
®

IBM Software Group

®

IBM Software Group

®

IBM Software Group

© 2021 IBM Corporation

Jon Sayles/IBM: jsayles@us.ibm.com

IBM Developer for z Systems – for ISPF Developers

Module 3 – Analyzing Your COBOL Programs

@Copyright IBM – July 2021

DevOps

mailto:jsayles@us.ibm.com

2

Notices and disclaimers
© 2021 International Business Machines Corporation. No part of

this document may be reproduced or transmitted in any form

without written permission

from IBM.

U.S. Government Users Restricted Rights — use, duplication or

disclosure restricted by GSA ADP Schedule Contract with IBM.

Information in these presentations (including information

relating to products that have not yet been announced by IBM)

has been reviewed for accuracy as of the date of

initial publication and could include unintentional technical or

typographical errors. IBM shall have no responsibility to update

this information. This document is distributed “as is” without

any warranty, either express or implied. In no event, shall IBM

be liable for any damage arising from the use of this

information, including but not limited to, loss of data, business

interruption, loss of profit or loss of opportunity.

IBM products and services are warranted per the terms and

conditions of the agreements under which they are provided.

IBM products are manufactured from new parts or new and

used parts.

In some cases, a product may not be new and may have been

previously installed. Regardless, our warranty terms apply.”

Any statements regarding IBM's future direction, intent or

product plans are subject to change or withdrawal without

notice.

Performance data contained herein was generally obtained in a

controlled, isolated environments. Customer examples are

presented as illustrations of how those customers have used

IBM products and the results they may have achieved. Actual

performance, cost, savings or other results in other

operating environments may vary.

References in this document to IBM products, programs, or

services does not imply that IBM intends to make such products,

programs or services available in all countries in which

IBM operates or does business.

Workshops, sessions and associated materials may have been

prepared by independent session speakers, and do not

necessarily reflect the views of IBM. All materials and

discussions are provided for informational purposes only, and

are neither intended to, nor shall constitute legal or other

guidance or advice to any individual participant or their specific

situation.

It is the customer’s responsibility to insure its own compliance

with legal requirements and to obtain advice of competent legal

counsel as to the identification and interpretation of any

relevant laws and regulatory requirements that may affect the

customer’s business and any actions the customer may need to

take to comply with such laws. IBM does not provide legal

advice or represent or warrant that its services or products will

ensure that the customer follows any law.

3

Notices and disclaimers continued

Information concerning non-IBM products was

obtained from the suppliers of those products,

their published announcements or other publicly

available sources. IBM has not tested

those products about this publication and cannot

confirm the accuracy of performance, compatibility

or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products

should be addressed to the suppliers of those

products. IBM does not warrant the quality of any

third-party products, or the ability of any such

third-party products to interoperate with IBM’s

products. IBM expressly disclaims all warranties,

expressed or implied, including but not limited to,

the implied warranties of merchantability and

fitness for a purpose.

The provision of the information contained herein

is not intended to, and does not, grant any right or

license under any IBM patents, copyrights,

trademarks or other intellectual property right.

IBM, the IBM logo, ibm.com and [names of other

referenced IBM products and services used in the

presentation] are trademarks of International

Business Machines Corporation, registered in many

jurisdictions worldwide. Other product and service

names might be trademarks of IBM or other

companies. A current list of IBM trademarks is

available on the Web at “Copyright and trademark

information” at:

www.ibm.com/legal/copytrade.shtml.

http://www.ibm.com/legal/copytrade.shtml

4

Please Note

IBM’s statements regarding its plans, directions, and intent are subject to change

or withdrawal without notice and at IBM’s sole discretion.

Information regarding potential future products is intended to outline our general

product direction and it should not be relied on in making a purchasing decision.

The information mentioned regarding potential future products is not a commitment,

promise, or legal obligation to deliver any material, code or functionality. Information

about potential future products may not be incorporated into any contract.

The development, release, and timing of any future features or functionality described

for our products remains at our sole discretion.

Performance is based on measurements and projections using standard IBM

benchmarks in a controlled environment. The actual throughput or performance that

any user will experience will vary depending upon many factors, including

considerations such as the amount of multiprogramming in the user’s job stream,

the I/O configuration, the storage configuration, and the workload processed. Therefore,

no assurance can be given that an individual user will achieve results similar to those

stated here.

5

The IDz Workbench Curriculum

▪ Module 1 – IDz Terms, Concepts and Navigation

▪ Module 2 – Editing Your COBOL Programs

▪ Module 3 – Analyzing COBOL Programs

▪ Module 4 – Remote Systems – Connect, Navigate and Search

▪ Module 5 – Remote Systems – Dataset Access and Organization

▪ Module 6 – Remote Systems – ISPF 3.x, Batch Jobs and Batch Job Management

▪ Module 7 – MVS Subprojects – Organizing PDS Members and SCM Checkout

▪ Module 8 - The Data Tools – SQL Code/Test and DB2 Table Access

▪ Module 9 - Debugging z/OS COBOL Applications

Optional Modules
▪ IDz/Endevor Integration Through CARMA

▪ zUnit – Unit Test

▪ Code Coverage – Test quality feature

▪ Code Review – Application quality feature

▪ Menu Manager – Integrate ISPF REXX Execs and CLISTs

▪ Web Services – SOA development

6

Course Assumptions

1. You know ISPF and have used it for at least two years, doing
production work on z/OS with COBOL, PL/I or Assembler

Note that all of the workshops in this course are in COBOL – although
files exist that are Assembler and other languages for you to experiment
with – as time permits

2. You have:

No experience with Eclipse or IDz

Some experience with PC tools

▪ You have used MS-Windows applications for at least one year

IDz installed and running on your workstation at version 8.0 or later

▪ Note that all ISPF discussion/examples and screen captures
assume IBM-installed ISPF product defaults – not any 3rd party
or custom Dialog Manager applications you may have installed
on your mainframe

7

How to succeed at this class…

IMPORTANT NOTE:

If while you are taking this class your find that you do not have the time to complete the
workshops between sessions:

Do what you can to follow the instructor's demo during class - and ask questions

Show up 15 minutes early to each session - ask questions, listen to others' questions

At the end of each session we will take 15 minutes to cover additional productivity topics

FWIW - You can re-take any module in this course during a scheduled Entry Level training class

Course

1. Attend class:

- Ask questions

- Follow the product workflow

- Identify the terms, concepts
& vocabulary - and relate the
IDz tools/techniques to ISPF

- Discover the productivity
features

Workshops

2. Do the exercises
in Labs.pdf:

- Iterate thru the workflow
and practice the tool navigation
(build eclipse muscle memory)

- Commit the U.I. and product
layout to memory

- Explore features both covered
and not covered during class

Application

3. Apply the
techniques to your
App-Dev projects:

- Master the product workflow
& navigation

- Gain more productivity and
speed over time, and use the
features to improve application
quality

https://developer.ibm.com/mainframe/idzrdz-remote-training/

8

Access to your shop’s custom
ISPF Tools and Procedures

z/OS Application
Development

Maintenance and
Production Support

Analysis

Design

Development
Construction

Build/Test

DevOps

Pipeline

Enterprise
Application

Modernization

Parallel/Agile Lifecycle

IDz Graphical Modeling Tools

Language Sensitive Editors
COBOL, PL/I, JCL, SQL,
Assembler, REXX/CLIST,
BMS,MFS Graphical Editors
Code Review

IBM Debugger & Unit Test
Code Coverage

File Manager/Fault Analyzer
DB2/SQL and IMS/DLI Tools

Batch Job Management

SOA/Web Services
API Integration

Continuous Integration

Remote and Local Search
IDz Static Analysis Tooling

IDz Across the Modern SDLC

9

Access to Host Connection Emulator

▪ From the Remote Systems view, launch Host Connection Emulator
for 3270 access to your shops ISPF panels/CLIST/REXX Execs.

▪ Use IDz for:
 Code Analysis/Project Research & Documentation

 Test/Debug & Code Coverage

 High-productivity code development

 DB2/SQL Development

 Test Data Create/Update

 ABEND Root Cause Analysis

Host Connection
Emulator

Eclipse and
Improved Screen

Real Estate

Advanced
COBOL Static
Analysis Tools

Advanced
Source Editing

Tools
Test & Debug DB2 Tools

10

UNIT

Topics:

IDz for ISPF Developers

▪ Code Analytics – Understanding the domain

▪ Code Search – The Find and Replace Dialog

▪ Code Filtering – Abstract views of your source

▪ Paragraph (control flow), Data Flow Analysis

▪ Optional Topics

11

Understanding the program analysis domain

To maintain, support, migrate, modernize or rewrite existing COBOL programs
you need to understand their structure and functionality

Analysis – Business purpose/"Why?"

1. Bug finding – unwanted run-time behavior

2. Discovery – learning the semantics of the code and the business rules

3. Optimization – tuning run-time performance

4. Verification – against the business logic requirements

5. Security – are there exposures/risks?

6. Documentation – describe “what” a program does, as well as the “how” a
program operates

12

Reveal the "semantics" in program code/"What?"

