
®

IBM Software Group

®

IBM Software Group

®

IBM Software Group

®

IBM Software Group

Jon Sayles, IBM z Development Tools -
jsayles@us.ibm.com

@Copyright June 2021

DevOps

IBM Developer for z Systems – for ISPF Developers

Module 9 – Debugging COBOL & Code Coverage

mailto:jsayles@us.ibm.com

2

Notices and disclaimers
© 2021 International Business Machines Corporation. No part of

this document may be reproduced or transmitted in any form

without written permission

from IBM.

U.S. Government Users Restricted Rights — use, duplication or

disclosure restricted by GSA ADP Schedule Contract with IBM.

Information in these presentations (including information relating

to products that have not yet been announced by IBM) has been

reviewed for accuracy as of the date of initial publication

and could include unintentional technical or typographical

errors. IBM shall have no responsibility to update this information.

This document is distributed “as is” without any warranty, either

express or implied. In no event, shall IBM be liable for any damage

arising from the use of this information, including but not limited

to, loss of data, business interruption, loss of profit or loss of

opportunity. IBM products and services are warranted per the

terms and conditions of the agreements under which they are

provided.

IBM products are manufactured from new parts or new and used

parts.

In some cases, a product may not be new and may have been

previously installed. Regardless, our warranty terms apply.”

Any statements regarding IBM's future direction, intent or

product plans are subject to change or withdrawal without

notice.

Performance data contained herein was generally obtained in a

controlled, isolated environments. Customer examples are

presented as illustrations of how those customers have used

IBM products and the results they may have achieved. Actual

performance, cost, savings or other results in other

operating environments may vary.

References in this document to IBM products, programs, or

services does not imply that IBM intends to make such products,

programs or services available in all countries in which

IBM operates or does business.

Workshops, sessions and associated materials may have been

prepared by independent session speakers, and do not necessarily

reflect the views of IBM. All materials and discussions

are provided for informational purposes only, and are neither

intended to, nor shall constitute legal or other guidance or advice

to any individual participant or their specific situation.

It is the customer’s responsibility to insure its own compliance

with legal requirements and to obtain advice of competent legal

counsel as to the identification and interpretation of any

relevant laws and regulatory requirements that may affect the

customer’s business and any actions the customer may need to

take to comply with such laws. IBM does not provide legal advice

or represent or warrant that its services or products will ensure

that the customer follows any law.

3

Notices and disclaimers continued

Information concerning non-IBM products was

obtained from the suppliers of those products, their

published announcements or other publicly

available sources. IBM has not tested

those products about this publication and cannot

confirm the accuracy of performance, compatibility

or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products

should be addressed to the suppliers of those

products. IBM does not warrant the quality of any

third-party products, or the ability of any such third-

party products to interoperate with IBM’s products.

IBM expressly disclaims all warranties, expressed or

implied, including but not limited to, the implied

warranties of merchantability and fitness for a

purpose.

The provision of the information contained herein is

not intended to, and does not, grant any right or

license under any IBM patents, copyrights,

trademarks or other intellectual property right.

IBM, the IBM logo, ibm.com and [names of other

referenced IBM products and services used in the

presentation] are trademarks of International

Business Machines Corporation, registered in many

jurisdictions worldwide. Other product and service

names might be trademarks of IBM or other

companies. A current list of IBM trademarks is

available on the Web at “Copyright and trademark

information” at:

www.ibm.com/legal/copytrade.shtml.

http://www.ibm.com/legal/copytrade.shtml

4

Please Note

IBM’s statements regarding its plans, directions, and intent are subject to change

or withdrawal without notice and at IBM’s sole discretion.

Information regarding potential future products is intended to outline our general

product direction and it should not be relied on in making a purchasing decision.

The information mentioned regarding potential future products is not a commitment,

promise, or legal obligation to deliver any material, code or functionality. Information

about potential future products may not be incorporated into any contract.

The development, release, and timing of any future features or functionality described

for our products remains at our sole discretion.

Performance is based on measurements and projections using standard IBM

benchmarks in a controlled environment. The actual throughput or performance that

any user will experience will vary depending upon many factors, including

considerations such as the amount of multiprogramming in the user’s job stream,

the I/O configuration, the storage configuration, and the workload processed. Therefore,

no assurance can be given that an individual user will achieve results similar to those

stated here.

5

The IDz Workbench Curriculum

▪ Module 1 – IDz Terms, Concepts and Navigation

▪ Module 2 – Editing Your COBOL Programs

▪ Module 3 – Analyzing COBOL Programs

▪ Module 4 – Remote Systems – Connect, Navigate and Search

▪ Module 5 – Remote Systems – Dataset Access and Organization

▪ Module 6 – Remote Systems – ISPF 3.x, Batch Jobs and Job Management

▪ Module 7 – MVS Subprojects – Organizing PDS Members and SCM Checkout

▪ Module 8 - The Data Tools – SQL Code/Test and DB2 Table Access

▪ Module 9 - Debugging z/OS COBOL Applications

Optional Modules
▪ IDz/Endevor Integration Through CARMA

▪ zUnit – Unit Test

▪ Code Coverage – Test quality feature

▪ Code Review – Application quality feature

▪ Menu Manager – Integrate ISPF REXX Execs and CLISTs

▪ Web Services – SOA development

6

Course Assumptions

1. You know ISPF and have used it for at least two years, doing
production work on z/OS with COBOL, PL/I or Assembler

Note that all of the workshops in this course are in COBOL – although
files exist that are Assembler and other languages for you to experiment
with – as time permits

2. You have:

No experience with Eclipse or IDz

Some experience with PC tools

▪ You have used MS-Windows applications for at least one year

IDz installed and running on your workstation at version 8.0 or later

▪ Note that all ISPF discussion/examples and screen captures
assume IBM-installed ISPF product defaults – not any 3rd party
or custom Dialog Manager applications you may have installed
on your mainframe

7

How to succeed at this class…

IMPORTANT NOTE:
If while you are taking this class your find that you do not have the time to complete the
workshops between sessions:

Do what you can to follow the instructor's demo during class - and ask questions

Show up 15 minutes early to each session - ask questions, listen to others' questions

At the end of each session we will take 15 minutes to cover additional productivity topics

FWIW - You can re-take any module in this course during a scheduled Entry Level training class

Course

1. Attend class:

- Ask questions

- Follow the product workflow

- Identify the terms, concepts
& vocabulary - and relate the
IDz tools/techniques to ISPF

