will return
to revisit SQL content assist, and describe how to
use Content Assist to access valid DB2 column and
table names for your EXEC SQL statements

96

Other Context Menu Items –

Refactor – 1 of 5

Renaming variables and paragraph or
SECTION labels can have far-
reaching and sometimes
unintentional consequences 

Refactor allows you to Preview the impact
of a change before deciding to go
through with it ☺

To Refactor/Rename:
1. Select the variable or Paragraph name

you wish to change

2. Right Click, and from the Context
Menu select Refactor > Rename

3. Overtype the old name with the new
name

4. Click Preview >

5. Preview automatically scopes the
change. Click Continue

Scope of changes for this variable Refactor

1.

2.

3.

4.

5.

97

Refactor continued – 2 of 5

6.Finally, the Refactor wizard
displays the deltas between
your original and Refactored
source side-by-side, allowing
you to verify before proceeding.

 Click OK to rename

(if you press Cancel no changes are
made to your source)

You can also Refactor "noise words" – COBOL
clauses that if removed, could make your
programs easier to understand, without
impacting program behavior

Refactor > Remove Noise Words

Refactor Source Deltas

मै आप के लिये क्य कर सक्त हु?

98

Refactor continued – 3 of 5

The Refactor wizard also allows you to create copybooks, programs as well as extract paragraphs
& sections to different parts of your code - to modularize your design.

To Refactor and create a program:

1. Select the code you'd like to move to the new program

2. Right-click and select "Create Program…"

99

Note that there are restrictions on what

COBOL logic can/cannot be refactored.

Refactor continued – 4 of 5

Specify how you want to invoke the new program…

What type of CALL ➔

Program name ➔

Program location (Browse… to the Data Set)

…or…

A PROCEDURE DIVISION Copybook file

and location for the file

…or…

A LINKAGE SECTION ("Interface) files

and location for the file

…or…

A Copybook for WORKING-STORAGE

and location for the file

Click Preview > to see the changes

100

Refactor continued – 5 of 5

Limitations on Refactoring- from the IDz v14.2 documentation:

101

▪ It's common practice in ISPF to use the
CREATE/REPLACE <member name>

▪ While not offering the exact TSO command-line
syntax, this is the IDz way:

Open up the PDS member to be copied from

Find/Select and Copy program source lines ➔

Right-click over the target PDS and select:

▪ New > Create Member…

Double-click to open the new member in the editor

Find the right line to insert the copied lines

Optional Topic – ISPF Create/Replace Commands

To Replace rather than Create
(after copying the source lines)

1. Open an existing PDS member

2. Select the lines in the PDS member

3. Right-click and select Paste

102

Optional Topic - F1 ➔ COBOL Language Reference

If you are new to COBOL - no problem. There's hyper-linked access to the COBOL Reference
manual – assuming the online help is installed on your workstation.

Select the COBOL word you're unfamiliar with, and press: F1

F1



F1 Help opens up in a separate

Windows frame. F1 language

help is also available for:

• Assembler (HLASM)

• PL/I

 Workshop - try

F1 (help) out on the

Printapp.cbl program for:
• Inspect

• Compute

• Linkage

 Open one of the

Assembler programs

and try F1 help out on
an instruction like:
MVC, LA, ST, CLC

Note that F1 works for Assembler and PL/I as well as COBOL

103

Optional Topic – Model Statements

Content Assist (Ctrl+Spacebar) can also help you build new COBOL
statements:

Steps:
With TEST1.cbl open in the editor

Enter a few new blank lines

Enter the beginnings of some COBOL statements:

▪ if

▪ perfo

▪ compu

▪ div

Experiment with the Ctrl+Spacebar statement models

▪ Please do not save changes

▪ Note that you can combine model statement
building, with content assist to select declared
COBOL variables from the DATA DIVISION into
the statements.