When you analyze a program you map procedural instructions (COBOL, PL/I,

Assembler) into meaningful abstractions that simplify your understanding of

the code's design and mechanics; The flow of operational statements and the

relationships among data variables.

13

Program Analysis/"How?"

1. Find a Subject Matter
Expert: SME
▪ Probably not available

▪ Or can’t remember what she/he coded
10, 15, 20 years ago

2. Study Code
▪ Complex

▪ Time-consuming

▪ Error-prone

14

Two modes of program analysis

Dynamic analysis:
Analyze a program while it is running -
typically through interactive debugging ➔
▪ Program analysis limited to the logic paths and variable

usage driven by input data/user screen input during
execution

▪ Program called modules can be included

▪ Can do both Procedural (Control Flow) and
Data Flow analysis

▪ Can “backtrack” through statement execution if the
Debug tooling supports

Static analysis:
Analyze a program’s source code ➔
▪ Can analyze any/all program control flow or data paths

(not dependent on input)

▪ Can do both Procedural (Control Flow) and Data Flow
analysis

▪ Can “backtrack” through paragraph-level execution
using the Program Control Flow diagram

▪ Program called modules only supported at the level of
module-name – documented in the “Perform Hierarchy”

15

Analysis Scope with IDz

Application wide:
▪ Enterprise wide analysis

Transaction(s)

Batch Job(s)

Composite Load Module(s)

Program + Copybooks:
▪ A “Compilation Unit”

Program source file + all Copybooks/Includes necessary to obtain
a “clean compile”

In-scope for IDz ***

Requires IBM’s A.D.

Application Discovery

*** Scan for Compatibility detects
incompatible Call/Linkage parameter
definitions between two or more
COBOL programs

16

Application Discovery (AD) for Application-Level Analytics and Research

When you need to view a "bigger picture" of the control flow among modules, transactions and
batch jobs you can utilize IBM's Application Discovery (AD) – which integrates with IDz/IDz, and
can render different levels of:

 Transaction Flow Diagrams, Batch Job Diagrams, Call/Calling (Run unit) Diagrams

 Impact Analysis – across one or more applications

 Cross-referenced/hyper-linked data file/database and program dependency analytics

 And dozens of additional static analysis functions for program source search and
understanding

https://www.ibm.com/us-en/marketplace/application-discovery

https://www.ibm.com/us-en/marketplace/application-discovery

17

IDz Tools for Static Analysis

▪ Enhanced Views (Eclipse tooling – covered in previous modules)

▪ Search

Remote

In-code

▪ Dedicated tools

Show In

▪ Program Control Flow

▪ Data Items

Refactor

▪ Identify Unused Variables

Source

▪ Identify Unreachable Code

▪ Show Expanded Source

▪ Perform Hierarchy

▪ Data flow analysis

Occurrences in Compilation Unit

18

UNIT

Topics:

IDz for ISPF Developers

▪ Code Search – The Find and Replace Dialog

▪ Code Filtering – Abstract views of your source

▪ Paragraph (control flow), Data Flow Analysis

▪ Optional Topics

Search Terms & Concepts:
• Points-of-Interest: Result lines from searches on text-patterns
• Regular Expressions: A Find/Replace meta-language
• False Positives: Result lines from searches that aren’t what

you’re actually looking for

19

ISPF - Find All (Exclude/Not Exclude) During Search Within File

Common ISPF editing technique:

- Exclude various source lines

- find (within) excluded lines

- Used extensively on giant
production source files

Command ====> F (or C) 'xxx' X

To perform this using IDz use the same
command line syntax format:

1. Exclude lines:

Prefix area: XX …or…

X All on the Command line

2. Then type: F <xxxx> ALL X

…or: F <xxxx> ALL NX

This will limit the scope of the search to only
the excluded or to the un-excluded
source lines

Also BNDS is available

20

Find/Replace Dialog – 1 of 4 – Alternative Searching Functionality

Besides the ISPF Find/Change
command, there are other
ways to search and replace
text within a file

From anywhere inside your
source, press:

Ctrl+F …or… Ctrl+f

Brings up the following dialog
with find options ➔

1. Enter Find and/or
Replace value

2. Check one or more
search refinement
options ➔

3. Press a Find button

(covered on the next slide)

Find option checkboxes:
▪ Case sensitive – case sensitive search

▪ Whole word – finds your text delimited by spaces or dashes

▪ Regular expression – powerful search meta-language

▪ Wrap – if starting mid-way through file continue find from the top

▪ Select found text – shows and selects found element

▪ Peek: Shows specified number of lines of source before/after

▪ Restrict search to columns – search between start and end
columns only

21

Find/Replace Dialog – 2 of 4 – Options

▪ Next
– Find forward in the source

– Does not find text inside copy or include files

– Ctrl+n – finds next

▪ Previous
– Find upwards (back) in the source from your current cursor position

▪ All
– Finds all lines within the source

– Additionally will exclude or filter all source not matching your Find string

 Provides an intermediate set of lines to AND your search with

– Press Ctrl+W to "show all" excluded lines …and/or to close the find dialog box

– Clicking anywhere in the main body of your source file also closes the Find dialog

– Click the pluses in the left-hand border to show filtered source

▪ Replace
– Adheres to COBOL columns

– If replace would push text past column 73 you will receive a warning

▪ Replace all
– Changes "found" to replacement of values throughout file

▪ Note that whatever you enter the Find/Replace dialog persists

This can be useful to do repeated searches within multiple files

22

Find/Replace Dialog – 3 of 4 – "ANDing" Search Results Sets

When you've completed a "Find ALL" search, the resulting set of statements can be searched
through, providing a means of "AND" filtering – useful for complex search requirements

Process:
1. Find … ALL

2. Then find any other string using:

Next or Previous – but not All

1. Find … ALL

2. Find Next

23

Window > Preferences >

LPEX Editor > z Systems LPEX Editor
Find Text

 Highlight all occurrences

Highlights Ctrl+F found search text

Find/Replace Dialog – 4 of 4 –

Find Dialog Preferences

Window > Preferences >

LPEX Editor > Find Text

…Set workspace preferences for the
Find Replace dialog.

Consider for COBOL:
 Incremental find dialog

 Column restricted search

8 → 73

24

Search ➔ Text ➔ File – Hyper link to search hits in your source file

▪ A common requirement - analyze or dissect program logic along two, three
or more discrete paths identified by partial text.

▪ Select the text, and from the Search menu select Text ➔ File

Pin the search view

25

Find/Replace – Displays the number of occurrences found and/or replaced

To see how many occurrences have been found or replaced, look just under the menu

26

Regular Expressions

▪ Open WARDRPT.cbl

▪ Press Ctrl+F
 To open the Find/Replace dialog

▪ Check Regular expression

▪ Enter the following find expression:

row-sub|records-written

▪ Click: All

Note that the single pipe separator | is a logical "OR" operator

Logical “AND” multiple search criteria - use: .*

See slide notes for

additional Regular

Expression ideas

If.*patient

27

UNIT

Topics:

IDz for ISPF Developers

▪ Code Search – The Find and Replace Dialog

▪ Code Filtering – Abstract views of your source

▪ Paragraph (control flow), Data Flow Analysis

▪ Optional Topics

28

Program Summary Metrics (statistics)

When you open a COBOL program IDz v14 and later displays program Metrics. These are useful
for tech-leads/project managers for complexity & coding/maintenance effort (assignments)

 Basic Metrics – Program element sizing

 Cyclomatic complexity – the number of paths thru the PROCEDURE DIVISION

 Halstead metrics – a complex algorithm that factors volume & variable usage

https://www.ibm.com/support/knowledgecenter/en/SS3JHP_6.1.0/com.ibm.raa.analyze.doc/common/cstats.html

https://www.ibm.com/support/knowledgecenter/en/SS3JHP_6.1.0/com.ibm.raa.analyze.doc/common/cstats.html

29

Code Filtering

▪ IDz can simplify program analysis by separating elements of your code:

Filtering out areas of program logic that are irrelevant to your work

Providing access to high-level program areas. For example:

▪ Understand “How” a program does what it does by looking at (only) the operational

elements of the code

▪ Deduce “What” a program does from its Comments

▪ Filter view

✓ Comments

30

Concept – Filter view Options

Large complex programs can be more easily
understood, viewed modified and
maintained if certain details are filtered out

From the Context Menu

Filter view

Select

Divisions – collapse and expand filters by COBOL Divisions

Code – filters out comments

Comments – filters out code

Outline – shows high-level abstraction of your source (very useful)

Embedded SQL/CICS/DLI – show only SQL statements, or EXEC CICS

To re-display the entire (un-filtered) source file:

Press Ctrl+W or use the Context Menu's "Show All" option

Note that the Filter options change from release-to-release

31

Filter Example – Show Only CICS and SQL Statements

▪ Filter all
statements
except for

Screen

▪ EXEC

CICS

Database

▪ EXEC

SQL

Note the plus signs ➔
Expand/Collapse
filtered code

Press Ctrl/W to un-filter
and return to normal
program view

See Notes

32

Filter Example

▪ Additional Filter view functionality…..

