
���®
IBM® Smart Analytics System

Best practices
Performance monitoring in a data

warehouse

Toni Bollinger
IBM Data Warehousing and
Advanced Analytics Specialist

Detlev Kuntze
IBM Data Warehousing Center of
Excellence

Gregor Meyer
IBM Data Warehousing Center of
Excellence

Sascha Laudien
IBM Data Warehousing Center of
Excellence

Farzana Anwar
IBM Information Development

Issued: September 2013

Performance monitoring in a data warehouse Page 2 of 51

Executive summary ...4

Introduction ...5

Operating system performance measures 7
CPU usage ...7
Network traffic ..11
Main memory ..12

Database-related performance measures 13
CPU time and usage...14

I/O-related performance measures 16
Buffer pools ...16
Memory usage ...19
Locking..21
Sorts and hash joins ...23
Data skew ..26
FCM...28
Determining the SQL statements that are being executed ...30

Some typical performance scenarios..30

CPU performance 31
High user CPU...31
High I/O waits ...32
High system CPU time ..34
Imbalanced CPU load ..35

High I/O rates 35
High read I/O rates ..35
High write I/O rates ...36

High network traffic 37

High memory usage 38

Underutilized system 39

Best practices ...41

Appendix A. db2top command hints..43

Batch mode of db2top command 43

Monitoring a single partition 43

Collecting operating system measurements in the db2top command 43

Linux operating system monitoring 44
CPU monitoring...44
I/O monitoring ...44
Network monitoring ..44

Appendix B. Operating system monitoring for a cluster ...45

Displaying performance data in the cluster 47

Performance monitoring in a data warehouse Page 3 of 51

Notices...50

Trademarks 51

Contacting IBM ...51

Performance monitoring in a data warehouse Page 4 of 51

Executive summary

Monitoring a data warehouse system is important to help ensure that it performs optimally. This paper
describes the most important DB2 software and operating system metrics for monitoring the performance
of the IBM Smart Analytics System or IBM PureData™ System for Operational Analytics or a system
having a similar architecture. This paper also presents a general methodology to help find reasons for
performance problems. This approach starts with the operating system metrics and drills down to the
DB2 metrics that explain the behaviour that is seen at the operating system level and help to identify the
causes of performance problems. This approach is illustrated by information about typical performance
problems.

Performance monitoring in a data warehouse Page 5 of 51

Introduction

This best practices paper covers real-time monitoring of the IBM Smart Analytics System and IBM
PureData System for Operational Analytics. You can apply most of the content to other types of clusters
of servers running a data warehouse system with DB2 software and database partitioning under AIX and
Linux operating systems. The focus of this paper is finding the reasons for performance problems. These
can be bottlenecks that are in the operating system, are in the DB2 database software, or are related to a
single query. The focus is on data warehouse systems with long-running queries rather than transactional
systems with mostly short queries.

A main goal of this paper is to provide a set of key performance indicators (KPIs) or metrics for the
operating system and DB2 software, along with a methodology for analyzing performance problems in a
distributed DB2 environment. This paper describes scenarios to help you gather the right information
depending on the symptoms of the performance problem.

This paper first provides an overview of the approach and what to consider in general when monitoring
the performance of a data warehouse. It then describes the most important operating system and DB2
metrics for multiserver data warehouse systems. The last section describes in detail several performance
problem scenarios that are related to data warehouse or BI workloads and explains how to use the
metrics for analyzing the problems.

Most of the information about KPIs that are described in the paper has sample commands that extract
actual values. However, these examples are not intended to provide comprehensive tooling. You can use
this best practices paper as a guideline for selecting the metrics to focus on when using monitoring tools
such as IBM InfoSphere® Optim™ Performance Manager. You can use this paper to complement the best
practices paper Managing data warehouse performance with IBM InfoSphere Optim Performance Manager,
published in September 2012, which covers historical and end-to-end monitoring.

https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Wc9a068d7f6a6_4434_aece_0d297ea80ab1/page/Managing%20data%20warehouse%20performance%20with%20IBM%20InfoSphere%20Optim%20Performance%20Manager