104

Optional Topic – Editing z/OS (Fixed-Length) Records

▪ When you edit z/OS datasets IDz opens them into the editor using the file LRECL (which you can see from
the Properties view) to mark record editing boundaries. From the screenshot below, note the following:

 LRECL = 133, RECFM = FBA - this is a compiler listing dataset

 When the file was opened IDz placed a vertical line to mark the record boundary

 If you attempt to type past the boundary IDz warns that truncation will occur upon save

 Note that you can edit both fixed and variable length records

105

Workshops – Editing Source Languages Other Than: COBOL, PL/I, Assembler

▪ The next few slides present a short workshop just to allow you to see for
yourself, what is and what is not available, when working with IDz on
languages not formally supported by the LPEX editor

▪ The programs you will use are ©CA-Easytrieve http://en.wikipedia.org/wiki/Easytrieve

▪ But it wouldn't matter if the programs were:

SAS

Focus

Visual Basic

Powerbuilder

PhP

Or any other software language

▪ The point is that:

You get all of the ISPF editing capabilities

You get all of the IDz / Eclipse capabilities

Using IDz integration tools (which you will learn about later in the course) you
can include your custom tools and processes for build, etc.

http://en.wikipedia.org/wiki/Easytrieve

106

Optional Topic – Working with Easytrieve

From either the mainframe, or IDzClass:

Open the  easytrieve directory (it's under  other languages and files)

 (Using Ctrl+Shift) Select all five files

Right-Click and select Open

Marked changes:
Delete some lines

Change some lines and then mouse
over the left-frame to see the original

Ctrl+Shift

to select

multiple files

107

Optional Topic – Easytrieve in the Eclipse Views

▪ Using your eclipse skills, create the editing dashboard similar to what is shown in
this screen capture

Note that it doesn't have to look exact – just get it close

108

Optional Topic – Easytrieve and Split Screen

▪ Close All open views

▪ Do not save any
changes

▪ Open DEMOESY2.EST

▪ Press Ctrl+2

To split the screen

▪ Scroll throughout

▪ (Optionally) Copy/Paste
between source copies

▪ Close the files

Do not save any changes

109

Optional Topic – Easytrieve and IDz Compare

▪ Select both DEMOESY3.ESY and DEMOESY3.ESY

▪ Right-click and select: Compare With > Each Other

▪ Scroll through either (or both) compare views. Close the compare window

110

Optional Topic – Easytrieve and Local History

▪ Open DEMOESY4.EST and make a few source changes

▪ Save the file

▪ Right-click over the file, and select Replace With > Local History…

▪ Scroll and view the compare screen

From the list

▪ Select the previous
version

▪ Click Replace

▪ Close the file

111

Optional Topic – Easytrieve and Advanced IDz Find

▪ Open DEMOESY2.EST

▪ Press Ctrl+F – and check: ✓ Regular expression

▪ Find All – using a variable string such as: hold-process-type|300|balance

▪ Try AND'd Find searching From within the results screen:

 Find Next: Process-type

112

Optional Topic – Auto Commenting Changed Lines in COBOL – 1 of 4

▪ Your shop may require you to auto-comment columns 1-6, or 73-80 with information
about changes you make to source lines. Typically this would be something like
your initials and a date: JS010112 … etc.

▪ "Out of the box" Auto Commenting is available with all of the IDz-supported
languages except COBOL

▪ But that's okay – the following slides show you how to create a COBOL Language
Profile for Auto Commenting your code:

113

Optional Topic – Auto Commenting Changed Lines in COBOL – 2 of 4

▪ From Window > Preferences > Auto Comment:

 From Auto Comment Language Profiles – you can see the various languages there

 From Extension Associations click Add – you can see the current workstation file extensions associated with the Auto
Comment Language Profile

Note that adding Language Profiles and associating extensions you
could add your own Auto Comment capability for languages such as
CA-Easytrieve, REXX, CLISTs, etc.

114

Optional Topic – Auto Commenting Changed Lines in COBOL – 3 of 4

▪ Under the Format tab, specify the options shown here ➔

 To enter an 8-character Auto Comment

▪ Under the Insertion tab, specify:

 Start column: 73

 End column: 80

 Optionally check Overwrite existing

▪ Click OK twice – to close this dialog

If you want to insert in columns 1 ➔ 6 use the

above specifications (and set Max length to 6)

115

Optional Topic – Auto Commenting Changed Lines in COBOL – 4 of 4

▪ Open a COBOL program

▪ Right-click and from the Context Menu select:
Start Flagging Changed Lines

 Enter your auto comments in Base Flag:

 Click OK

▪ In the editor:

 Change some lines

 Insert a new line

Note – if you want to stop Auto Commenting, from the

Context Menu select:

Change Flag > Stop Flagging Changed Lines

JS060112

116

Optional Topic –

Finding Binary (Hex) non-display values

Three options:

1. Use the LPEX Editor:

 F R'[^\x20-\x7E]' all

2. Use Ctrl+F

3. Use the COBOL editor

117

Optional Topic – Copying/Moving/Deleting a Contiguous set of Source Lines

1. Select the lines

2. From the Context Menu (Right-Click over the selected lines)

1. Copy

2. Move

3. Delete

4. Other…

118



Summary – Options for Navigating Through Your Program Source

▪ Top of file: Top

▪ Bottom of file: Bottom

▪ Page down: F8

▪ Page up: F7

▪ Page down: PgDn key

▪ Page up: PgUp key

▪ Click inside the scrolling area – on either side of the scroll bar

to Page up or Page down

▪ Locate any line of source by typing the Line# in the command area

▪ Scroll up/down right/left using the:

Scroll bars

Line-at-a-time up/down – click the arrow

Your mouse scroll-wheel

 Fast and convenient for positioning/centering code on-screen

119

Summary - Source Code Editing, Filter – Review and Use Cases

Native ISPF IDz Editing Technique Considerations

Make ISPF the default editor From Preferences > LPEX Editor - select ISPF This preference is tied to your workspace

Use ISPF command line commands Same as ISPF – for the supported commands The commands are case-sensitive

Find out what ISPF command line
commands are supported?

From the command line, press Ctrl+Spacebar

Use ISPF Prefix area commands Same as ISPF – for the supported commands

Change editor background color > black From Preferences > LPEX Editor > Appearance > Palette Other source elements can be colorized

Use COBOL numbering Same as ISPF: Num COBOL, Num On, Num Off, etc.

Show the list of all available hot keys From inside the editor, Press: Ctrl+Shift+L The list is context sensitive

Customize your hot keys From Window > Preferences > General > Keys – specify the Binding
(hot-keys) and When (the IDz context) under which to invoke the hot-
key

Hot-key combinations that are currently
in use by Eclipse will take precedence
over custom settings

Delete to end of line (EOF) functionality From with the editor press: Ctrl+Del

Edit in Hex From the Context Menu, select: Source > Hex Edit line

Look-ahead "intelli-sense" typing Press Ctrl+Spacebar – Works for: COBOL, PL/I, Assembler, JCL (8.5)
and SQL

You can customize the proposals
presented by Content Assist in
Preferences > COBOL.

Comment / Uncomment multiple lines
with one operation

From the Context Menu, select: Source > Comment Or Uncomment

®

IBM Software Group

Appendix 1 – The COBOL and PL/I Editors:

- Terms and Concepts

- Feature/Function

DevOps

121

COBOL and PL/I Language Editors

▪ Starting in version 8.0 IBM introduced language-specific editors for COBOL
and PL/I

These editors are built entirely from the Eclipse framework, and thus behave like
the Eclipse Java editor used in many colleges and universities

The functionality in these editors was limited in the first release, but it is gradually
being built-up over time, and – starting at version 8.0.3 – these editors contend
strongly for "editor-of-choice" status with many IDz users – especially those
without deep ISPF experience

▪ Pluses:
Powerful GUI code development features/functions

Heavy investment by IBM for future enhancements

▪ Minuses
These language editors do not contain ISPF editing features (there is no profile, no

command line, no prefix area, no ISPF PF-Key emulation, etc.)

▪ The slides in this Appendix section introduce some of the features of these editors,
but please note that the slides:

Are not a formal and detailed tutorial like the LPEX material you studied in this
module

Assume that you have:

▪ Eclipse skills and experience

▪ Finished the material in this Powerpoint on IDz

122

Invoking the COBOL or PL/I Editors

▪ Invoke the editor by right-clicking over a COBOL or PL/I file, and selecting:
Open With > COBOL Editor
 Note that you will only have to do this one time. IDz will open persist your decision to your workspace
 Also – in Preferences you can change your default editor to the COBOL or PL/I editor instead of LPEX

All of the other
IDz views
work (Overview,

Remote Systems

Explorer, etc.)

work exactly
the same with
the COBOL,
PL/I and LPEX
editors

123

Menus and Toolbars

▪ Note that the menus and toolbars are different from the LPEX editor

▪ Many of the functions are the same as in LPEX

But getting to them requires different keystrokes

You will probably use the menu and toolbar with this editor more frequently than
you did with LPEX

▪ Also:

Many functions in these editors not available in LPEX

And many functions in LPEX not available in these editors

124

Editing Context Menu

▪ Select some source and right-click to find the edit operations available from
the COBOL or PL/I editors

Subset of what is in LPEX

Some new functionality and options:

▪ Source - Format your program, etc.