- Discover the productivity
features

Workshops

2. Do the exercises
in Labs.pdf:

- Iterate thru the workflow
and practice the tool navigation
(build eclipse muscle memory)

- Commit the U.I. and product
layout to memory

- Explore features both covered
and not covered during class

Application

3. Apply the
techniques to your
App-Dev projects:

- Master the product workflow
& navigation

- Gain more productivity and
speed over time, and use the
features to improve application
quality

https://developer.ibm.com/mainframe/idzrdz-remote-training/

8

Access to your shop’s custom
ISPF Tools and Procedures

z/OS Application
Development

Maintenance and
Production Support

Analysis

Design

Development
Construction

Build/Test

DevOps

Pipeline

Enterprise
Application

Modernization

Parallel/Agile Lifecycle

IDz Graphical Modeling Tools

Language Sensitive Editors
COBOL, PL/I, JCL, SQL,
Assembler, REXX/CLIST,
BMS,MFS Graphical Editors
Code Review

IBM Debugger & Unit Test
Code Coverage

File Manager/Fault Analyzer
DB2/SQL and IMS/DLI Tools

Batch Job Management

SOA/Web Services
API Integration

Continuous Integration

Remote and Local Search
IDz Static Analysis Tooling

IDz Across the Modern SDLC

9

UNIT

Topics:

The IDz Workbench

▪ Debugging z/OS COBOL Batch Applications

▪ Debugging z/OS COBOL Online Applications

▪ Appendix

10

Topic Considerations

 Note: In this topic you will learn how to debug a COBOL program running

on a z/OS mainframe. The screen captures all describe connecting to a public

z/OS machine that IBM makes available – during classes.

If you are taking this course through standard IBM services delivery you should

be able to use the properties (I/P address, port#s, etc.), logon IDs and passwords

that your instructor provides you with.

But you may also be taking this course standalone – and in that case, you will

need to speak to your company's Systems Programming staff to learn how to

connect and logon.

It goes without saying that the actual file names in the screen captures of

mainframe libraries and datasets will vary. So you should focus on the process

and steps and "how to" – and don't be perplexed at differences in screen

captures.

You also may be using your company's own Source Control Management system

– to do things like builds, compiles, etc. In that case much of the remote

functionality in IDz will be customized and tailored to your company's unique and

idiosyncratic procedures and protocols.

11

Topic Objectives

After completing this unit, you should be able to:
▪Describe the concept of source code debugging

▪ List the run-times that the IDz Integrated Debugger supports

▪ List the steps in preparing a program for debugging

▪ Debug a mainframe batch job

– Describe the run/step/animate options

– List PF-Keys associated with them

– Set/unset/inspect conditional and unconditional break-points

– Set "watch" break-points that halt execution when a value in a variable changes

– Show how to access the LPEX editor functionality during debugging (such as Perform

Hierarchy)

– Be able to Jump to any given line, and run to a line

– Show how to change variable values dynamically during debug

– Show how to set different levels of variable display

– Monitor specific variables you are interested in

▪ Debug a CICS online transaction

– Discuss the Debug Option setup and configuration requirements for Online Debugging

– CADP Profile/View

– CADP Transaction

– Launch a CICS transaction that invokes the IDz Integrated Debugger

12

Debugging Overview

Face facts: No one gets
it right the first time.

Not at the level of production business logic

That's why IBM invented source-level application
debuggers, so that you can:

 View program execution, line-by-line

 Verify the value of a variable – during program execution

 Stop and start program execution, and analyze results at
the speed that our procedural understanding of the
application's execution flow can handle

13

Debug Product Packaging Options

1. IBM Debug Tool:

 Became IBM Debug for z Systems with IDz v14 and later

 Integrated with ADFz and Standalone as PD Tools Replacement

 Must own IBM Debug Tool on the host

 Includes Green-Screen (3270 Debugging)

2. Compuware’s Xpeditor product line:

 Requires Xpeditor host software + plug-ins to IDz (from Compuware)

3. CA-Intertest:

 Requires Intertest host software + plug-ins to IDz (from Computer Associates)

4. ASG SmartTest:

 Requires Intertest host software + plug-ins to IDz (from Allen Systems Group)

It is up to you to find out which of the above debugging products is installed
on your mainframe. Typically a tech-lead or Project Manager knows – but
your Systems Programming staff? Always know what’s installed.

14

IBM Debuggers – Runtime & Feature Support

▪Online

CICS & IMS TM

▪Batch including Batch DB2 and Batch IMS (DL/I and BMP, QBMP)

▪Enterprise COBOL (5.1, 4, 3.4) – Debug Tool supports OS/VS and VS COBOL II

▪Enterprise PL/I

▪C

▪HLASM and BAL

Features (partial list):
Debug mixed-language/cross-platform applications

Interactive, source-level debugging in IDz with program running on z/OS

Display, monitor and alter program variables

Breakpoints – all shapes and sizes – including the ability to set breakpoints in the program source file

Watch monitors – Integrated Debugger requires @v9.5 and later

Record/Playback of instructions – Debug Tool only

View data in Hex (EBCDIC) or string values

Visual Debugging – Integrated Debugger @v95 and later

Full asynchronous mode

Consult User Documentation for complete list of
language and language version runtimes supported

15

Debug Tool - Application Environments

One debugging engine, with support for many environments:

z/OS

3270
or GUI

3270
or GUI

Debug Tool

Batch
Application

Batch
region

Debug Tool

Transaction

CICS
Application

CICS
region

Debug Tool

Transaction

IMS
Application

IMS/TM
region

Debug Tool

DB2 Stored
Procedure

WLM
region

Batch

Debug Tool

Posix
Application

3270
or GUI

3270
or GUI

3270
or GUI

CICS IMS/TM
DB2

stored
procedure

UNIX
systems
services

16

z/OS

Interfacing IDz Client with the Server/Debug Software

Architectures:
 Client software is installed with IDz on your workstation

 Communicates with the Debugger run-time engine on the mainframe

▪ Establishes handshake using combination of: TCP/IP address + Port#

▪ You can “reuse” IDz Remote Systems connection

TCP/IP

Remote

Debugger

Run-Time

Engine

Data

Source

Your

Application

Load Module

Debugger

Client

Port#

17

Discover TCP/IP address and Port***

▪ Open the Debug Perspective
Click the small downward pointing triangle

next to the debug-daemon icon

Note the Port#

Select: Get Workstation IP…

Copy the IP address

Note: Your IDz Port# will most likely be

set once – permanently

But, depending on your installation’s

policies workstation's TCP/IP address

could change – often – usually every day

*** Hardcoding your TCP/IP address + Port# in the TEST

statement will be needed for CICS & IMS TM debugging.