Performance monitoring in a data warehouse Page 6 of 51

Performance monitoring methodology
Monitoring a database system requires an understanding of the various performance measures and how
to interpret them relative to overall system usage. The following measures are explained in the next
sections:

 Operating system measures:

 CPU or thread utilization
 Main memory usage and swapping
 Network utilization
 Disk usage

 DB2 measures:

 DB2 memory usage
 Locking characteristics
 Number of sort and hash join overflows
 Buffer pool performance
 CPU or data skew

To determine whether a situation is just a normal peak or something more critical, try to get a good
overall picture of the system when it is idle and when the load is average, high, or maximum. When you
encounter a performance problem first determine what changed since the last time that the system
performed satisfactorily. In particular, consider whether the following factors apply:

 Workload or queries are different.
 More data is being processed.
 More connections exist.
 The software version was changed.
 The DB2 system was upgraded, which might have included the installation of fix packs.
 Data nodes were added.
 Data was redistributed.
 The database design was changed, for example, an MQT or index was added.
 The RUNSTATS command was issued with different parameters, for example, executed with

sampling.

If you have no initial hypothesis for a performance problem, first determine whether there are any
bottlenecks on the operating system side. Areas of bottlenecks include the CPU, main memory usage and
swapping, the network, and I/O (disk usage). Based on the information that you gather, you can then drill
down to the corresponding DB2 measures. This approach is described in the section “Some typical
performance scenarios.”

Performance monitoring in a data warehouse Page 7 of 51

Main performance measures and how to monitor them

To monitor data warehouse performance, you must look at both operating system and database
performance metrics. Another good source for learning about monitoring is the best practices paper
Tuning and Monitoring Database System Performance. It explains DB2 monitoring and tuning in OLTP
environments.

Operating system performance measures

The interactive tool that is shown in this paper is the nmon utility. If you want to monitor a cluster, you
must open a window (for example, with PuTTY software) on each server and start the nmon utility there.

The command-line tools that are shown are tailored for specific measurements. Some tools behave
slightly differently on Linux operating systems than they do on AIX operating systems.

Monitor all servers of a cluster to detect anomalies or deviations that might impact the
overall performance. To run a command-line tool through a single invocation on all servers
of a cluster, use the rah command.

CPU usage
When considering CPU load, differentiate between these types of CPU measurements:

 User CPU: The number of CPU cycles that are required for user processes
 System CPU: The number of CPU cycles that are used by the operating system kernel, for

example, for paging or process switching
 I/O wait: The percentage of CPU cycles that is spent waiting for data
 Idle time: The number of cycles where there is nothing for the CPU to do

The sum of user and system CPU usage can be close to 100% during peak times. A 4:1 ratio of user CPU
usage to system CPU usage is considered normal. If the system CPU usage is increasing for time frames
that are longer than the average execution time of your SQL, query check the system and identify the
cause of this imbalance.

For the I/O wait measurement, values of up to 25% are normal. Peak values of greater than 25% for longer
time frames suggest that disk activity is too high and need investigation.

For multi-core and multithreaded CPUs, in addition to checking the overall CPU usage,
check the usage at the core or thread level to determine core-related or thread-related
bottlenecks. For example, an overall CPU usage of 8% looks low at first glance. However,
there might be a CPU-related bottleneck if one thread is running at almost 100% CPU usage

and the other 15 threads are idle.

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Wc9a068d7f6a6_4434_aece_0d297ea80ab1/page/Tuning%20and%20Monitoring%20Database%20System%20Performance

Performance monitoring in a data warehouse Page 8 of 51

To determine the load on a cluster, look at the length of the run queue and the number of process
switches. These provide a good hint of how busy, in terms of parallel running jobs, the system is and can
be.

Examine the length of the run queue and the number of process switches to determine
whether they are the reason for high system CPU usage.

Monitoring CPU usage

You can use the nmon utility to monitor CPU usage. You must run it on each server in a cluster. If you
run it in the c-interactive mode, it graphically shows the CPU usage.

For a system with a large number of CPUs, you can also use the nmon utility in l-interactive mode, which
displays the average overall CPU usage over time. It is also useful to view the usage for the most active
processes by using the t-option. These processes should be for an active db2sysc command on a DB2
system.