▪ Revert File – one click "cancel all changes" – without leaving edit

125

Some very nice COBOL editing features

▪ Enhanced Hover

Variables

▪ Hover over a variable

▪ Slide your mouse focus point into the hover rectangle

(or press F2)

▪ This opens a graphical area – for viewing the variable

- with icons for navigating to the declaration

▪ All with one-click

COBOL Paragraphs/Sections

▪ The same technique – when you hover over a COBOL

paragraph or section allows you to:

– Open the Perform Hierarchy on the paragraph/section

– Navigate to the paragraph/section declaration in the source

126

Collapsible Sections

▪ In the COBOL editor you can
collapse/expand:

Divisions

Sections

Paragraphs

▪ In the PL/I editor, you can
collapse/expand PL/I procedures

▪ Useful for isolating code … as is
"Show only selected source"

127

Show Source of Selected Element Only**

▪ Toolbar option that allows you
to select a paragraph, section,
or procedure and isolate (show
only) the statements in that
COBOL paragraph or PL/I
procedure

R
a
n

g
e

 i
n

d
ic

a
to

r

1. Click anywhere inside of a paragraph

2. Click "Show Source of Selected Element Only

Isolates the paragraph

**See Slide Notes

128

Working With Source Code Containing Hex Values – COBOL Editor

The COBOL Editor (IDz v8.5 and IDz v9) has superior Hex Editing
functionality

To view or source lines that contain embedded Hex characters – or to enter
binary values in your source files using the COBOL Editor:

 From the Workbench toolbar

▪ Click Toggle Hex Editing

 You will see a Hex Edit line on the bottom of your file

▪ The bottom line of your editor view shows the Hex values for the current
line in the editor.

 You can view and edit (modify) the current line’s values in Hex

▪ The COBOL Editor’s Hex Editing mode:

 Toggles on/Toggles off – click the toolbar again to toggle Hex Editing off

Current line ➔

Current line ‘s Hex values➔

129

Variable Markers

▪ In the COBOL and PL/I editors, when
you select a variable, the editor
marks:

The declaration in gold

Any statement that modifies the
contents of the variable in gold –
COBOL only

All other statements in gray

▪ Conditionals

▪ Search statements

▪ START

▪ Assignment statement (sending portion)

▪ etc.

130

Surround With

▪ You can select a set of statements, right-click and ask IDz to surround the
statements with a:
Conditional statements: IF, Evaluate

PERFORM – UNTIL, VARYING

▪ Configure Templates…
allows you to add/change/delete
the default COBOL statement templates

131

Block Copy/Paste

▪ The COBOL/PL1 editors have enhanced code block (rectangle/block)
editing capabilities – when compared with LPEX

▪ Enter Block selection mode

▪ Draw your rectangle (left-mouse/drag)

▪ Copy/Paste

132

Quick Fix

▪ Provides mouse-based code fixes for:

Keywords

COBOL and PL/I variables

▪ Shown as a small light-bulb in the left-margin next to real-time syntax
validations

Mouse-over syntax errors to get click-able proposals list

Double-click over an entry in the list to pick up the Quick Fix

133

Hex Editing

▪ A toolbar option in the COBOL and PL/I Editors that opens up a Hex Edit
area for the selected line

Toggle on and Toggle off from the toolbar – or using a Hot-Key (Ctrl+Shift+H)

Edit in hexadecimal

The editing area persists:

▪ From line-to-line – when you move around in your source file

▪ From file-to-file – when you close and open different files

▪ From IDz launch-to-launch – when you open and close and reopen IDz

134

COBOL Numbers

▪ New to the COBOL Editor:

From the Source menu:

▪ Renumber

▪ Unnumber

Default puts COBOL numbers in columns 73→ 80

Start Numbering At Column 1 shifts COBOL numbers to bytes 1 → 6

**This particular feature
is available for the
COBOL editor

LPEX has supported
COBOL numbering for
many releases

135
135

Task Tags

Files opened in the
COBOL & PL/I editors will
be scanned for tags in
comments.