18

TEST (launch) Statement – Syntax Options

Simplified workflow to connect your Client to the listener via a TCP/IP address.
Three options:

Hard-coded TCPIP Address + Port#

TEST(,,,DBM) launches the “Internal Debugger”

 (,,,DBMDT%TSOID:) launches “Debug Tool”

//CEEOPTS DD *

TEST(,,,TCPIP&9.65.235.251%8001:)

//CEEOPTS DD *

TEST(,,,DBMDT%DDS0001:)

//CEEOPTS DD *

TEST(,,,DBM)

19

Perspective Switch – Prompt

Upon Debug Open

▪ The z/OS Debugger
will interface with your
IDz client through the
//CEEOPTS DD card
and TEST statement

▪ When the handshake
is successful, you’ll be
prompted switch to the
Debug Perspective

 Click Yes

20

Ready to Debug

After you click YES at
the Confirm
Perspective switch
prompt:

▪ The Debug Perspective
opens

▪ A Read-Only copy of
your source is copied
down from z/OS to your
IDz client & workstation

▪ A copy of your load
module is NOT placed
into an Address Space

 The Current Instruction
Pointer is not in the
PROCEDURE
DIVISION

▪ To open your Load
Module into an Address
Space and begin
debugging you press F5
or click the Step or
Resume action icons

http://images.google.com/imgres?imgurl=http://blog.micfo.com/wp-content/uploads/2008/10/z10-system-ec.jpg&imgrefurl=http://blog.micfo.com/news-current-release/ibm-releases-junior-version-of-system-z10-enterprise-class-mainframe/&usg=__4thq6RobWUnb1l2ODC8VJDRlKNg=&h=1600&w=1280&sz=119&hl=en&start=2&sig2=Ffo8J9Q-vOkeahph-H6hsg&tbnid=MrIUswUyZ8BF8M:&tbnh=150&tbnw=120&prev=/images%3Fq%3Dibm%2Bz/10%26gbv%3D2%26hl%3Den&ei=NJl8SqrsFZLWM9O0lP4C

21

The Debug “Action” Icons

Resume: Run

the program to

a breakpoint,

ABEND or to

EOJ

Terminate:

End the

program

Step: run one

statement: F5

Step Over:

run one

statement,

but step over

a CALL: F6

Step Return: run

until return from

subprogram: F7

Disconnect:

from the

debug engine

Animated Step

Continuous source-level

debugging without user

interaction

Debug Listener

(Should be green)

22

The Debug Perspective and Views

Read-only copy of source code

Variables
Breakpoints
& Monitors

Views

Program
Outline
View

The Debug action Icons

23

The Debug Perspective and Views – IDz v14.1.x and Later

Read-only copy of your program source Outline, Variables
Breakpoints &
Monitors Views

The Debug action Icons

Visual Debugging
Displays

Paragraphs/Sections in
your Procedural logic

24

Debugging your code

Actions to execute
program statements:

Step (F5)
▪ Executes the current

instruction

▪ Positions the pointer at the
Next Sequential Instruction

Step Over (F6)
▪ Executes the current

instruction

▪ Except on a CALL
statement – where Step
Over runs (executes) all of
the logic in the Called
subroutine stack

▪ Positions the pointer at the
Next Sequential Instruction

Step Return (F7)
▪ Executes all of the

statements thru to the end
(GOBACK) of the program

Resume (F8)
▪ Executes (runs) all

statements until:

 ABEND

 Breakpoint

 Normal EOJ

Additional Debug actions:
Terminate (Ctrl+F2)
▪ Halts the Debug session

Open Visual Debug
▪ Opens a view that keeps a running visual depiction of the program’s

business logic procedural flow

The Action Icons

25

Additional Debug Actions – Jump to & Run to Cursor Location

▪ Jump to Location - skip over sections of code to avoid executing certain

statements or move to a position where certain statements can be executed again.
Useful:

▪ To avoid called programs or I/OS to a not available dataset

▪ Or to iteratively execute some statements of interest

▪ Run to Location - executes all statements between the current location and the

run-to location.

26

Returning to the “Current Instruction”

▪ To get back to the Current Instruction Pointer (the "next sequential

instruction") – if you've navigated away within the source:

Click the small blue rectangle in the right-hand margin of your
source code

Note that this icon can be hard to

see – especially in large source files

27

Visual Debug – IDz v14 and later

▪ Tracks your program’s execution path

through the PROCEDURE DIVISION.

▪ Disable/Enable Visual Debugging using this

menu bar drop-down icon

The visual paragraph stack view is synchronized to your

source file and the load module machine instructions

28

Statement Breakpoints

▪ A statement breakpoint stops the program when it reaches a
statement:

 It stops before the statement runs

▪ A breakpoint can optionally be made conditional

 A simple condition may be specified such as:

▪ VariableX > 999

…or…

▪ VariableY = 'Abc'

▪ A breakpoint can be based on a frequency:

 Stop the Nth time a statement runs

▪ A breakpoint can stop at the Entry to a Load Module

29

Setting Statement Breakpoints

dbl

click

Set a statement breakpoint by

double-clicking in the gray area

next to a statement

30

Run to a Statement Breakpoint

A breakpoint icon is shown…

and the breakpoint is also

shown in the Breakpoints view.

click

Resume

See Slide Notes

31

Edit/Create Conditional Statement Breakpoints

A breakpoint can trigger the

Nth time the statement runs…

… and breakpoints

can be conditional.

Select the Breakpoint.