 Figure 1 shows the overall CPU usage and the usage for the important processes for an IBM Smart
Analytics System 7700 data module with 16 cores. The CPU usage of the processes is indicated per core.
The value of 160% for the most active process means that this process can use 80% of two CPUs.

 Figure 1. nmon utility running in l and t interactive modes

Performance monitoring in a data warehouse Page 9 of 51

An alternative to the nmon utility is the vmstat command:

vmstat interval count

This vmstat command executes vmstat <count> times every <interval> seconds. Figure 2 shows
sample output from running “vmstat 2 2” on an AIX operating system where the user CPU load is
approximately 90% - 89%:

Figure 2. Output of vmstat command on an AIX operating system

The columns under the cpu heading represent percentages of different types of CPU time:

 us: Time spent on user activities
 sy: Time spent on system activities
 id: Idle time
 wa: Wait time

For Linux operating systems, disregard the first output line because it contains these values for the time
since system startup. The subsequent lines are for any corresponding intervals.

To get a brief impression of the CPU load of the past 15 minutes, you can use the uptime command:

rah uptime

Issuing the rah command from the administration node restricts the check to the DB2 related servers.
The screen capture in Figure 3 shows sample uptime command output, including the number of users
and the average CPU usage for 1, 5, and 15 minutes. Using this information, you can decide whether a
high load is only a short peak event or whether it lasts for a longer time.

Figure 3. rah uptime command output for a cluster with CPU load on the administration node

Performance monitoring in a data warehouse Page 10 of 51

You can show the size of the run queue and the number of process switches by using the nmon utility in
the k-interactive mode. Figure 4 shows an example of an nmon kernel window with size of the run queue
and the number of process switches in the left upper corner:

Figure 4. nmon kernel window

The size of the run queue also appears in the first column of the vmstat command output, labeled with r.
The number of process switches is shown in the vmstat command output in the cs (context switches)
column. For instance, in Figure 2, the values for the run queue are 173 and 187, and for those processes,
where the numbers of context switches are 229916 and 301124.

I/O

Disk I/O is the slowest way to deal with data. OLAP systems always show a high amount of I/O. For
these reasons, it is important to optimize data transfers and to identify and minimize I/O waits. Key
measures to monitor for I/O are the amount of data read/written per second, the number of I/O
operations per second, and the degree of utilization.

You should know the performance characteristics of your storage system. To determine the
maximum possible I/O performance, use the dd command on AIX operating systems and the
sg_dd command on Linux operating systems to generate a sample I/O work load containing
queries that reads from and writes to raw physical devices.

 For example, for an IBM Smart Analytics System 7700 cluster, the following command reads from the
hdisk device 19 blocks of size 512 KB, a total of 32,768 times:

dd if=/dev/rhdisk19 of=/dev/null bs=512k count=32768

If you run this command a number of times in parallel (up to 12 times should be sufficient), you can
determine the maximum sequential read performance of a physical device. For a 7700 device, the
performance is approximately 750 MB per second and 1500 transactions per second on average. For a
5600 R1 cluster, you can use the similar sg_dd command to check for the maximum sequential read
capacity:

sg_dd odir=1 dio=1 of=/dev/null bs=512k count=100000000 if=/dev/sdb

Performance monitoring in a data warehouse Page 11 of 51

Because the 5600 R1 system uses less than half the number of disks per RAID6 device that the 7700 does,
expected throughput is approximately 300 MB per second and approximately 600 transactions per
second.

Monitoring I/O
You can use the iostat command to measure each I/O device, as shown:

iostat interval count

This call initiates iostat <count> times every <interval> seconds. If you specify the -k option on a
Linux operating system, the output includes the translations per second and KB that are read per second
for each disk or device for the specified interval. For Linux operating systems, the command behaves
similarly to the vmstat command because the first execution returns these values for the period since the
last system reboot. For AIX operating systems, issuing the iostat command with the -f or -F option
displays the I/O activity per file system. With the nmon utility, you can monitor the I/O activity by using
the d-interactive mode.