Lines that contain TODO – in

COBOL comments

Lines that contain

COPY and/or

INCLUDE

statements

Lines that contain CALL statements

Note that, EXEC SQL INCLUDE statements are

shown with the Filter for: Embedded SQL/CICS/DLI

33

UNIT

Topics:

IDz for ISPF Developers

▪ Code Search – The Find and Replace Dialog

▪ Code Filtering – Abstract views of your source

▪ Paragraph (control flow), Data Flow Analysis

▪ Optional Topics

34

IDz's Code Execution Flow Tools

Often you will need to discover a program's control flow (business logic) by tracing
through a PERFORM chain, following GO TO statements or back-tracking in order
to understand the code, track down the cause of an ABEND, etc.

You have two choices for logic flow analysis tooling (note that you can use both together to
obtain maximum logic coverage)

1. The Program Control Flow Diagram

2. The Perform Hierarchy View

Which of these two you choose depends on what you need to do – note that these
tools are not mutually exclusive

Control Flow
Diagram

Perform Hierarchy

Illustrate PERFORM chain Y Y

Illustrate GO TO statements Y Y

Illustrate Fall-Thru potential Y Y – And highlights
potential logic Fall-Thru

Include CALL statements in control flow display N Y

Show when logic branches occur in
conditional expressions

N Y

Externalize (save) logic flow diagramming
result

Y N

Synchronize with source code in the editor Y Y

Show iterative paragraph and Section loops N Y

35

Review – Show In > Program Control Flow View – Analysis Tools

If you are maintaining
a program that
either, you didn't
code, or you
coded it so long
ago you no longer
understand its
structure,
you'll like the
Program Control
Flow view ➔

From the Context Menu
 Show in

 Program Control Flow

▪ Click a paragraph or
section name and the
editor will synchronize
with the graphical view
of the program
structure

- Top-down view

- Bottom-up view

36

Best Practices – for Program Control Flow with large source files

▪ Working in full-screen mode with Program Control flow and large files can be a tricky
– because the source can hide the graphics and toolbar, necessary for: zoom-in/zoom-out/zoom-to-fit

▪ The best approach to viewing large source files in full-screen is to undock or decouple either the source view
of Program Control Flow diagram

▪ Recall that to put your views back into their default perspective use; Window ➔ Reset Perspective

37

Paragraph Control Flow Analysis using the Perform Hierarchy

To access the Perform Hierarchy:

1. Select (double-click) your starting paragraph name

2. Right-click and select: Open Perform Hierarchy

2.

1.

P
e
rf

o
rm

 H
ie

ra
rc

h
y
 P

a
ra

g
ra

p
h

 N
a
m

e
 L

is
t

 Paragraph relationships (nested PERFORM chain)

shown through indentation

38

Paragraph Control Flow Analysis – continued

If you wish to navigate to the paragraphs declaration in the source:

1. Double-click (to select) the paragraph in editor

2. Press F3 – or use the Context menu to Open Declaration

You can return to your original source position in the paragraph

control flow analysis by:

• Clicking a paragraph in the Perform Hierarchy …or…

• Pressing: Alt+Left arrow

P
e
rf

o
rm

 H
ie

ra
rc

h
y
 P

a
ra

g
ra

p
h

 N
a
m

e
 L

is
t

• Expand the Hierarchy Name List - to see the nesting of the

PERFORM chain paragraph relationships (GO TO as well)

• Click a Paragraph name in the Perform Hierarchy view -

to navigate to that line within the source (Editor View)

39

Perform Hierarchy – Branching and Code “Fall-Thru” Analysis

▪ Catches possibility of fall-thru in programs

▪ Now visually identifies logic branching:

Within Loops

Within conditional statements

Call statements

Statements that break out of a
Perform chain
(and could conceivably cause program fall-thru)

▪ Preference to toggle between Performee/Performer
analysis modes, and to turn off/hide:

Fall thru calculation

GOBACK/Stop Run

Subroutine Calls

Paragraph Exits

Perform within conditional ➔

Perform Until ➔

Potential Fall-thru ➔

40

Control Flow +

Perform Hierarchy

Navigate the program
using these two
business logic
analysis tools.

Note the differences
in procedural
logic illustration
and the value
offered by each
tool in the IDz
workbench.

The Program Control Flow & Perform Hierarchy

tools can be used together. This is especially

effective when you drag the source onto your

desktop or a dual-monitor.

41

Data Flow Analysis – For Maintenance and Production Support Tasks

▪ Data Flow research is a complex analysis process that involves iterative
searching and building of mental "dependency maps" for variables that are
modified or referenced through statements within one or more programs

▪ On the mainframe, you either:
 Utilize listing files/XREF entries – or –

 Using ISPF you access option 3.4, or =3.14 and issue a series of manual text FIND
operations – saving or writing down interim results.

▪ This is:
 Labor-intensive

 Error-prone

 With lots of time spent loading programs into the editor in split-screen, etc.

▪ Using IDz you:

▪ Find your starting Search variable

▪ Pin the Search View and double-click each found-reference

▪ This is:
▪ Not typing-intensive

▪ Less error-prone

▪ With IDz, all Search results are:
▪ Fixed

▪ Hyperlinked – available from a mouse click

42

IDz's Data Flow Analysis Techniques

Many categories of project requirements necessitate that you track the order in which
data values propagate within a program and across an application. This is
commonly referred to as "Data Flow Analysis"

While there is no single declarative function in IDz to address Data Flow Analysis,
there are techniques that exploit the advanced Eclipse functionality in the tooling.

IDz also provides a "Data Elements" view – that presents the complete list of variables
in a "Compilation Unit" – which can be used as an organizing interface for your
data analysis tasks.

If you’re using IDz v14.1 (or later) you can also utilize: Show In ➔ Data Flow Diagram
– which provides hyperlinked, graphical “where used/how used” information

Occurrences in
Compilation

Ctrl+F
Search

ISPF Command
Line Find

Show In

Data Flow

Hyperlinked references –
synchronized with editor

Y Y N Y

Color-coded "Modified" vs.
"Referenced" results

Y N N Y – Not Color-Coded,
Statement type displayed

Use of Regular Expressions
in Search

N Y N N

Automated Impact Analysis N N N N

Multi-window views
(Analysis "Dashboard")

Y Y N Y

Search using Filtering
lines/Excludes with Columns

N Y Y N/A

43

Show In Data Flow –

Details

From the starting point
of your analysis:

1. Select the field

2. From the Context
Menu select:

1. Show In

2. Data Flow

The resulting diagram displays
variable-value data movement
within your program

44

Show In Data Flow – Tooling/Analysis Techniques – 1 of 2

Selecting an element in
the diagram synchronizes
code selection in the
program source

Hovering your mouse over a
line in the diagram reveals
the source statement

45

Show In Data Flow – Tooling/Analysis Techniques – 2 of 2

Use the Context Menu
to Data Flow another

variable

Manipulate the diagram/graphics
using toolbar functions ➔

Dotted lines represent
variable declarations:
Elementary and Group

field definitions

46

Occurrences in Compilation Unit

If you are analyzing,

a data problem – like

verifying Data Flow

or doing Impact

Analysis or if you

just need to lookup

the occurrences of a

variable within your

program:

1. Select the variable

2. Right-click and select:

This opens a Search

view with all

occurrences of that

variable:
1. Hyperlinked back to

the source line of the

reference

2. Color-coded –

showing the variable

reference in statements

that

- Declare or Modify a

variable in gold

- And all other variable

references in

statements in gray

Occurrences in Compilation Unit

47

Occurrences in Compilation Unit – Use in Data Flow Analysis

Steps:

From the starting point (a variable):

1. Select the field and search (using Occurrences in

Compilation Unit) for all instances of the field throughout

the source code

2. "Pin" the search results

3. Double-click each result line – which co-locates the line

in the editor

4. Analyze the statement operation/data usage

– Ref vs. Mod

5. If another variable is indicated as being part of the

Data Flow task scope, return to Step 1 and search

for the next variable

48

Occurrences in Compilation Unit – continued

You can use Occurrences in Compilation Unit effectively to investigate data movement, analyze the impact of a

change, research the cause of a data-specific ABEND (like an 0C7 or 0C4), etc.

Here's an example showing Search on a variable, with the Search Results view moved, and "pinned" with

additional searches for Occurrences in Compilation Unit exposed through IDz

49

Pinned Occurrences in Compilation Unit Search Result Views

Open a program in the editor

▪ From the command line, type: F <variable-name> and press <Enter>

1. In the Editor source, Double-click (to select) <variable-name>

2. From the Context Menu, select Occurrences in Compilation Unit

This will launch a search for the variable throughout your program, and saves the search
results in a Search Results view

3. From the Search View, click: Pin the Search View – This persists your results view, even when
you launch additional searches

50

Concept – Create a Data Analysis "Dashboard“ From Multiple Search Results

You can move (Drag & Drop)

the Search results views to

different Workbench areas

Or you can Detach the views

for optimized use of "screen

real estate" in your analysis

Here's an example of this

with an Assembler program

51

Review - Data Flow Analysis – Using Ctrl+F Regular Expressions

Find String with text separated by |

Clicking All excludes rows

You can do Data Flow Analysis using:

• Ctrl+F

• Regular Expressions – to OR multiple

variable searches

• Peek (set at 1 or 2) to see rows surrounding

the found lines

52

Show in Data Elements

▪ Often you need to know the “offset” in bytes for a field – from the beginning
of a structure – this is especially useful during ABEND Analysis

▪ To do this – from within edit of your source file:

Show In => Data Elements =>

Click the View Menu (the downward pointing white triangle)

And select Columns => Offset

53

Show in Data Elements – Field Length and Offset

▪ Along with the Offset value, you can also view the field length.