Right-click and select: Edit Breakpoint…

Can set to different statement/line

Or click Next > to specify

conditional breakpoint logic

32

Additional Breakpoint Options

The program ran to the

breakpoint

… or by deleting it from

the Breakpoints view

You can remove the

breakpoint by double

clicking again here…

33

Entry Breakpoints – to stop in a specific program within a series of subroutine calls

▪ Step for a few instructions into the first
program

▪ From the Breakpoints view, Add an
Entry Breakpoint
 Defer breakpoint until executable is loaded

 Specify the subroutine you wish to stop in

 Click: Finish

▪ From the toolbar, Click Resume - to run
your program(s) to the Entry Breakpoint

34

Stopping on a line in a Subroutine
Steps:

 Set a Statement Breakpoint

 Over-ride the Load Module/CSECT values

 Ad the Statement line# to break at

 You need to select the “Defer breakpoint
until executable is loaded" if the subroutine is
in a different load mod

35

Watch Monitor Breakpoints
▪ Can have breakpoints occur conditionally,

when:

 The value in a field changes

 Some portion (# of bytes) of a field
changes

 A logical condition tests true for the
value in the field

▪ Steps:

 Select a variable

 Right-click, and select: Add Watch
Breakpoint…

 Select Number of bytes to watch –
or add a simple condition

▪ Specify Auto to test for all bytes

36

Variables View During Remote Debug – Additional Options

With large COBOL

programs can "filter" and

display only certain

categories of variables

Many options for

working with variables

 Add to Monitor – for permanent viewing

 Monitor internal memory values

 Show value in hex – (EBCDIC internal) or string

value representation

 Copy variable and value to Notepad

 Find specific variable in filtered Locals

 Show specific variables in the view

37

Variables View – EBCDIC (Hex) Data Representation

Value – in string or numeric display format

Value in EBCDIC internal display ➔

very useful for debugging data

exceptions

You can create invalid binary values in numeric fields for type-check (0C7) testing
1. Change representation to Hex.
2. Type invalid numeric EBCDIC values
3. Save

38

Monitors View – Options

Monitored variable value – in EBCDIC

internal display ➔ very useful for

debugging data exceptions

Add datatype prefix to variable data-name

displayed – still retain variable value)

39

Best Practice – Detach the Eclipse View

Can view a large of variable values

during debug, animated debug or

Resume to breakpoints

Drag the Monitors View out of the Workbench and onto a Dual

Monitor or onto your desktop…

40

The Debug Console

Rational Developer for

System z messages
You can enter a subset of

commands from the

Debug Tool 3270

interface, a list of Debug

Tool commands that are

valid for use in IDz can be

found in the Appendix of

the Debug Tool Reference

and Messages Guide.

The Debug Console view shows IDz

messages and lets you enter some

Debug Tool commands

Place your cursor in the Command area and press Ctrl+Spacebar – to see a list of available commands

41

Debug Console Commands – Tracing Statement Execution

This is another very popular

command:

SET AUTOMONITOR ON LOG

It forces Debug Tool to track

each statement as it's executed

and write it to the Debug

Console

Using this technique you can copy

and paste your program's

dynamic execution and trace

forward and backward through

any portion of your code

You can also copy all of the

statements to hard-copy :

1. Right-click

2. Select Export History

3. Specify a file – preferably an

RTF or MS-Word doc, as

formatting will be retained

42

Set Automonitor On Log – To help solve Infinite Loop ABENDs

Infinite Loops can be difficult to

solve for.

A “Best Practice” would be to:

1. SET AUTOMONITOR ON LOG

2. Resume to the S222 ABEND

- you will stop at some part of

the code that looping

3. From the Debug Console Log ➔

• Note the line # in the program

that is inside the Infinite Loop

• Set a Breakpoint at one of the

lines

• Resubmit your JCL

…or…

• Re-run your online transaction

43

Debug Console View – Other Debug Console Options
There are a number of useful Debug Console commands that work with IDz

SET INTERCEPT ON - allows you to see your program's DISPLAY statement output

that ordinarily goes to //SYSOUT

Hint: Ctrl+Spacebar with your cursor in the Command

area lists the Console commands that work with IDz

44

Copy the contents of a monitor to the Windows-Clipboard

Sometimes you’ll want to save the contents of a variable

(including a File/Record) to some external source –

like an ASCII/Notepad file, spreadsheet, etc.

1. Monitor the variable – and from the Monitors View

2. Expand the “nodes” (Group fields)

3. Click Copy view to Clipboard

• This copies the contents of the View to your

Windows paste buffer

4. Paste the copied contents ➔

Ctrl+V

(Paste)

45

Using Automonitor to Capture Test Run “State”

• Automonitor captures both executed lines and variable
“state” (value changes over time)

• Use Automonitor in combination with Statement
Recording (next topic) to solve ABENDs

• Note that Automonitor does not function during Resume
• Use Step or Animated Step in conjunction with

Automonitor + Recording (next topic)

46

Record and Playback Test Run

▪ Debug Tool allows you to record and then playback
recorded statements during Debug

Steps:

▪ From the Debug toolbar
Click the white downward-pointing triangle, and select:
✓ Show Playback Toolbar

From the Playback toolbar, click the green-go button, to start
playback recording

▪ All of your statements are being recorded from that

point until you:
– Stop recording

– End the Debug Session (ABEND or normal EOJ)

If your program pauses (Breakpoint, etc.) you can
backtrack through the recorded statements by pressing
the Move Back icon on the toolbar

You can also play the recorded statements forward, by
clicking Move Forward on the toolbar

47

Handling Program ABENDs – Best Practice

▪ Debug Tool can receive control back from the system after an
ABEND occurs

The program will be stopped at the ABENDING statement

▪ You can:

Allow the application to ABEND and terminate

▪ Capture ABEND info with a product such as Fault

Analyzer

▪ Terminate the application and prevent further processing

Or continue running the program

▪ Usage note:

The LE TRAP(ON) option must be active

48

Bookmarks – During Debug
Bookmarks can be used to:

▪ Set points-of-interest inside your *.cob file during Debug

▪ Create annotations/points-of-interest in your source file - for work outside of
Debug

▪ Side by side view of Debug(read-only) source with actual program source
 Note that you will have to manually align the file content

49

Source Context Menu Options – During Debug
During Debug (and without interrupting/influencing your running executable)
you can stop at any moment and use the Context menu to access source
navigation tools and program understanding tools such as:

 Perform Hierarchy, Program Control Flow, Data Element analysis, Filtering, Code
Review, Show unreachable code, Occurrences in Compilation Unit, etc.