Network traffic
The most important network in an IBM Smart Analytics System is the internal application network – also
know as the fast communication manager (FCM) – that is used by DB2 to exchange results between the
administration and data nodes or to exchange data between data nodes.

Bottlenecks can appear in the communication between the administration node and the data nodes or
when the volume of messages overall is driving the network to its capacity limit. This capacity limit is
determined by the bandwidth of the network (usually 1 Gb/second or 10 Gb/second) and the number of
switches. For a 10 Gb network with two switches, the capacity is 2 x 10 Gbit/second, which is 2.5
GB/second. Although this is the theoretical limit, the realistically achievable maximum throughput for the
IBM Smart Analytics System 7700 product is 80% - 90% of this value.

The most important measure is the amount of data that is sent and received by the server, which is
usually measured in KB/second. Because all servers in a cluster share the internal application network,
you must sum the measures for the servers to determine whether the capacity limit has been reached.

If the network performance is lower than you expect, look at the number of sent and received
packages and the number of transmission errors. These errors should be less than 1% of the
number of received and sent packages.

Monitoring network traffic
To monitor the network traffic for one server in a cluster, use the nmon utility. The following sample
output was generated by specifying the interactive n option:

Performance monitoring in a data warehouse Page 12 of 51

Figure 5. Part of the nmon command output, showing network traffic statistics

In Figure 5, en11 is the network interface of the internal application network of the IBM Smart Analytics
System 7700 product. The output shows that 72 KB received and 76 MB sent represent the highest activity
level.

To check whether any transmission errors occurred, use the netstat command:

netstat –I interface name time interval (for AIX operating systems)
netstat –I interface name –c (for Linux operating systems)

This command displays the number of packages that were sent and received and the associated number
of errors for interface name every time interval seconds. The first set of lines in the output shows the
summary of the measures since the network was last started.

Main memory

On both Linux and AIX systems, the main memory is used for program execution and for file caching. If
the system runs out of main memory space, it must transfer some of the data out of memory and onto
disk. This disk space is called paging space. From a monitoring perspective, the measure of paging space
usage is the most important. Whereas the usage of real memory can grow close to 100% without any
negative impact, increased paging means increased system CPU and I/O activity, resulting in an overall
decrease in system performance.

As much as possible, avoid paging. Short periods of small paging space usage (where the
size of the paging space is less than 5% - 10 % of physical main memory size) can be
tolerated. However, larger paging space usage can lead to a severe system slowdown, so that
simple DB2 software or operating system commands seem to hang.

Monitoring main memory
To monitor the amount of memory swapping, use the vmstat command. On AIX operating systems,
where a unit of memory is a 4 kB page, see the page section of the output, columns pi and po. On Linux
operating systems, where the unit is 1 kB, see the swap section of the output, columns si and so. Figure
26 shows sample output of the nmon command on an AIX operating system:

Performance monitoring in a data warehouse Page 13 of 51

Figure 6. nmon command output showing memory utilization

You can run the nmon command in m-interactive mode to monitor the memory utilization, including
swapping memory of a single server in a cluster. In the output, check the numbers in the PageSpace and
pages per second columns. Figure 6 shows that a bit more than a third of main memory is still free and
that no paging is taking place.

Database-related performance measures

Starting with DB2 Version 9.7, monitoring table functions are provided to retrieve monitoring
information from in-memory locations (in-memory metrics). Use these monitoring functions if possible,
because they have lower memory usage than the older snapshot-based functions.

For monitoring DB2 performance measures, use the table functions that are based on the in-
memory metrics. To monitor running queries, use the MON_GET_UNIT_OF_WORK and
MON_GET_ACTIVITY_DETAILS functions. If a query terminated and the connection is still
open, the MON_GET_CONNECTION function returns the aggregated performance

measurements for all activities that ran for that connection.

To determine the aggregated measures of activities by service subclass or workload over a longer time
frame, you can use the MON_GET_SERVICE_SUBCLASS and MON_GET_WORKLOAD functions. These
functions and workload management in a data warehouse environment in general are discussed in detail
in the best practices paper Implementing DB2 workload management in a data warehouse.