▪ Note that this is the “physical” – not “logical” field length:

I.E. PIC S9(4) COMP = 2 bytes of storage

54

Show Expanded Source

Expands all COBOL Copybooks and PL/I Include statements inline (within) the program source. And it opens the

expanded source file in Browse mode. This can simplify full-program-text analysis.

Note: EXEC SQL INCLUDE… statements are also expanded

Expanded source

Program in edit

55

Data Flow Analysis – Review

▪ Data Flow analysis is an iterative complex process, that involves
expanding the scope of your search as new variables in the data flow are
discovered

▪ On the mainframe, you either:

 Utilize listing files/SX-REF entries – or

 Using ISPF you access option 3.4, or =3.14 and issue a series of manual text
FIND operations – saving or writing down interim results. This is:

▪ Typing-intensive and error-prone

▪ With lots of time spent loading programs into the editor in split-screen, etc.

▪ Using IDz you:

1. Find your starting Search variable

2. Pin the Search View and double-click each reference

 There are static analysis tools from IBM that are dedicated to providing
this information, through ultra-quick and simple techniques
(ask your instructor about Rational Asset Analyzer)

56

Optional Topics and Workshops For This Section

▪ If you have time, and are comfortable with the material just
covered, feel free to read through the Optional Topic slides –
and/or try out the techniques shown using IDz and the sample
programs.

▪ The development techniques covered in these slides can make
your standard z/OS Maintenance, Production Support and
Development tasks much easier, and make you more
productive.

▪ So at some point – perhaps after class consider returning to
these optional topics to build out your IDz skills.

▪ Also – if you have access to IDz installed on your mainframe
and time permits, please try out the techniques shown using
your own application source.

57

Scan for Compatibility - Detect Incompatible Call/Linkage Parameter Definitions

1. Select Calling/Called program files
2. Right-Click and select: Scan for Compatibility

58

Optional Topic – Verify Called/Calling Program Parameter Length

59

Optional Topic – Using Regular Expressions to change all within columns

You can use regular expressions to substitute for ISPF picture string editing.

Example – change all characters in columns 73 → 80 to blanks (spaces)

 Regular Expression Start column: 73 End column: 80

 Find: Type a period .
 Replace: Type a space

Note that you could also use

the ISPF Picture string

command line command to do

this:

60

Optional Topic – Regular Expressions to search for hex chars in a file opened from the mainframe

You can use Regular Expressions to find any EBCDIC (hex) data in source files:

 Regular Expression

Type this in the Find area: [\x00-\x1F]

Note – the COBOL Editor
(see Appendix B) can be
use to effectively search
for specific Hex (binary)
values in EBCDIC.

The LPEX editor's regular
expression search – by
default – uses ASCII.

61

You can use regular expressions to search for EBCDIC Hexadecimal Values,
embedded in a program or in copybook source:

Regular Expressions are an ASCII search mechanism

Use ASCII/EBCDIC comparison charts to map to the EBCDIC value you're
looking for
▪ ASCII - 1a

▪ EBCDIC - 3f

A typical conversion table URL: http://www.flounder.com/ebcdictoascii1.htm

Regular Expression: [\x1a]

Hex Edit of line ➔

ASCII ➔

EBCDIC ➔

See Slide Notes for URLs to useful

Regular Expression tutorials online

Optional Topic – Regular Expressions to search for hex chars in a file opened from a Local Project

http://www.flounder.com/ebcdictoascii1.htm

62

Optional Topic - Regular Expressions Can Be Used in All Search Contexts

▪ You can use Regular Expressions to search for text:

In a program

Throughout all programs in a project

On the mainframe:

▪ Across all members n a PDS

▪ Across multiple PDSs of different types: .COBOL, .BMS, .JCL, etc.

63

Regular Expressions – Used to Support ISPF Find "Picture Strings"

ISPF Editor LPEX Editor
Simple String Y

Previous String Find Previous / F5

Delimited String Y

Text string Y

Picture Strings – special characters Y – with regular expressions

P'=' – any character Ctlr+F, Regular Expression, .

P'-' – any non-blank character Ctlr+F, Regular Expression, [^\x20]

P'.' – any non-displayable character Ctlr+F, Regular Expression, [^\x20-\x7E]

P'#' – any numeric character Ctlr+F, Regular Expression, [0-9]

P'-' – any non-numeric character Ctlr+F, Regular Expression, [^0-9\x20]

P'@' – any alphabetic character Ctlr+F, Regular Expression, [A-Za-z]

P'<' – any lower-case character Ctlr+F, Regular Expression, [a-z]

P'>' any upper-case alphabetic character Ctlr+F, Regular Expression, [A-Z]

P'$' – any special character (not alphanumeric) Ctlr+F, Regular Expression, [^A-Za-z0-9]

Ctrl+F

^ logical NOT
\ special Expression

\x Hexadecimal

. Dot, any single

character

64

Optional Topic - Find/Replace Dialog – Regular Expressions

The Regular Expression meta-language is based on a few simple constructs

65

Optional Topic - Find/Replace With Regular Expressions: Examples

▪ Load test1.cbl into the editor

▪ Check Regular expression

Enter the following Regular expressions, and click All after each:

Expression What it does

[0-9] All numeric characters

[a-z] All alphabetic characters

[a-z] Check: Case sensitive in the dialog, and reissue this regular expression.

Then un-check Case sensitive before continuing

DL.C Find all variables with "DL" – any character – then the letter C

[^\s] Find all characters except for white space (blanks: \s)

[^a-z] Non-alphabetic characters

[^A-Z\x20] Non-alphabetic characters and no white spaces

[^A-Z0-9\x20] Non-alphanumeric characters and no white spaces

[^A-Z0-9\x20-] Non-alphanumeric characters, no white spaces, no dashes

[^A-Z0-9\x20\(\)..-] Non-alphanumeric characters, no parenthesis and no white spaces

[^*A-Z0-9\x20\(\)..-] Non-alphanumeric characters, no parenthesis, no asterisks, no white spaces

.*(data) Find all variables that end in "data"

PIC.9|PIC.S9 Find all numeric variable declarations

 Expression

See Notes

66

Optional Topic – Another Useful Search

Mechanism – Persist Find Results

▪ Using the Search menu, you can
search on a variable (or any partial
selected text) in a program with:

Search

Text > File

▪ The results persist and are hyperlinked – for
easy navigation, and can be:

Copied/pasted to a requirements document

Changed
Replace Selected…
Replace All…

Searched Again
to provide the
capability of
AND-ing
multiple search
patterns

67

Optional Topic – Highlight Found Text

▪ Some ISPF developers prefer to
highlight all found text occurrences.

▪ This can be accomplished from:
Preferences > LPEX Editor >
System z LPEX Editor > Find Text

▪ Use Ctrl+F (Find) to search and
highlight text in your source

To remove highlighted entries,

type: clearMatches
on the editor command line

68

Optional Topic – Supporting the

ISPF "ONLY" Command

ISPF provides a "one-command"
exclude/find all – "ONLY"

ISPF "ONLY" does the following:

Top ; x all ; F 'xxx' all

The IDz ONLY emulation is:

1. Select the variable (or text pattern)

2. Right-click > Selected > Filter selection

Note that you can create a custom "User Key Action" – for filterSelection – so that ONLY is
more closely emulated.