Tasks will be created for
matching patterns in the
Tasks View.

Preference pages will
allow customization of tag
patterns.

Generated Tasks will
persist after closing the
editor.

136

COBOL and PL/I Editor Functionality – Preferences

▪ From Window > Preferences

137

Find EBCDIC Hex Characters – in a File

▪ Find text (Ctrl+F) using the hexadecimal values based on the file's remote codepage

▪ Override the behavior of the existing escape sequence “\xhh” to always be

interpreted as being based on the remote codepage values.

▪This behavior works on both the Find text field and the Replace text field.

▪ Content Assist provided for the Regular Expression (press Ctrl+Spacebar)

138

Show Matching Parenthesis and Brackets

Can highlight conditional and math parenthesizing of logical expressions

➢ New preference pages will be added under COBOL and PL/I > Editor categories

➢ Add preference to set the color used in the
matching parenthesis annotation

➢ Placing the caret to the right of an open or closed parenthesis will annotate the
matching parenthesis

139

“Save Actions” in COBOL and PL/I Editor

Enable actions before and after a file
is saved

➢ A new preference page added under the
COBOL (top) and PL/I (bottom) Editor preference
category called “Save Actions”

➢ Source files have an option to Format source
code, plus a sub-option to only apply the
capitalization

➢ When an editor is saved, the save actions will
be run in this order:

➢ Formatting

➢ Save the file

➢ Identify Preprocessor Statements

➢ Identify Unreachable Code

➢ Note: PL/I Save Actions will not have:

➢ Identify Unreachable Code

➢ Formatting of Include Files

140

Cosmetic Upgrades

New Ctrl + Mouse click hyperlink on COBOL copybooks
and PL/I includes

TREATMENT

Open Copy Member

View Copy Member

Browse Copy Member

CUST2PLI

Open Copy Member

View Copy Member

Browse Copy Member





141

Editor Tips – for the COBOL and/or PL/I (Java-style) Editors

General
· Full screen on/off – Press ’Ctrl+M’ (first time show full screen, second time return to view screen)
· Use ‘Ctrl+space’ for code Completion
· Use Outline views for navigation :
· (Window => Show View => SQL Outline/Outline· ’alt+shift+W’ shortcut for “show in”
· Right click program and choose ”show in”
· You can use Outline to jump back and forth by clicking on sections
· Use function keys for navigation

SECTION/PARAGRAPH.
· Point on a section name in a Perform statement and press ’F3’ and the editor will jump to where the section is defined.
· ’Alt+left arrow’ brings you back

VARIABLES
· If you want to know where a variable is used place the cursor on the variable and press ’ctrl+shift+U’.
· This will open a Search Window with all lines, where the variable is.· When you click on these lines it will show up in the

COBOL Editor
· Hovering the mouse over the variable in a COBOL Statement you see hot it is defined.

Copy and Move:
· Normal copy is like standard WINDOWS ctrl+c (copy), ctrl+x(cut), ctrl+v(paste)
· Block - copy is like TSO: press ’alt+shift+A’, mark the block, press ENTER for copying to clipboard and ’Ctrl+v ’ for prev

Hints for errors (IDz does not see all language semantic errors, but can discover all keyword/variable/section syntax errors)

· IDz tells you error in a statement by putting a yellow warning symbol in the beginning of the relevant line.
Use the mouse hovering over that symbol

· Use Ctrl+1 (Quick-fix), IDz corrects the error for you .
· Look at the line in bottom, as errors will be shown there.

Hot-Keys
· ’Ctrl+shift+L’ showes the shortcuts· Use these and become more productive (I.e. in the COBOL Editor)
· Ctrl+Alt+H shows Perform Hierarchy in COBOL· Ctrl+shift+U shows where a variable is Used
· Alt+Shift+W shows selections for Outline Views
· Ctrl+Alt+X Refresh of SQL Outline
· F3 shows where the section is defined
· Alt+’left arrow’ brings you back
· Hovering the cursor over a field then IDz show how it's defined.