All of these monitoring functions have essentially the same monitor elements and determine essentially
the same measures. The only difference is their scope: activity, unit of work, connection, service subclass,
or workload.

Determine the measures separately for each DB2 partition (referred to as member by these
functions) by specifying -2 for the second parameter of these functions so that all database
members are considered. Then, aggregate the measures for the whole system. In this way,
you can collect all the information that you need to get a system-wide overview of DB2

performance, but you can also locate performance problems that are restricted to certain partitions.

Performance monitoring in a data warehouse Page 14 of 51

You can find detailed descriptions of these monitoring functions in the following DB2 Information Center
topic:
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.sql.rtn.doc/doc/c0053963.
html.

Two additional functions were introduced in DB2 Version 10: MON_SAMPLE_WORKLOAD_METRICS and
MON_SAMPLE_SERVICE_CLASS_METRICS. You can use these functions to retrieve selected
measurements for a particular time period after the invocation. In this way, you can retrieve the current
performance measurements at the workload and service class levels.

If you prefer an interactive tool, you can use the db2top command for retrieving measurements. Because
it is based on snapshots, its use has a higher impact on performance. Link:
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.mon.doc/doc/t002
5223.html.

CPU time and usage

First, determine the overall CPU time that has been needed for the execution of a statement so far. You
can contrast this time with the elapsed time to determine the CPU utilization. Then, you can drill down to
determine how much time is spent on the various activities, such as sorting, I/O, and FCM traffic flow.

For SQL queries, review wait times, such as lock wait time, I/O wait time, and FCM wait
time. These wait times should be as low as possible, with one exception: for the coordinator
partition, which wait on the results of the data partitions, because they handle almost all of
the query execution in a well-partitioned database setup.

Monitoring CPU time and usage
To determine the relative share that each DB2 application uses of the total CPU usage of all active DB2
applications, use the db2top command. This share is displayed in the session view under the column
CPU% Total, as shown in Figure. You can obtain this information by specifying the l interactive
command:

Figure 7. db2top command view showing relative CPU share

The monitoring table functions provide a comprehensive set of monitor elements for determining the
execution time characteristics. The most important monitor elements are as follows:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.sql.rtn.doc/doc/c0053963.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.mon.doc/doc/t0025223.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.mon.doc/doc/t0025223.html

Performance monitoring in a data warehouse Page 15 of 51

 total_cpu_time: The total user and system CPU time that the DB2 product uses, in
microseconds.

 total_rqst_time: The total time that is spent working on requests, in milliseconds. The
requests are for all types of DB2 activities, such as the execution of SQL statements, loads,
execution of stored procedures, RUNSTATS, commits, and statement compilation.

 total_wait_time: Total time that the DB2 product spends waiting, in milliseconds.
 total_section_time: The sum of the time that is spent executing sections of compiled SQL

statements, with wait times, in milliseconds.
 total_section_proc_time: The total time that is spent executing sections of compiled SQL

statements, without wait times, in milliseconds.

The values of these measures are computed by summing the corresponding values of the DB2 threads. If
the threads running on a partition overlap, these values can be greater than the overall elapsed execution
time. For example, this can happen for the TOTAL_SECTION_TIME function if sections of an SQL
statement are at least partially executed in parallel.

To determine the overall elapsed execution time of DB2 requests, use the total_app_rqst_time
monitor element. It returns, for the coordinator partition, the total elapsed time that is spent on
application requests, in milliseconds. For other partitions, the monitor element returns 0.

The following query calculates, for each active application, the average values of measurements for the
data partitions. It uses the total_app_rqst_time element for determining both the user and system
CPU utilization. The value of the total_app_rqst_time element is updated less frequently than the
value of the other measures, the value for CPU utilization can be temporarily too high. It is accurate,
however, at the end of the execution of an activity.