▪ Preferences > LPEX Editor > User Key Actions

▪ Define a custom Key for filterSelection

 In this example, Alt+F9 (a-f9) is set to: filterSelection

69

Optional Topic - Another Example of Text Filtering – Selected > Filter selection

▪ Double-click to select a:
COBOL Keyword

Literal

Variable

Label (Paragraph or Section name)

▪ Right-Click

Selected

▪ Filter selection

▪ Note the plus signs Expand/Collapse filtered code

▪ Press Ctrl/W to un-filter and return to
normal program view

70

Show In > Data Elements

Along with Occurrences in

Compilation Unit, you can get a

global (Data Division) – wide

list of your variables and

paragraphs with:

Show In > Data Elements

This creates a sort-able list of all

the data elements with several

actions against them:

• Hyper-link to any variable

declaration

• Re-sort the list by various

columns

• Filter the list:

• By data element name

• Remote

paragraph/section

labels

• Remove columns

• Open and mark occurrences

throughout the source

(prior topic)

71

The Data Elements view - Sort option usage

• Unused variables … Categorizing variables ➔ sort by Declared In

• Organizing by COBOL Group ➔ sort by Top-Level Item Sorting by numeric …vs… character data ➔ sort by

Declaration … Business Rules candidates ➔ sort by References

72

Filtering the Data Elements view

Filter view results horizontally

search by data element name

or text pattern

Filter out or add back into the view results paragraphs and sections, and FILLER ("unnamed items")

by clicking the small downward-pointing triangle on the far-right corner of the view

Filter out Columns

Acts as an on/off toggle
to add/remove columns
from view

73

Source Formatting – Examples

▪ Nested
IF

▪ Data
Division

Before

Before

After

After

74

Formatting Preferences

The values set in these preferences

will also impact the capitalization of

text In Content Assist proposals

75

Find/Replace – Review and Use Cases

IDz Editing Tool Considerations

Find/Change one time (one-off
command)

Use ISPF F 'xxx' – same as ISPF Most of the ISPF Find operands work

Complex search (Logical OR/AND find)
for application and program analysis

Use Ctrl+F and "Regular expressions" Regular expressions are discussed in the
Optional Topics of this section of the course

Combine the results of multiple
searches (AND the search results)
without using Regular expressions

Use Ctrl+F find – and then Find within (against) the editor results

Peek at (view) n lines above and below
the Found text

Use Ctrl+F and set Peek to > 0 in the Peek tool

Search for binary (hex) data (EBCDIC
format)

Find (Ctrl+F) using the COBOL editor The COBOL editor is discussed in
Appendix B of this module. Hex find for
EBCDIC binary data is available in v8.5

Search through Excluded/Not-excluded
source lines

Use the Prefix area to exclude lines. From the command line, enter:

F 'xxx' X … or… F 'xxx' NX

Highlight all found occurrences of a
search

Preferences > LPEX Editor > System z LPEX Editor > Find
Text

Not that this disables "incremental find".
Incremental find behaves like Google's
search

Persist Find results in a view Select a variable or partial text, and use Search > Text > File Can "Pin the Search View" to allow for
multiple persistent search results

76

Source Code Editing, Find/Replace – Review and Use Cases

IDz Editing Tool Considerations

Make ISPF the default editor From Preferences > LPEX Editor - select ISPF This preference is tied to your workspace

Use ISPF command line commands Same as ISPF – for the supported commands The commands are case-sensitive

Find out what ISPF command line
commands are supported?

From the command line, press Ctrl+Spacebar

Use ISPF Prefix area commands Same as ISPF – for the supported commands

Change editor background color > black From Preferences > LPEX Editor > Appearance > Palette Other source elements can be colorized

Use COBOL numbering Same as ISPF: Num COBOL, Num On, Num Off, etc.

Show the list of all available hot keys From inside the editor, Press: Ctrl+Shift+L The list is context sensitive

Customize your hot keys From Window > Preferences > General > Keys – specify the
Binding (hot-keys) and When (the IDz context) under which to
invoke the hot-key

Hot-key combinations that are currently in
use by Eclipse will take precedence over
custom settings

Delete to end of line (EOF) functionality From with the editor press: Ctrl+Del

Find one time (one-off find command) Use ISPF F 'xxx' – same as ISPF Most of the ISPF Find operands work

Complex search (Logical OR/AND find) Use Ctrl+F and "Regular expressions" Regular expressions are discussed in the
Optional Topics of this section of the course

Combine the results of AND'd searching Use Ctrl+F find – and then Find within (against) the editor results

Peek at (view) n lines above and below
the Found text

Use Ctrl+F and set Peek to > 0 in the Peek tool

Search for binary (hex) data Find (Ctrl+F) using the COBOL editor The COBOL editor is discussed in Appendix
B of this module

Search through Excluded/Not-excluded
source lines

Use the Prefix area to exclude lines. From the command line, enter:

F 'xxx' X … or… F 'xxx' NX

Highlight all found occurrences of a
search

Preferences > LPEX Editor > System z LPEX Editor > Find
Text

Not that this disables "incremental find".
Incremental find behaves like Google's
search

Persist Find results in a view Select a variable or partial text, and use Search > Text > File Can "Pin the Search View" to allow for
multiple persistent search results

77

 Workshop – Source Format

Steps:
 Open FORMATER.cbl with the COBOL Editor

 Using the Outline view, locate the paragraph: 400-NUMERIC-RANGE-EDITS

 Stare at this paragraph for a second. Aren't you glad you don't have to modify it?

 Using your mouse, select all of the code in the paragraph

 Right-click and select:

▪ Source > Format

Note the following:

▪ The indentation follows the

logical structure of the

code:

- MOVE "Y"… is unconditional

- IF nesting is visually correct

- Etc.

®

IBM Software Group

®

IBM Software Group

®

IBM Software Group

© 2021 IBM Corporation

Software Analyzer/Code Review

79

UNIT

Topics:

The IDz Workbench

▪ Overview of Code Review Feature/Function

▪ Custom COBOL Code Review Development

▪ Running Code Review in Batch on z/OS

80

Software Analyzer (Code Review) - Introduction

“Electronic desk-checking" that provides a means for you to enforce shop
development standards and coding best practices

▪ Available for COBOL, PL/I and Java programs:
Opened Interactively:

▪ Remote Systems Explorer

▪ Local Workstation projects – including a z/OS library (PDS) downloaded to a local project

▪ MVS SubProjects

Run in batch via JCL:

▪ Especially applicable to supporting Continuous Integration and DevOps

▪ Easy to use:
Context-menu accessible – and available from within Edit

▪ Easy to setup:
Create custom rule sets configuration based on in-the-box COBOL and PL/I rules

More requirements (from customers) are encouraged/gladly accepted

Highly customizable:
 In-the-box rules customizable through Preferences

Out-of-the-box rules can be added through Java/Eclipse plugins

▪ Considerations:
Programs run through Code Review must be syntactically error-free

Can run reports and export findings on standards compliance and trends

81

Code Review - Three separate options/workflows

Interactive –

• Code Review a
single program at
a time:

• During Edit

• Or from the
Context
Menu

Local Code Review –
• Still interactive mode,

but can Code Review a
PDS/library at a time

• If the library has been
copied down to a local
workspace you can
select and Code
Review multiple
programs

Batch –
• Code Review one or more

PDS/libraries at a time…Or –
Code Review specific
members from a library in
one run

• The three Code Review
Severity levels will return as
MVS Job Step Completion
Codes…

• Allowing you to
conditionally run other
job steps – as part of
Continuous Integration

MTEST.LIB.COBOL

82

Software Analyzer (Code Review) – Options and features

▪ Code Review provides a number of static code analysis rules:

In-the-box: 52 for COBOL, 36 for PL/I rules, > 200 Java rules

An API + Wizard to create and import your own completely custom
Code Review rules

▪ Starting in v9.1.1 COBOL Code Review provides 18 Program Metrics

▪ There are multiple output report formats (XML, HTML, PDF, CSV)

IDz’s Code Review can integrate or feed other software or application
analytic products in this space

▪ You can do program Baselining with Code Review:
The analytic findings are identified incrementally through point-in-time

archives – yielding far fewer false positives

▪ Code Review provides a Post Processing script capability:
For custom actions you would like to automate upon discovery of coding

rules/standards violations – often reports to kick off

83

Software Analyzer (Code Review) – Process

1. Define one or more base rulesets
Select Rules

Choose Severity

2.Define parameter-driven rules
Specify container

Define rule(s) and their parameters

3.Add parameter-driven rules to the ruleset(s)

4. Run rules against:
Program

Or a library containing programs

5. Validate exceptions

6. Modify source

7. Repeat steps 4 ➔ 6 Note that in future sessions we will discuss:
• Running Code Review in batch mode
• Defining completely custom rules using a

Java/Eclipse wizard

84

Software Analyzer (Code Review) – Interactive Example

▪ Single program
results

▪ Each of the collapsed
rule indicator allows
you to hyper-link to
the statement in the
source program
➔

Click this Red X to delete the
results (and associated
source tags)

85

Software Analyzer (Code Review) – Invoking from a Context Menu

You can drag

an entire PDS

to a Local

Project and run

Code Review

against all of

the programs

at once

And you could

drag multiple

libraries to a

Local Project

and run Code

Review against

all of the files in

the workspace

You can select

multiple

specific

programs to

run Code

Review against

in a Local

Project

86

Create a Ruleset – steps – Code Review – Access the Configurations Wizard

▪ Open WARDRPT.cbl in the editor

▪ Right-click and select:
Software Analyzer >
Software Analyzer Configurations…

87

Steps - Code Review / Create a Ruleset

▪ Select Software Analyzer and Click: the
New launch configuration icon

▪ Name your Ruleset ➔

▪ Select the Rules tab

▪ Expand COBOL Code Review

▪ Uncheck a few of the available default rules
in the three ruleset categories:
1. Naming Convention rules

2. COBOL performance and run-time efficiency rules

3. Code maintainability ("Program Structures") rules

▪ Click Close and Yes – to the
"Save changes?" prompt

Notes
▪ You can return to Software Configuration, and

modify your rule selection at any time.