▪ Combining Static Analytics using the Context Menu options and Dynamic
Analysis (from Debugging) you can get a very complete picture of your
program’s semantics - its operations and business logic

50

Integrating Context Menu options – Data Flow

▪ The Static Analysis tools that you learned about in Module 3 – Analyzing
Your COBOL Programs are all available while Debugging

▪ Show In > Data Flow can be extremely useful during Debug

51

Integrating Editor Features – Bookmarks

▪ It can be useful to set Bookmarks
(and/or Tasks) into your code as:

 Reminders of something to do

 Navigation labels of where certain
processing is

▪ To do this:

 Navigate to the line you’re interested in

▪ Note – you can just scroll, you don’t have to

execute code

 From the Edit menu, select:

▪ Add Bookmark…

▪ Note that the Bookmarks are
temporary – and only available
during your Debug session

52

Outline View Options

For large programs, several

additional Outline view

features are available as

toggled icons:
• Click to Toggle function on

• Click again to Toggle function off


Sort all variables

53

Outline View – Code Sync Option
While debugging through

PROCEDURE DIVISION Outline view

synchronizes with code in paragraphs

and sections

But if you scroll in the code while stepping, the Outline View syncs with

your browsing activity

54

If your program ABENDS during Debug

▪ The Debugger can receive control back from the system after
an ABEND occurs

The program will be stopped at the ABENDING statement

▪ You can:

Allow the application to ABEND and terminate

▪ Capture ABEND info with a product such as Fault

Analyzer

▪ Terminate the application and prevent further processing

Or continue running the program – to examine & research
the ABEND situation with access to variable values at the
time of the ABEND

▪ Usage notes:

The LE TRAP(ON) option must be active

Check out the Lookup View

55

Terminating the application

▪ There are several options for terminating your
application:

 Remain in the debugger, and RESUME until the
program runs to completion

▪ The program will terminate normally or with an abend

▪ The return code is controlled by the program

 Disconnect the debugger, and allow the program to run
to completion

▪ The program will terminate normally or with an abend

▪ The return code is controlled by the program

56

Termination action buttons

You can immediately terminate the

application using action buttons

Terminate: Immediate

termination of the application.

No more program statements

run. RC=0 is returned to the

environment.

Disconnect: Disconnect the

IDz Integrated Debugger from

the application. The program

continues to run from the

current location without the

debugger. And subsequent

batch job steps can finish as

well.

57

Force an immediate termination with abend

right

click

1

click
2 click

3

Right click in the
Debug view

Options

Terminate
and abend

58

Restart Your Debugging Session

For batch debugging

If your submitted JCL is
still in the code
(Content) area
▪ No need to return to the z/OS

Projects perspective

Right-click

Select: Submit

59

Debug and the COBOL Optimize Compiler Directive Warnings

Compiling with the EJPD sub option of the TEST compilation parameter for COBOL 4
and above will eliminate the JUMPTO warning messages.

EJPD allows optimization within statements. NOEJPD will allow full optimization, if
optimization is specified. NOEJPD may remove statements.

If you happen to jump to one of these areas, unpredictable results may occur. (0C4 or
0C1 or something)

With COBOL 3 and 4, the JUMPTO and GOTO statements will issue a warning and not
allow the statement unless you issue the command SET WARN OFF. Then it will
work.

The EQAJCL Debugger JCL wizard for the 3270 interface allows you to turn this with a
selection.

COBOL 6 will issue a warning but allow the command without the SET WARN OFF
statement.

Thanks to Jim Rice/IBM for the above details

60

Summary

Having completed this unit, you should now be
able to:

 Describe where the debug engines are located

 Show how to set the workbench preferences for running
and debugging

 Show how to invoke the debugger for local programs

 Describe the views of the Debug perspective

 Demonstrate how to set breakpoints in COBOL code

 Explain how to set up the COBOL compile options for
remote debugging

 Show how to debug a remote batch COBOL program

61

UNIT

Topics:

The IDz Workbench

▪ Debugging z/OS COBOL Batch Applications

▪ Debugging z/OS COBOL Online Applications

▪ Code Coverage/Appendix

62

Topic Objectives

After completing this unit, you should be able to:

Using the Problem Determination Tools, Debug Option and
IDz:

▪Debug a mainframe online transaction

Describe the online transaction features for configuring your
3270 sessions with Debug Option

Debug a CICS 3270 Application

63

Online Debugging Overview

▪ Guess what?
No one gets
it right the first time
coding online
programs either ☺

▪ Lucky for you:

 Debug tool handles:

▪CICS 3270 online transactions

▪ IMS TM online transactions

 Without any different debugging techniques
▪ The only difference from batch is the debug setup procedure for the online

environment

64

Steps for Online (CICS) Application Debug Session

1. Ensure that your compile proc has the necessary TEST parameter, and

Compile/Link to create load module – and that your CICS application is setup

for Debug Option testing

2. Discover workstation TCP/IP parameters:

▪ IP Address

▪ Listener port#

3. Access and login to your CICS region – Green Screen

4. Use the DTCN view, or execute the DTCN transaction and specify:

▪ Terminal ID

▪ Transaction code and programs – to put under Debug control

▪ User-ID

▪ TCP/IP parameters:

▪ IP Address

▪ Port#

▪ Save the DTCN transaction specification

5. Debug your CICS application

65

1. Compile JCL Requirements for Using Debug Tool

▪ Use the TEST compiler option to prepare your
executable COBOL program for use with the
debugger.

The TEST option is required for remote debugging. It
produces symbol and statement information that
enables the debugger to perform symbolic source-
level debugging

▪ Enterprise COBOL 3.4: TEST(NONE,SYM,SEP)

▪ Enterprise COBOL V4.1 +: TEST(NOHOOK,SEP,EJPD)

Include the DD card for your SYSDEBUG dataset in
the COBOL Compile step

▪ In traditional compile JCL – this would be in the

IGYCTRL step

▪ If you are not using the IBM/IDz compile PROCs
for building your applications, be sure to override
the compiler option and add TEST - as shown

66

2. Discover TCP/IP address and IDz Port - Review

▪ Open the Debug Perspective
Click the small downward pointing triangle

next to the debug-daemon icon

Note the Port#

Select: Get Workstation IP…

Copy the IP address

Either paste the IP address into Notepad, or write it down

Note: Your IDz Port# will most likely be set

once, and will change infrequently.