Performance monitoring in a data warehouse Page 16 of 51

with connect_agg as (
SELECT t.APPLICATION_HANDLE,
 count(t.member) as NUM_MEMBER,
 decimal(avg(t.TOTAL_CPU_TIME*1.00)/1000000, 12,2) as AVG_TOTAL_CPU_TIME_SEC,
 decimal(avg(t.TOTAL_WAIT_TIME*1.00)/1000, 12,2) as AVG_TOTAL_WAIT_TIME_SEC,
 decimal(avg(t.TOTAL_RQST_TIME*1.00)/1000, 12,2) as AVG_TOTAL_RQST_TIME_SEC,
 decimal(avg(t.TOTAL_SECTION_TIME*1.00)/1000,12,2) as AVG_TOTAL_SECTION_TIME_SEC,
 decimal(avg(t.TOTAL_SECTION_PROC_TIME*1.00)/1000, 12,2) as AVG_TOTAL_SECTION_PROC_TIME_SEC
FROM TABLE(MON_GET_CONNECTION(cast(NULL as bigint), -2)) AS t
WHERE t.MEMBER > 0
GROUP BY t.APPLICATION_HANDLE
)
select c.APPLICATION_HANDLE, NUM_MEMBER,
 AVG_TOTAL_CPU_TIME_SEC, AVG_TOTAL_WAIT_TIME_SEC, AVG_TOTAL_RQST_TIME_SEC,
 AVG_TOTAL_SECTION_TIME_SEC, AVG_TOTAL_SECTION_PROC_TIME_SEC,
 decimal(t0.TOTAL_APP_RQST_TIME/1000.0, 12,2) as TOTAL_APP_RQST_TIME_SEC,
 case when t0.TOTAL_APP_RQST_TIME > 0 then
decimal(AVG_TOTAL_CPU_TIME_SEC*100000/(t0.TOTAL_APP_RQST_TIME*<nbCoresPerPartition>), 12, 2) end
as CPU_USAGE_PCT
FROM connect_agg c
inner join TABLE(MON_GET_CONNECTION(cast(NULL as bigint), -2)) AS t0 on (c.APPLICATION_HANDLE =
t0.APPLICATION_HANDLE)
where t0.MEMBER = = t0.COORD_MEMBER;

For the computation of the CPU usage, consider the number of cores per partition. For an IBM Smart
Analytics System 7700, which has two cores per data partition, replace nbCoresperPartition in the previous
SQL query with 2.

There are other time-related measures, for example, those for the different wait times (such as lock wait
time), I/O times, and the time that is required for FCM traffic and sorting. The DB2 Information Centre
topic
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=/com.ibm.db2.luw.admin.mon.d
oc/doc/c0055434.html gives a good overview of the relationships between all these time metrics.

I/O-related performance measures
Buffer pools

The most important measure for buffer pools is the hit ratio. The hit ratio is the percentage of logical
reads (and not physical reads), that is, they are read directly from the buffer pool.

In OLTP systems, the buffer pool hit ratio should be close to 100%. However, it is not possible to define a
concrete target for data warehouse systems, because the amount of data that is processed by a query can

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=/com.ibm.db2.luw.admin.mon.doc/doc/c0055434.html%20

Performance monitoring in a data warehouse Page 17 of 51

vary considerably. For example, the scan of a huge table might result in a very low hit ratio. In general,
the higher the hit ratio for a query, the greater the amount of data that is processed.

Other measurements to look at are the number of logical and physical reads and the number of writes,
which represent the amount of activity a buffer pool.

On an IBM Smart Analytics System, if the number of reads from the IBMDEFAULTBP buffer pool is not
small, determine whether a table space was created accidentally for user data within that buffer pool.

Monitoring buffer pools

In the buffer pool view of the db2top command (interactive command option b), you can check these
measures for each buffer pool. Figure 88 shows an example of the output:

Figure 8. Buffer pool view of the db2top command

To determine these values for each buffer pool, you can use the MON_GET_BUFFERPOOL monitoring table
function. The following query was adapted from the query in the DB2 Information Centre topic at
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.sql.rtn.doc/doc/r0053942.
html. This query calculates the hit ratio from the number of logical and physical reads for each buffer
pool.