▪ If you are using IDz v8.5 you will see different
COBOL Code Review rules than this screen
capture ➔

88

Steps – Review the Code in WARDRPT.cbl

▪ Right-click and select:
Software Analyzer >
Software Analyzer Configurations…

 COBOL RULES

▪ Or whatever you named

your Ruleset

▪ Note what happens:

 Any statement that "breaks"
a rule is:

▪ Flagged

▪ Hyperlinked

▪ Navigate around in the results
a bit until you get the idea behind
Code Review

▪ Click the Red X icon in the view,
to delete the Code Review
analysis

89

Optional Steps – Review all of the COBOL

Code in IDzClass

▪ From z/OS Projects:

▪ Right-click over your cobol folder
and select: Software Analyzer >
Software Analyzer Configurations… >
COBOL RULES

 Or whatever you named your custom
Ruleset

 You might want to run this in the
background

When the analysis process finishes:
• Browse several of the results

• Expand the categories

• Double-click a broken analysis rule –

what does this do?

Do not delete the result (one more workshop step

– on the next slide)

Note that you could
drag a mainframe PDS
to a Local Workstation
project – and perform
code review against all
of the PDS members in
the library in a single

operation

90

UNIT

Topics:

The IDz Workbench

▪ Overview of Code Review Feature/Function

▪ Custom COBOL Code Review Development

▪ Running Code Review in Batch on z/OS

91

Creating a Custom COBOL Code Review rule - Introduction

To create user-written custom COBOL code review rules, you make use of
IBM’s COBOL Application Model APIs. Using these APIs you can analyze
selected COBOL language elements for user-written custom rules.

These APIs help parse COBOL programs and help us access all the
statements and declarations, analyze them, and flag them as necessary.

The COBOL Application Model APIs consist of 2 APIs:

1. Custom Rules API for COBOL Code Review

▪ The classes provided with this API let us manipulate the objects in the COBOL

Application Model.

▪ For instance, the visit method goes through a COBOL program’s syntax tree, and visits

nodes of each type within the tree (for instance, a Paragraph node, a DISPLAY

statement node, etc.). The nodes are supplied by the COBOL Application Model (CAM)

API.

2. COBOL Application Model (CAM) API
▪ The CAM API provides interfaces for accessing the individual elements of a COBOL program while

the program is being analyzed by the COBOL Code Review API.

▪ In other words, the CAM API parses a program and creates objects that can be manipulated to find

information about all the COBOL statements and declarations.

▪ You can override the visit method of the node that you want to analyze … for instance, the DisplayStmt

node, and write our custom code to analyze all the display statements within the program.

92

Creating a Custom COBOL Code Review rule – Steps

1. Use the Plug-in Development Environment (PDE) wizard to:

Create the java plug-in project

Create a new category to hold all your domain specific rules

Add a rule to the category

Create a java class skeleton for your custom rule

2. Using the IDz COBOL Application Model API, fill in the
skeleton with java code to implement your custom rule.

3. Test your custom rule

Create a new Eclipse Application Debug Configuration

Launch a new instance of IDz in Debug Mode

Add your new rule to a Software Analyzer configuration

Run a code review to test your rule.

4. Package your plugin as an update site and install it in the IDz
Eclipse environment using Eclipse Software Updater.

93

Create the Java plug-in project – 1 of 3

▪ Open an instance of IDz

click the File menu, and click Other:

▪ Select the Plug-in Project option from the project creation wizard, and click Next >

▪ Name the project, and click Next >

94

Create the Java plug-in project – 2 of 3

▪ Specify custom properties for your plug-in project and click Next >

▪ When prompted, access the Plugin Development perspective

95

▪ Select: Custom COBOL Code Review Rule
and click Next >

▪ From the COBOL Rule Template:

 Type in a Rule Label – this will appear as a rule
violation annotation, when you run Code Review

 Add a new Category – or select an existing category

 Expand the window – and open the COBOL
elements tree view

 Check the statement(s) you wish to work with and
click Finish

… If prompted to switch Perspectives click Yes

Create a new category to hold all your domain specific rules – 3 of 3

96

Fill in the skeleton with java code to implement your custom rule.

Open your <Rule>.java file – under the \src\<package> -
and edit the file, adding Java statements to build out your custom
rule:

\src folder ➔

\package ➔

Java program ➔

97

Specify the default rule severity

From the new plugin editor/view:

1. Select Extensions tab

2. Expand your rule

3. Open the drop-down box and select the default severity level, for your new rule

For most rules all you’ll want to do is customize the rule severity level.

Use the drop-down to select: 0, 1, 2

2. Expand and select your rule

1. Extensions tab

3. Select your rule’s default severity level

98

Test your custom rule - Create a new Eclipse Application Debug Configuration

▪ Go to the Run Menu, and click Debug Configurations

▪ Click the Eclipse Application item, and then click the
New launch configuration button ➔

▪ Name the Eclipse Application Debug Configuration and
click Close

99

Test your custom rule - Launch a new instance of IDz in Debug Mode

1. From the plugin.xml view:

2. From the Overview tab:

3. Click: Launch an Eclipse application in Debug mode

When the new instance of IDz opens for the first time you will need to create a Workspace:

1. New connection; 2. Connect to your host system; 3. Create a Property Group;

This launches a new
instance of IDz

1.

2.

3.

100

Test your custom rule - Add your new rule to a Software Analyzer configuration – 1 of 3

Using the steps from the previous
slides, access a program and
create a new Software Analyzer
configuration that includes your
custom rule:

1. From the Context Menu select
Software Analyzer Configurations

2. Select: Software Analyzer and click:
New launch configuration

3. Name your Software Analyzer
configuration. Expand the COBOL
Analysis Domains and Rules.
You will see your:

 New Custom Category

 New Code Review rule – and it will
have the severity level you set in a
prior step

Click Close and save Yes

1.

2.

3.

101

Test your custom rule - Add your new rule to a Software Analyzer configuration – 2 of 3

From the Context Menu, select: Software Analysis – and
choose your new ruleset to run…

102

Test your custom rule - Add your new rule to a Software Analyzer configuration – 3 of 3

When code review completes, expand the Code Review results.

Double-click your custom rule and it will select the source that violates it.

Close the temporary instance

of IDz when you’re finished

103

Add addition custom COBOL rules … or … Export the plugin

When you return to instance of IDz you’ve been working in, you can create more custom COBOL
code review rules. When you’re finished, simply export the plugin which can be installed in your
team’s IDz client like any other standard Eclipse plugin.

104

Example Code Review rules

▪ A batch program should call a specific shop-standard ABEND routine if execution
must be halted prematurely

▪ Use SEARCH ALL –with tables over 100 entries (unless the data cannot be sorted)

▪ All Files/Cursors with an OPEN statement must have a related:

CLOSE statement

FILE STATUS clause

▪ All variables within an arithmetic expression must be declared as PIC S9 (…) COMP
or COMP-3

An example of checking for a Sign in a numeric field ➔

This includes Perform…Varying, and Occurs Depending On field references

▪ SQL statements should:

Not join more than <user defined number of > tables

Not nest more than <user defined> levels in a subselect

Not use LIKE with a % or underscore in the first position

▪ Identify all the paragraphs that are not performed

▪ GOTO paragraph names should follow standards based on the installation.

Ex: The GOTO paragraph should always go to the paragraph name suffixed with hyphen
EXIT.

▪ Comment all DISPLAY and CALL statements

105

Deeper dive on the Java – Taxonomy of a program

▪ Your COBOL program is a complex hierarchical structure of language
elements – or in the CAM parlance… “nodes”

▪ Custom Rules API for COBOL Code Review

 The classes provided with this API let us manipulate the objects in the COBOL Language Model.

 For instance, the visit method goes through a COBOL program’s syntax tree, and visits nodes of each type
within the tree (for instance, a Paragraph node, a DISPLAY statement node, etc.).

▪ COBOL Application Model (CAM) API

 The CAM API provides interfaces for accessing the individual elements of a COBOL program while the
program is being analyzed by the COBOL Code Review API.

 In other words, the CAM API parses a program and creates objects that can be manipulated to find
information about all the COBOL statements and declarations.