®

IBM Software Group

Appendix 2 – Code Reuse:

- Templates

- Snippets

DevOps

143

Optional Topic: Code Reuse

Three methods of Code Reuse:

1. Program Templates

▪ Useful if creating a new COBOL or PL/I program using the New program wizard

▪ Can include standard (not customized) minimal CICS and SQL statements

2. Snippets

▪ Most flexible and simple method of code reuse

▪ Snippet scope can be from anywhere from a keyword to an entire program

▪ Can define any number of custom variables to manage idiosyncratic requirements

▪ Can export/import Snippets with Workspace

▪ Can include Snippets view in custom Perspective

3. Language/Code Templates

▪ Most granular form of code reuse

▪ Integrates with Content Assist

▪ Typically used for statements – but could extend to more code

Snippets are the most popular approach – although Language/Code
Templates provide powerful, intuitive workflow

Code Reuse Recording – Download or use Preview

https://www.ibm.com/developerworks/community/files/app#/file/fbc6bd5a-d99c-4c9c-9e3c-e4529a38c177

144

Code Snippets

Sometimes, instead of entire programs you might want to:

▪ Save some code temporarily for reuse – similar to the ISPF:
"CREATE" and "COPY" command line commands

▪ Create a paragraph, computation, complex conditional – that can
be re-purposed in other programs

▪ Provide a library "standard" routines – using your shop's coding
conventions

▪ Provide a library of syntactically-correct and infrequently
used/high-value statements:

 Job Cards

 Database routines

 Complex COBOL code: UNSTRING etc.

Snippets are the preferred way of doing this. You access them
through a Snippets view, which you get to by:

 From Window > Show View > other…

 Type: snippets – and select the Snippets view

On the right are a group of custom Snippets that we have created.
You will see a subset of these in your workspace.

Individual Snippets are contained in "drawers" which are the
accordion menus that collapse/expand on-click.

Snippets can be Exported and Imported (for sharing)

145

Using Code Snippets (ISPF "COPY" command line command)

To use an existing code Snippet follow the steps below:

1. Place your cursor at
the exact focal point
(position in the source)
where you want a
code snippet inserted

2. Find your Code
Snippet in the snippet
drawers

3. Double-Click the
Snippet

4. If there are variables
in the snippet, you
can:

 Accept the defaults

 Over-ride the values
before the code is
inserted

5. Click Insert

146

Creating Code Snippets

To create a new code Snippet follow the steps below:

1. Create a new Snippet category

 Right-click over the Snippets view

 Select Customize

 From Customize Palette, under New

Select: New Category

 Name the Category

 Add a description

 Click OK

2. Select and copy the code you wish to turn into a Snippet

3. Expand the category you wish to add the Snippet to, and select Paste as Snippet…

147

Creating Code Snippets (ISPF "CREATE" command) – 2 of 2

4. Rename the Snippet and give it a Description

5. Optionally add Variables to be filled in by Snippet users (or they can accept the defaults)

148

Creating and Using a Code Snippet

for a Job Card
▪ From your PDS open a piece of JCL that contains a

valid Job Card

▪ Select and Cut (Ctrl+X) the Job card

▪ Follow the previous steps to add the Job card snippet to your JCL category

▪ During the process of creating the Snippet add JobName and MsgClass as variables – to be filled in by
the developer during the reuse of the Snippet

To use the Job Card Snippet

▪ Open a piece of JCL that does not currently have a Job Card, and set your cursor focus to line 1/byte 1

▪ From the Snippets view, Expand the JCL category. Find and double-click your JOB Card Snippet

▪ At the prompt, enter a new JobName and a new MsgClass value and click OK and verify your work

▪ Verify your work

▪ Submit the job

149

Using Code Snippets as a Scratch Pad Area for Multiple Paste Buffers

Occasionally you may need to create multiple “copy/paste buffers” – if you need
to say, replicate a set of changes across multiple programs.