However, depending on your installation's

setup, your workstation's TCP/IP address

could change - often

67

3. Login to your CICS Region

From Remote Systems Explorer:

 Right-click

 Select: Host Connection Emulator

 Select your CICS application

 Enter your Userid and Password and sign in

68

3. Setup the Debug Option Parameters using DTCN Transaction – 1 of 3

If you did NOT use the DTCN view to enter your DTCN properties

you can do so using a CICS Transaction (green screen)

From CICS (after signing in):

 Clear the screen, Enter: DTCN – and press  Enter

From the DTCN screen

 Press F10 – this will fill in the Terminal Id for your workstation

Note that you can also

type an asterisk: *
…as the Terminal Id

 Note: You would

only use the DTCN
transaction to specify
your Debug Option
properties if you could
not use the DTCN view
(prior slides)

69

3. Setup the Debug Option Parameters using DTCN Transaction – 2 of 3

DTCN transaction data entry screen

 Enter the Tran-code

▪ Transaction ID

 Enter up to eight specific Program Id(s) you wish to debug through …or…

 Enter wildcard text for the Program Id(s)

▪ Ex. CD*

 Enter your User-ID

 Session Type: TCP

 Port Number:

from your Debugger look-up

 Display ID:

Your TCP/IP address,

from your Debugger look-up (note that you can not paste into this 3270, screen)

▪ Press F4 to save your debug profile

▪ Press F3 to clear the screen

70

3. Setup the Debug Option Parameters using DTC Session Type – 3 of 3

DTC Session Type – Assumes that IDz’s DBGMGR started task is running

 Press F10 to generate a unique Terminal ID

 (Optionally) Enter a Tran-code

 Enter up to eight specific load modules you’d like to debug

 User Id ➔ TSO-ID

 Session Type ➔ DTC

 Display Id ➔ TSO-ID

▪ Press F4 to save your debug profile

▪ Press F3 to clear the screen

71

4. Start Debugging

From the CICS region

 Enter the Tran-code

 Press  Enter

 Click: Yes at the
Confirm Perspective Switch

72

4. Start Debugging

Debug as previously learned in the batch/remote and Local debug units.

73

What Happens during CICS calls and screen-io – 1 of 2

You will be

prompted,

and

presented

with debug-

run-time

options

74

What Happens during CICS calls and screen-io – 2 of 2

If your current transaction ends, and a BMS or 3270 screen is sent:

▪ You will be notified (prompted) by the debug engine

▪ If a screen is sent, the 3270 will display in the content area

75

What About PF-Keys and Other Data Entry?

▪ You can resize the screen portion of the debugger

▪ And use the
PF-Key emulation
options in the
Host Connection

76

Same Debug Option Functionality!
All of the

debugging

features and

functions are

available

when

debugging

online CICS

or IMS TM

applications.

77

Topic Objectives

After having completed this unit, you now should be
able to:

Using the Problem Determination Tools, Debug Option and
IDz:

▪Debug a mainframe online transaction

Describe the online transaction features for configuring your
3270 sessions with Debug Option

Debug a CICS 3270 Application

®

IBM Software Group

®

IBM Software Group

®

IBM Software Group

®

IBM Software Group

Code Coverage and IDz
▪ IDz Integrated Debugger

79

Code Coverage – Overview
Extension to Debugging:

Tracks lines of code that have been
executed during test

Improves application testing quality

Focuses testing resource usage

Numerous reports on tested code
and trends

Supports: Batch, CICS and IMS TM

Many options:
▪ Exclude/Include specific modules

▪ Filter and Export Reports

▪ Integrates with ADDi

Detailed/Source
Line Coverage

Module Level
Code Coverage

80

Big Picture:
 JCL or Online system setup passes ENVAR parameters to the Remote Debugger

 Which invokes Code Coverage modules on z/OS

 Which interact with your application code – using the Debugger functionality to
synchronize source statements

 Code Coverage sends meta-data back to IDz, which formats into Code Coverage reports

z/OS

Code Coverage Architecture - Concepts

TCP/IP

Remote

Debugger

Run-Time

Engine

Data

Source

Your

Application

Load Module

Port#

Code Coverage

Systems .exe

IDz Upon GOBACK return
Code Coverage meta-data

IDz Client
......Batch example.......

//JOB ...

//...........

//CEEOPTS DD *

TEST + Code Coverage parms

passed to Remote Debugger

81

Code Coverage – Setup

▪ Process:

Compile/Link with standard Debug Tool JCL
Parms (TEST…etc.)

Submit run JCL – passing in a PARM with:

▪ Your I/P address and port#

▪ ENVAR("EQA_STARTUP_KEY=CC")

Make sure that the Debug Tool runtime is in
STEPLIB, JOBLIB or installed into Link Pack

Run your debug session.

▪ Instead of dropping into interactive Debug, your

program will execute

▪ After the job finishes a Code Coverage report

opens in the editor
– (this takes a few seconds)

▪ Double-click a program to view the detailed lines ➔

▪ The report will provide varying levels of Code

Coverage…………………………….

NOTES:
• //STEPLIB reference to Debug Tool runtime is only

required if not installed in Link Pack
• You can also add the ENVAR… parameter into

//CEEOPTS DD card

82

Code Coverage – Specifying ENVAR

▪ Specifying the ENVAR parameter

 Batch:

▪ PARM card

▪ //CEEOPTS DD card TEST parameter

Online

▪ DTCN Profile

▪ PF9 to Debug Tool options

▪ Same ENVAR…. parameter

83

Code Coverage – Reports 1 of 2

▪ When the Code Coverage batch
job or transaction finishes – and
you’re running IDz interactively:
 The current Code Coverage report

opens in the editor window

 The Compiled Code Coverage Results
view is opened

▪ Code Coverage Reports present:
 Coverage Totals

▪ The lines that were executed

 A warning symbol to let you know of
any modules and/or paragraphs that
were accessed at below a specified
coverage threshold
▪ You set the threshold for coverage warnings

in Preferences

 Individual program paragraph
coverage statistics



 Program Entry

Pa
ra

gr
ap

h

co
ve

ra
ge

Compiled Code Coverage Results view allows

you to see previous Code Coverage Reports.