IDENTIFICATION DATA PROCEDUREENVIRONMENT

Variables

Working-Storage

Statement

Keyword Variable

Label

Name Declaration

PICSign Initial Value

FILE-CONTROL

Select

Assign File Status

INPUT-OUTPUTPROGRAM-ID AUTHOR

Variable

106

Deeper dive on the Java – API Classes

▪ IDz provides ~1,000 APIs to parse your COBOL program nodes. T

JavaDoc for the APIs:: http://www-01.ibm.com/support/knowledgecenter/SSQ2R2_9.5.0/com.ibm.rsar.analysis.codereview.cobol.doc/javadoc/cobmodelapi/index.html?cp=SSQ2R2_9.5.0

http://www-01.ibm.com/support/knowledgecenter/SSQ2R2_9.5.0/com.ibm.rsar.analysis.codereview.cobol.doc/javadoc/cobmodelapi/index.html?cp=SSQ2R2_9.5.0

107

Annotated custom method

 package / library (a collection of Classes)

 import / COPY or Include statement

 class (named CobolRule / Module

 method (named performRule) /
Subroutine: Entry Using ASTNode (an
element of your program) – Returning a List
(an array)

 new / Declare a new Module

 adapter / a java class used to allow the
baseNode and AbstractCOBOLVisitor classes
to work together

 unimplementedVisitor (method) /
READY TRACE

 method (named visit) / Subroutine / Entry
Using ExecCicsStmt (every CICS Statement
in your program) – Returning a boolean (T/F)

 If – standard IF/THEN/ELSE – “If the CICS
statement passed into the visit method is of type
Link or XCTL then”

▪ - Add the statement to the List

▪ - Return with a True value

//End of performRule method – return the List
of nodes - language elements - that were
added during the visit method

//End of CobolRule classNote: AST == “Abstract Syntax Tree”

108

Types of custom COBOL Rules – and the APIs

▪ Consider that there are three levels or types of custom COBOL rule
requirements:

Custom

Parsed

Rules

Complex API-based
Rules

Simple API-based Rules

Evaluate standalone elements (nodes) in a COBOL

program for violations of coding standards

Evaluate related COBOL program nodes

• Complex Java coding.

• Possibly custom parsing

using Tokenizer class

• Multiple Java

methods

• Utilize IDz CAM

Nested APIs

Numeric variables must be signed

Sequential Files must reference File Status

Examples:
• Find DB2 Table Joins with more than 3 tables
• Find DB2/SQL statements with > 2 UNIONs
• COBOL paragraphs must be prefaced with a

comment that references the paragraph
name

Examples:
• All file I/O statements in the PROCEDURE

DIVISION must reference the FILE STATUS
variable

• All COBOL math statements must contain the
ONSIZERRROR clause

109

Alternate uses for Software Analyzer/Code Review

The LPEX/ISPF editor provides
a number of useful source filters
in the Context Menu

▪ Check out the Filter view >

While you don’t have the option
to add to this list, you can
create your own custom filtering
using Software Analyze custom
rules to isolate, and provide
hyper-linked access to:

▪ IMS functionality

▪ DB2 functionality

▪ QSAM/VSAM functionality

▪ Etc.

110

Recommended Java Links for the Code Review APIs

▪ The Java Doc – for the Code Review APIs
 http://www-

01.ibm.com/support/knowledgecenter/SSQ2R2_9.5.0/com.ibm.rsar.analysis.codereview.cobol.doc/javadoc/cobmodelapi/i
ndex.html?cp=SSQ2R2_9.5.0

▪ The Wizard provides Java “Visitor” design pattern – which is ideal for
adding new methods to a hierarchy of classes

http://www.objectmentor.com/resources/articles/visitor

http://www.avajava.com/tutorials/lessons/visitor-pattern.html

https://en.wikipedia.org/wiki/Visitor_pattern

▪ The Abstract Syntax Tree is the base framework for many powerful tools of
the Eclipse IDE, including refactoring, Quick Fix and Quick Assist. The
Abstract Syntax Tree maps plain Java source code in a tree form

http://www.eclipse.org/articles/Article-JavaCodeManipulation_AST/

http://www-01.ibm.com/support/knowledgecenter/SSQ2R2_9.5.0/com.ibm.rsar.analysis.codereview.cobol.doc/javadoc/cobmodelapi/index.html?cp=SSQ2R2_9.5.0

111

UNIT

Topics:

The IDz Workbench

▪ Overview of Code Review Feature/Function

▪ Custom COBOL Code Review Development

▪ Running Code Review in Batch on z/OS

112

Learn more about Software Analyzer/Code Review

1. YouTube videos:

 Overview of Code Review

▪ https://www.youtube.com/watch?v=enOrRw05DiY

▪ https://www.youtube.com/watch?v=xEPl4PQ8WSs

 Custom COBOL Code Review rules development and implementation

▪ https://www.youtube.com/watch?v=O09IjULrmCU

 Code Review as DevOps Continuous Integration

▪ https://www.youtube.com/watch?v=0roH6cr703w

2. White papers:

1. End-to-end process: http://www-01.ibm.com/support/docview.wss?uid=swg21696637

2. Overview: http://www.ibm.com/developerworks/offers/lp/demos/summary/r-IDzcobolrules.html

3. Online documentation:

 Overview and process - http://www-

01.ibm.com/support/knowledgecenter/SSQ2R2_9.5.0/com.ibm.rsar.analysis.codereview.cobol.doc/topics/cac_customrule_cobolapis_overview

.html?cp=SSQ2R2_9.5.0%2F21-1-2 -

 JavaDoc - http://www-
01.ibm.com/support/knowledgecenter/SSQ2R2_9.5.0/com.ibm.rsar.analysis.codereview.cobol.doc/javadoc/cobmodela
pi/index.html?cp=SSQ2R2_9.5.0

https://www.youtube.com/watch?v=enOrRw05DiY
https://www.youtube.com/watch?v=xEPl4PQ8WSs
https://www.youtube.com/watch?v=O09IjULrmCU
https://www.youtube.com/watch?v=0roH6cr703w
http://www-01.ibm.com/support/docview.wss?uid=swg21696637
http://www.ibm.com/developerworks/offers/lp/demos/summary/r-rdzcobolrules.html
http://www-01.ibm.com/support/knowledgecenter/SSQ2R2_9.5.0/com.ibm.rsar.analysis.codereview.cobol.doc/topics/cac_customrule_cobolapis_overview.html?cp=SSQ2R2_9.5.0%2F21-1-2
http://www-01.ibm.com/support/knowledgecenter/SSQ2R2_9.5.0/com.ibm.rsar.analysis.codereview.cobol.doc/javadoc/cobmodelapi/index.html?cp=SSQ2R2_9.5.0

113

Optional Topic – Unreachable (“Dead”) code

• IDz provides annotations in your program for all code that will

never be executed – so called “dead code”

• Dead Code are statements that will never execute based on

the execution flow of your PROCEDURE DIVISION – primarily:

• Unconditional branches

• Un-performed paragraphs – and paragraphs that don’t fall-thru

• The feature is based on a static code analysis. And because

this is static analysis, it’s use comes with the following caveats:

• Data flow:
• If your application only ever receives values 1, 2, and 3 for a data element

but your code is written to handle more values than that, our static analysis
cannot know that your data values are constrained to 1-3 in reality.

• Non-returning Calls (program-level exits):

• Static analysis only examines the current program logic, so if at run time
program A invokes program B and for some reason it never returns, we
cannot know that, so we would say that code in program A which follows the
invocation of program B is reachable when in fact it may not be.

114

Optional Topic – Unreachable (“dead”) code – Setup in Preferences

Unreachable Code searching can be turned on (Warning) or off

(Ignore) in Preferences ➔ COBOL ➔ Real Time Syntax Check

115

Optional Topic – Unreachable (“Dead”) code – Source Annotations

• Unreachable code annotated in the Editor view

116

Optional Topic – Identify Unused Variables

IDz provides functionality that exposes

variables that are never used:

• By “used” we mean:

• Unreferenced by Procedural
statements including Ref-Mods

• Parent and child (group) fields are
not referenced

Options include Highlight or Remove

If you select Remove you will be given an opportunity to

Cancel the operation

117

Optional Topic – Combining Filter(s) with Ctrl+F Find

It can be useful to combine
the Find/Replace capability
of Ctrl+F with IDz Filters

▪ Steps:

1. Filter the code

2. Press Ctrl+F to open the
Find menu

3. Type in your Find text

4. Press Next

▪ Note – you must press

Next. The “All” option

ignores filters

Common use cases:

Change only comments
within a program ➔

Change only code (don’t
change comment lines)

 Change only embedded
SQL, CICS or CICS/DLI
statements

118

Optional Topic – Software Analyzer (Custom Rules and Rule Categories)

• IDz 8.5 and later provides around

a dozen custom COBOL rules

that you can add into your

COBOL Rulesets for additional

code review/standards validation.

• Custom Rule/Category definitions

are made in your Workspace

Preferences.

• You can also add Custom

Categories – in which to

organize/catalog these custom

rules.

• The Custom Categories

appear in the Software

Analysis Configurations

119

Optional Topic – Software Analyzer (Custom Rules and Categories) – 1 of 4

From Window > Preferences >

Software Analyzer > Custom Rules and Categories

• Either Add a Custom Category

• Or Add a Custom Rule

• Select the Category (Ruleset) for your new Custom Rule

• Click Next >

Note that if you define a Custom Category it will appear in

this list

120

Optional Topic – Software Analyzer (Custom Rules and Categories) – 2 of 4

• Select the Custom Rule and click Next >

• Specify the: input factor for the Custom Rule

• The level of importance (severity) of the rule

• Click Finish

121

Optional Topic – Software Analyzer (Custom Rules and Categories) – 3 of 4

To include your custom

Rules/Categories edit a program,

and from the Context Menu select

Software Analyzer Configurations…

You will see your new Custom Rule

(and Categories) in the Rules tab ➔

122

Optional Topic – Software Analyzer (Custom Rules and Categories) – 4 of 4

A few of the other

Custom Rules definitions

SQL statement types that

require a WHERE clause

88-levels must follow

this naming convention

123

Source Code Editing, Filtering, Analysis – Review and Use Cases

IDz Editing Tool Considerations

Edit in Hex From the Context Menu, select: Source > Hex Edit line

Look-ahead "intelli-sense" typing Press Ctrl+Spacebar – Works for: COBOL, PL/I,
Assembler, JCL (8.5) and SQL

You can customize the proposals presented by
Content Assist in Preferences > COBOL.