This can be accomplished using Snippets:

1. Open a program

2. Copy and create a Snippet from a code fragment

• Optionally customize the Snippet to include Variables – for generalized use

3. Create another Snippet

4. Repeat from step 1 until you’ve
created separate Snippets for each
code fragment

5. Apply the Snippets to your program(s)

6. Optionally Export the Snippets to
other developers on your team

150

The IMS Code Snippets

If you are using RDz v7.6 or later, a number of very useful
IMS Code Snippets are shipped with the product ➔

These snippets go beyond simple text-based insertion to
read your Data Division entries, and offer options for
building statements using combo-boxes

151

IDz's Customize-able Content Assist Templates

▪ Finally - you can customize
IDz's template "proposals"
offered in the Content Assist

▪ You access this from:
 Window

▪ Preferences

– COBOL

– Templates

▪ Customization options
include:

Modify (Edit…) an existing
template

Add a (New…) template

Remove a template

Export all templates – so that
other team members can
share

 Import…

Restore Removed (un-delete)

Revert to Default (un-modify) You can customize a template's:
- Content - Pattern - Context - where it's
applicable - Description – hover help

152

 OPTIONAL Workshop – Customizing Template Proposals

▪ From Window, Preferences,
COBOL, Templates:

 Select one of the Template
proposals and delete (Remove…)
it

Select a Template proposal and
Edit… (change it) – something
simple like changing the case to
mixed-case, instead of all UPPER
case

Add a New… proposal, as shown
here ➔

You can copy and paste the this text.

If <condition one>

Then

If <condition two>

<imperative statements on true path>

Else

<imperative statements on inner false path>

Else

<imperative statements on outer false path>.

▪ Test your work out in one of the
sample programs, like: PATLIST.cbl

153

Creating New Programs Using Templates

▪ There are several ways to create new programs from scratch

▪ The "Best Practice" method is to use IDz's COBOL program templates

 From File, New > Other…

…in the Wizards panel,

- Type: cobol

- Select COBOL Program

- Click Next >

…in the COBOL Program panel,

- Name the Program

- Click Next >

▪ Finally you specify which folder to create the program:

 Select the cobol folder

 Click Next >

Note – You can create new programs

154

Creating New Programs From Templates

– continued

You can add CICS or DB2 template
sample code to your new program:

Check the features you'd like

Click Finish

▪ A few things happen:

Your new program is created ➔

The Snippets view is opened

▪ Snippets information can be found

in Appendix B of these slides

 Note that you can customize the

templates used to create new programs

From Window, Preferences, select:

COBOL

– Code Templates

– Features

155

OPTIONAL TOPIC – Create New Program in a z/OS LPAR

▪ You can create new programs using the New COBOL Program wizard,
provided you are connected to a z/OS LPAR, and that you have created a
z/OS Project/MVS Subproject (see Location: in the screen capture below).

MVS SubProjects

and z/OS Projects

are covered in

another module of

this course

156

Customize the New Program Templates – Comments

You can create
a custom
Code
Template for
COBOL
comments or
the base
program code
itself.

To add or
customize
comments:

▪ Click the
comment option
you wish to
modify

▪ Code an
asterisk in
position 7 (you'll
have to space
over 1-6)

▪ You can insert
Variables that
are filled in
when new
"templatized"
programs are
created

157

Customize the New Program Templates – Program Code

And you can add
your own entries,
common files,
databases,
variables, routines
etc. to either:

▪ An entire program

▪ Separate program
divisions

When a new
program is created
using the
templates all of the
custom comments
and code are
inserted.

®

IBM Software Group

Appendix 3 – Working with Other Languages:

- HTML

- etc

DevOps

159

Optional Topic: Working with HTML

IDz has a lightweight but effective HTML editor
(files must be mapped to: *.htm

IDz also has an internal Web Browser (Mozilla)

But in general: Rational Application Developer (RAD) is the tooling of choice when the target runtime environment is WebSphere
Application Server. RAD can also be used for Liberty, but there is also a smaller offering called the WebSphere Developer Tools (WDT)
which is targeted for Liberty. RAD contains all of WDT, while IDz contains most of WDT (please do not ask me for specifics, that will take
some significant time to produce such a feature list) so it may also be used for developing Liberty applications.

I would probably recommend this Redbook http://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg248076.html in it you will see
that Chapter 2 talks about WDT, but if you have RAD or IDz already then might be able to just skip the
“Installing WebSphere Developer Tools" section.

http://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg248076.html