These are stored in your Workspace

Opens…

84

Code Coverage – Reports 2 of 2

▪ From the report window,
you can drill-down to a
Program or Function
(COBOL paragraph, etc.)
and double-click the entry to
open a hyper-linked source
file
Executable statement/lines are

annotated within the
PROCEDURE DIVISION (as
well as the procedural logic in
PL/I programs)
▪ Red == this line was not executed

▪ Green == this line was executed



Opens…


85

Code Coverage – Reports IDz v14.1.x and later

Web-Based UI and new Functionality:
• Group data by files or modules. To change the grouping method, click the Files or Modules button.
• Open source files by clicking on the file names.
• Expand rows to view the children of the files.
• View file-related messages by clicking on the icons in the Messages column.
• Sort the report by clicking on the column headings.
• Filter results according to coverage percentage by specifying a value in the Show below field and
clicking the Refresh button - note that you must turn On Show Below. You can also set preference
• Click export to open a dialog that will allow you to export to either CCZip, SonarQube or PDF.
• In Comparison reports you can click the swap button to swap the direction of comparison.

https://developer.ibm.com/mainframe/wp-content/uploads/sites/46/2018/12/swap-icon.png

86

Code Coverage – Reports 2 of 2 – Paragraph list



87

Compare Reports

▪ Can compare two Code
Coverage Reports

▪ Later (Date/Timestamped)

report is compared to

earlier selected report
– Colored deltas highlight

differences

▪ Deltas are calculated at

various levels
– Totals

– Module

– Paragraph

In this example a batch job is run twice

using two different input datasets

Reports are compared…

88

Filtering Detailed Reports

▪ You can manipulate the combination of Threshold, Above and
Below – then click: Refresh to filter the paragraphs displayed in
the report...

89

Code Coverage Options – Using tag=

▪ If you wish to selectively cover only code that you’ve added you can
pinpoint specific lines as follows:

1. Add a source Tag to the line(s)

2. Compile/Link

3. Add a tag=nnn specification to your JCL

4. Run Code Coverage

5. Open the tag= Report as a Filtered File Report

6. Specify the same Filter as your tag

Note that you can use Autocomment
to tag the source for your Filter

90

Merge Code coverage Results

• Combine multiple results

• Hover over area of code to see individual test result

91

Save Code Coverage to Local Workstation

Can Export reports to a local file system, and them back as a Result Location...

92

Code Coverage Options

Large number of options for Code Coverage. Detailed information

https://www.ibm.com/support/knowledgecenter/SSQ2R2_14.0.0/com.ibm.debug.pdt.codecoverage.zpcl.do
c/topics/tccstartup.html

https://www.ibm.com/support/knowledgecenter/SSQ2R2_14.0.0/com.ibm.debug.pdt.codecoverage.zpcl.doc/topics/tccstartup.html

93

Running Code Coverage in Batch (UNIX) Mode - 1 of 6

• Run AKGCC PROC

• Output to z/OS Unix

• Import Unix clcoverage file(s) to Code Coverage Results view

• Runstream JCL AKGCC PROC

94

▪ Launch Job that executes AKGCC

▪ Note: Better to Submit from menu

▪ Job finishes

Running Code Coverage in Batch (UNIX) Mode - 2 of 6

Code Coverage data

written to your Unix

Home directory

95

From the File Menu:

1. Select Import…

2. Select Remote file system

Running Code Coverage in Batch (UNIX)
Mode - 3 of 6

3. Browse and Select your LPAR

4. Select the folder named after your program

96

5. Check the Folder box

6. Specify the Into folder ➔

and click Finish

7. Using your work un-zip program, extract the import zip file

Running Code Coverage in Batch (UNIX) Mode - 4 of 6

97

From Code Coverage Results:

8. Import…

9. Select Local File System…

From Windows

Running Code Coverage in Batch (UNIX) Mode - 5 of 6

10. Browse and select clcoveragedata file

98

Running Code Coverage in Batch (UNIX) Mode - 6 of 6

From Code Coverage Results - open the file

99

Running Code Coverage in Batch (headless) Mode

▪ Small footprint non-gui code coverage collector

▪ Runs native on target system

• Requires Java 6 or higher

▪ Collects CC results and optionally generates

• Source that matches CC results

• HTML reports

• Zip of results

▪ Results can be imported into IDz for further analysis

• Comparisons

• View source lines annotated with hit information

▪ Integrate into automated builds and testing

• Run as continuous daemon that collects all data

• OR Run instance per build/test

▪ Can be invoked from JCL

▪ Supports adding “tags” for future reference

•e.g. testcase ID

100

Code Coverage Options – Filtering out Modules

▪ You can exclude modules from Code Coverage by passing a parm into the
ENVAR...EQA_STARTUP_KEY=(moduleexcludelist=...)

101

//GYOUNGG JOB XXXXXXXX,CLASS=A,MSGCLASS=H,MSGLEVEL=(1,1),

// REGION=256M,NOTIFY=&SYSUID,TIME=1

//STEP1 EXEC PGM=COB01

//STEPLIB DD DISP=SHR,DSN=GYOUNG.CC5.LOADPDSE ➔

//SYSOUT DD SYSOUT=*

//CEEOPTS DD *

TEST(ALL,*,PROMPT,TCPIP&9.76.69.100%8005:*),

ENVAR("EQA_STARTUP_KEY=CC,COB01A,

CCLEVEL=LINE,MODULEINCLUDE=COB01A")

1. Start daemon ➔

Running Code Coverage in Batch Mode – Example JCL

GYOUNG.CC5.LOADPDSE

(Load library)

COB01 – Load Module

COB01A - Subroutine

Windows Server

Code Cover console
messages ➔

4. Coverage Report ➔

Much easier than it looks!

2. Customize TEST card w/PC IP address & Port#

3. Submit the JCL

102

103

Obtaining the Source Listing for Debugging

Below is the list of the other mechanism. You can use with IDZ
debugger except Set Source command.

ZOS Debugger obtains the source file from one of the following
sources:

Default data set name

SET SOURCE command

SET DEFAULT LISTINGS command

EQAUEDAT user exit (specifying function code 3)

EQADEBUG DD name

EQA_SRC_PATH environment variable

The above are use to automate finding the debug file but
assuming you don't set that up ahead of time, then when
starting a debug session the debugger will prompt you to
provide the location of the file.

104

3. (CICS) Setup the DTCN Parameters Using the DTCN View

If you are using IDz v7.6.1 or higher, you can utilize an IDz view to setup your DTCN
CICS Debug properties.