Comment / Uncomment multiple lines with
one operation

From the Context Menu, select: Source > Comment Or Uncomment

Show only comments in your source Source > Filter view > Comments

Show only operational code in your source Source > Filter view > Code

Show only SQL and CICS statements Source > Filter view > Embedded SQL, CICS, DL/I

Show only EXEC statements in JCL Source > Filter view > EXEC statements

Illustrate the control flow (procedural) logic
in a COBOL program

Use Program Control Flow – or Perform Hierarchy See table at the beginning of this section that
exposes the differences

Trace the flow of data – throughout the
PROCEDURE DIVISION

Select a variable and use the Search menu – combined
with pinned search results. Or use Ctrl+F (Find) and the
All option

Can also utilize Occurrences in Compilation Unit
– to show where used vs. where referenced
semantics

Indent your code to expose the actual
procedural flow of code within a paragraph

Using the COBOL Editor - Select the statement and from
the Context Menu > Source > Format

You can customize the indentation and
capitalization characteristics of formatting. Format
an entire program by not selecting a statement.

Apply standard (default) or custom COBOL
coding rules and standards to your
programs

From Software Configuration define a configuration for the
rules you wish to apply.

From the program: Context Menu > Software Analyzer >
select your configuration

A set of custom rules are included with IDz and
can be implemented in Preferences. Completely
custom coding rules are created as Java/Eclipse
plug-ins

124

Optional Topic - ISPF - Find All (Not Exclude) Search

Another common ISPF technique

- Exclude various source lines

- Find within (not) excluded lines

Command ====> F (or C) 'xxx' NX

To perform this using IDz use the same
command line syntax format:

1. Exclude lines

2. Then type: F <xxxx> ALL NX

This will limit the scope of the search to only
the NOT excluded source lines

Note that the ALL operand is not required

125

Optional Steps – Create a PDF Report for your Code Review

▪ From the Software Analyzer Results view

▪ Click Generate a report for the current
selection

▪ Select PDF Report and click OK

It will take a few
seconds to generate
this PDF…

But it's worth it ➔

126

Code Review – PDF Report (sample)

127

Optional Topic - Manipulating Views for Optimum Data Analysis Capabilities

▪ Open SAM1.cbl. Find the call to SAM2 and open SAM2.cbl from the Context menu

▪ Open multiple Occurrences in Compilation Unit views – one for each of the sending/receiving parms between the programs

▪ Pin the Search views so that each "Occurrences…" view persists, and you can hyper-link from the entries in it

128

 Optional Workshop – Source Format – Data Division

▪Steps (still using FORMATER.cbl):

 Using the Outline view, expand: WORKING-STORAGE SECTION
Find and click the variable: 01 DCLDIAG-CODES

 Notice that this 01 structure is not very well coded - in fact, it's plain ugly!

 Left (single) click anywhere in the source – but do not select anything

I.E. make sure that your code is not inverse video

 Right-click and from the Context menu select:

▪ Source > Format

Note the following:

▪ The variables line up

▪ Formatting was applied to the entire program

– Not just a selected portion of the code

▪ This is how source formatting works:

 If code is selected format just the
selected code

 If nothing's been selected format
the entire program

129

 Optional Workshop – Source Format Preferences

From the Window menu, select Preferences

▪ Type: formatter in the filter box and click the COBOL > Editor > Formatter

▪ Time permitting experiment with this feature, changing:

 Custom Indentations – note the Preview window

 Capitalization

▪ Change Reserved word and User-defined word to Mixed Case

▪ Click OK – return to your source program and do another Source Format

130

Summary - Find/Replace – Review and Use Cases

IDz Editing Tool Considerations

Find/Change one time (one-off
command)

Use ISPF F 'xxx' – same as ISPF Most of the ISPF Find operands work

Complex search (Logical OR/AND find)
for application and program analysis

Use Ctrl+F and "Regular expressions" Regular expressions are discussed in the
Optional Topics of this section of the course

Combine the results of multiple
searches (AND the search results)
without using Regular expressions

Use Ctrl+F find – and then Find within (against) the editor results

Peek at (view) n lines above and below
the Found text

Use Ctrl+F and set Peek to > 0 in the Peek tool

Search for binary (hex) data (EBCDIC
format)

Find (Ctrl+F) using the COBOL editor The COBOL editor is discussed in
Appendix B of this module. Hex find for
EBCDIC binary data is available in v8.5

Search through Excluded/Not-excluded
source lines

Use the Prefix area to exclude lines. From the command line, enter:

F 'xxx' X … or… F 'xxx' NX

Highlight all found occurrences of a
search

Preferences > LPEX Editor > System z LPEX Editor > Find
Text

Not that this disables "incremental find".
Incremental find behaves like Google's
search

Persist Find results in a view Select a variable or partial text, and use Search > Text > File Can "Pin the Search View" to allow for
multiple persistent search results

Find/Change one time (one-off
command)

Use ISPF F 'xxx' – same as ISPF Most of the ISPF Find operands work

Complex search (Logical OR/AND find)
for application and program analysis

Use Ctrl+F and "Regular expressions" Regular expressions are discussed in the
Optional Topics of this section of the course

Combine the results of multiple
searches (AND the search results)
without using Regular expressions

Use Ctrl+F find – and then Find within (against) the editor results

Peek at (view) n lines above and below
the Found text

Use Ctrl+F and set Peek to > 0 in the Peek tool

Search for binary (hex) data (EBCDIC
format)

Find (Ctrl+F) using the COBOL editor The COBOL editor is discussed in
Appendix B of this module. Hex find for
EBCDIC binary data is available in v8.5

Search through Excluded/Not-excluded
source lines

Use the Prefix area to exclude lines. From the command line, enter:

F 'xxx' X … or… F 'xxx' NX

Highlight all found occurrences of a
search

Preferences > LPEX Editor > System z LPEX Editor > Find
Text

Not that this disables "incremental find".
Incremental find behaves like Google's

131

Summary – COBOL Code Filtering and Analysis – Review and Use Cases

IDz Editing Tool Considerations

Illustrate the control flow (procedural) logic
in a COBOL program

Use Program Control Flow – or Perform Hierarchy See table at the beginning of this section that
exposes the differences

Trace the flow of data – throughout the
PROCEDURE DIVISION

Select a variable and use the Search menu – combined
with pinned search results. Or use Ctrl+F (Find) and the
All option

Can also utilize Occurrences in Compilation Unit
– to show where used vs. where referenced
semantics

Indent your code to expose the actual
procedural flow of code within a paragraph

Using the COBOL Editor - Select the statement and from
the Context Menu > Source > Format

You can customize the indentation and
capitalization characteristics of formatting. Format
an entire program by not selecting a statement.

Apply standard (default) or custom COBOL
coding rules and standards to your
programs

From Software Configuration define a configuration for the
rules you wish to apply.

From the program: Context Menu > Software Analyzer >
select your configuration

A set of custom rules are included with IDz and
can be implemented in Preferences. Completely
custom coding rules are created as Java/Eclipse
plug-ins

Show only comments in your source Source > Filter view > Comments

Show only operational code in your source Source > Filter view > Code

Show only SQL and CICS statements Source > Filter view > Embedded SQL, CICS, DL/I

Show only EXEC statements in JCL Source > Filter view > EXEC statements

132

Regular Expressions – Used to find related text on adjacent lines

▪ Sometimes what you're looking for is broken across adjacent
lines. Example: Find MOVE and a specific variable when the variable is not
on the same line as the MOVE verb

▪ The pattern for search across lines is

ABC.*\s*.*?DEF

Where .*\s.*? is the REGEX expression

▪ In order to search across lines you
will need to use the Search menu
(similar to the previous example)

▪ Try this:

Open TRTMNT.cbl

From the Search menu

Select: Search…

Enter: mov.*\s*.*?actual-val

Press Search

Double-click a result ➔

Note that this technique only works with files

located on your PC (Local Workstation Project)

See next slide for details and another Scenario

133

REGEX – Used to find related text on adjacent lines across an entire PDS

▪ The technique on the
previous slide can
used to find text
across adjacent lines
within an entire PDS

▪ Steps:

Copy (or Drag & Drop)
a PDS from your LPAR
to a Local Workstation
Project

Use the same REGEX
expression and
approach – but select
the folder as the:
“ Selected resource”

134

Regex – Used to Filter Out Lines

▪ One of the most difficult search
is for patterns (text, words,
labels, etc.) that do not exist
within a file

▪ The way forward is to use a
Regular Expression within the
Ctrl+F Find option:

^((?!word).)*$