▪ Steps:

From Window > Show View > Other type: DTCN and select DTCN Profiles

Right-click inside the new, empty view and select: Create

From the DTCN profiles window:

▪ Enter your User ID

▪ Click DTCN Preferences

From DTCN preferences specify:

▪ Host Name/IP Address

▪ CICS DTCN transaction port

▪ CICS login credentials:

– User ID

– Password

▪ Other fields as shown ➔

▪ Click Test Connection

▪ Click OK to check your work

105

(CICS) Setup the DTCN Parameters Using the DTCN View – continued

From DTCN profiles click Next >

From DTCN pattern matching specify :

Terminal ID: *

Transaction ID (Trancode) ➔

Click Add, and specify the Compile Units

(Load Module names)

Click Next >

From DTCN TEST run-time specify:

Fields as shown ➔

Session Address (your workstation I/P address)

Port (your listener Debug Tool listener port)

Other fields – as shown ➔

Click Finish

DTCN Profiles will be populated with entries for all users connecting into that CICS region

106

(CICS) Using the DTCN View

Once you have setup the DTCN View, you can:

▪ Activate the profile

This modifies the CICS System Tables dynamically, through the
Debug Tool facilities – and allows you to debug CICS transactions

▪ Other options include:
Edit the profile – and change your I/P address

▪ After you reboot your machine

Delete the profile

Create a new profile

Refresh the display of DTCN entries in the region

Note: In order to debug CICS programs you will have to launch a 3270
emulation session (next slides) to kick off the transaction

107

CEEOPTS TEST Statement – IDz/IDz Options

▪ TEST parameter syntax
TEST(test_level,cmd_file,prompt_level,preference_file)

▪ Standard Mode Test preference file parameters:
TEST(,,,DIRECT&1.2.3.4%8001:)

TEST(,,,DBM:*)

TEST(,,,DBM%TSS14:*)

▪ Compatibility Mode Test preference file parameters:
TEST(,,,TCPIP&1.2.3.4%8001:)

TEST(,,,DBMDT:*)

TEST(,,,DBMDT%TSS14:*)

108

Product Options Details – Up to IDz v14

Client Host Product/Feature

Name

TEST Runtime option

IDz 9.0.1x -9.5.0x IDz 9.01x -9.5.0x Integrated Debugger TEST(,,,DBM)

TEST(,,,DIRECT&ip_addr%port

IDz 9.0.1x -9.5.0x IDz 9.01x9.5.0x + Debug Tool v12 or v13 Debug Tool TEST(,,,TCPIP&ip_addr%port:*)

IDz 9.5.1x IDz 9.01x9.5.0x + Debug Tool v12, v13 Debug Tool TEST(,,,TCPIP&ip_addr%port:*)

IDz 9.5.1x IDz 9.01x -9.5.1x Integrated Debugger TEST(,,,DBM)

TEST(,,,DIRECT&ip_addr%port)

IDz 9.5.1x IDz 9.5.1x + Debug Tool v13 Debug Tool TEST(,,,DBMDT%TSO_ID:)

TEST(,,,TCPIP&ip_addr%port:*)

IDz v14.0x IDz 9.01x -9.5.0x Standard Mode
(previously Integrated Debugger)

TEST(,,,DBM)

TEST(,,,DIRECT&ip_addr%port)

IDz v14.0x IDz 9.01x -9.5.0x + Debug Tool v13 Debug Tool Compatibility Mode TEST(,,,TCPIP&ip_addr%port:*)

IDz v14.0x IDz 9.5.1x Standard Mode

(previously Integrated Debugger)

TEST(,,,DBM)

TEST(,,,DIRECT&ip_addr%port)

IDz v14.0x IDz 9.5.1x + Debug Tool v13 Debug Tool Compatibility Mode TEST(,,,DBMDT%TSO_ID:)

TEST(,,,TCPIP&ip_addr%port:*)

IDz v14.0x IDz v14.0x Standard Mode TEST(,,,DBM)

TEST(,,,DIRECT&ip_addr%port)

IDz v14.0x IDz v14.0x Debug Tool Compatibility Mode TEST(,,,DBMDT)

TEST(,,,TCPIP&ip_addr%port:*)

Details on the above product options:
• https://www.ibm.com/support/knowledgecenter/SSQ2R2_14.0.0/com.ibm.debugtool.doc/common/dcompo.html

https://www.ibm.com/support/knowledgecenter/SSQ2R2_14.0.0/com.ibm.debugtool.doc/common/dcompo.html

109

Monitor Memory

▪ Monitor Memory option(s)
▪ The memory content can be shown (or “rendered”) in several different formats:

▪ Raw HEX, EDBCDIC or ASCII

▪ Tree structure using customized XML mappings.

▪ Primarily used during Assembler debugging – or in
handling ABEND (Dump) situations

110

Run Menu
▪ Shows same + additional

debugging functionality as
icons on toolbar

 However, not all Run menu
functionality enabled for
COBOL/PL1

▪ Also shows hot-keys

 Your PC's function keys

▪ Context-sensitive:

 Options are grayed in current
debug session if not
applicable

111

SET WARN OFF – As default using EQACMD

The EQACMD can point to a sequential or PDS file which contains the SET WARN

OFF command. Anytime the debugger is invoked, this member is read, and

//CEEOPTS DD *

TEST(,EQACMD,,DBMDT%DNET424:)

/*

//EQACMD DD *

SET WARN OFF;

/*

A better alternative is using the Global Command file. This file is defined in the

EQAOPTS member as

EQAXOPT GPFDSN,'DEVELP.TEST.GLBLPREF'

Additional information may be found in the z/OS Debugger Customization Guide

regarding the GPFDSN EQAOPTS command.

From Jim Rice/IBM

112

SYSPROG Information

There are a number of Debug Tool Reference Guides – both for Users and for
Administrators. It would be smart to bookmark URLs to them

Compiler Releases and the TEST(SEP) Parm
For COBOL V4 - Debug Tool doesn't need the source but it needs a "SYSDEBUG" file - created out
of the Compile step.

For COBOL V5 and above the debug information including a copy of the source is imbedded into
the load module(object) so the answer to your question will be yes, you can debug a COBOL
application where the object contains the source if compiled TEST(NOSEPARATE)

The latest version of COBOL V6.2 enhances the TEST compile option with by adding an approach
similar to what Jon describes for COBOL V4 above, in which you need a SYSDEBUG file created
by the compiler. The option is now TEST(NOSEPARATE/SEPARATE).

SYSPROG Info – on Debug Sessions that are left unattended
If a debug session is left alone it ends up being in a wait on z/OS. The setting for
PARMLIB(SMFPRMxx) JWT [max job wait time] comes into play. This parmlib setting
just sets the default, this can be overridden in various places, like on the JOB and EXEC
cards of a JCL.
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieae200/smfparm.htm

113

Unit Test Name: ASAMDRV