WITH bp_metrics AS (
 SELECT bp_name,
 sum(pool_data_l_reads + pool_temp_data_l_reads +
 pool_index_l_reads + pool_temp_index_l_reads +
 pool_xda_l_reads + pool_temp_xda_l_reads) as logical_reads,
 sum(pool_data_p_reads + pool_temp_data_p_reads +
 pool_index_p_reads + pool_temp_index_p_reads +
 pool_xda_p_reads + pool_temp_xda_p_reads) as physical_reads
 FROM TABLE(MON_GET_BUFFERPOOL('',-2)) AS METRICS
 GROUP BY bp_name

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.sql.rtn.doc/doc/r0053942.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.sql.rtn.doc/doc/r0053942.html

Performance monitoring in a data warehouse Page 18 of 51

)
 SELECT
 VARCHAR(bp_name,20) AS bp_name,
 logical_reads,
 physical_reads,
 CASE WHEN logical_reads > 0
 THEN DEC((1 - (FLOAT(physical_reads) / FLOAT(logical_reads))) * 100,5,2)
 ELSE NULL
 END AS HIT_RATIO
 FROM bp_metrics;

Table spaces

Table space monitoring drills one level deeper than buffer pool monitoring. For an Smart Analytics

er

Compare the number of asynchronous read and writes with the total number of physical reads

Using the db2top command, you can get to the table space information with the t interactive option.
s

System, the table spaces of interest are TS_SMALL, TS_BIG, TS_BIG_INDEX, and the table spaces for
temporary data (TEMP16K and USERTEMP16K). All of these table spaces are associated with the buff
pool BP_16K. As with buffer pools, an important measurement for each table space is the hit ratio.

and writes to see the effectiveness of the prefetchers. If the percentage of asynchronous reads
and writes is considerably below 80%, increase the value of the num_ioservers database
configuration parameter.

Monitoring table spaces

Figure 9 shows sample table space measurements. For the TS_BIG table space, the buffer pool hit ratio i
quite low, but the asynchronous read ratio is very good.

Figure 9. Table space monitoring with the db2top command

Performance monitoring in a data warehouse Page 19 of 51

You can retrieve these and more measurements with the MON_GET_TABLESPACE table function. The
following query retrieves the buffer pool hit ratio and the ratios for asynchronous buffer pool read and
write operations:

with tbsp_metrics as (
SELECT varchar(tbsp_name, 20) as tbsp_name,
 tbsp_type,
 max (tbsp_page_size) as tbsp_page_size,
 count(member) as num_member,
 sum(pool_data_l_reads + pool_temp_data_l_reads + pool_index_l_reads + pool_temp_index_l_reads +
pool_xda_l_reads + pool_temp_xda_l_reads) as sum_logical_reads,
 sum(pool_data_p_reads + pool_temp_data_p_reads + pool_index_p_reads + pool_temp_index_p_reads +
pool_xda_p_reads + pool_temp_xda_p_reads) as sum_physical_reads,
 sum(pool_data_p_reads + pool_index_p_reads) as sum_data_index_p_reads,
 sum(pool_async_data_reads + pool_async_index_reads) as sum_async_data_index_reads,
 sum(pool_data_writes) as sum_pool_data_writes,
 sum(pool_async_data_writes) as sum_pool_async_data_writes
FROM TABLE(MON_GET_TABLESPACE('',-2)) AS t
group by tbsp_name, tbsp_type
)
select tbsp_name, tbsp_type, tbsp_page_size, num_member,
 sum_logical_reads, sum_physical_reads,
 case when sum_logical_reads > 0 then decimal((1 - float(sum_physical_reads)/float(sum_logical_reads)) * 100.0,
5,2) else null end as bp_hit_ratio,
 sum_data_index_p_reads, sum_async_data_index_reads,
 case when sum_data_index_p_reads > 0 then
decimal(float(sum_async_data_index_reads)*100/float(sum_data_index_p_reads),5,2) else null end as
async_data_index_read_ratio,
 sum_pool_data_writes, sum_pool_async_data_writes,
 case when sum_pool_data_writes > 0 then
decimal(float(sum_pool_async_data_writes)*100/float(sum_pool_data_writes),5,2) else null end as
async_data_write_ratio
from tbsp_metrics; _

Memory usage

The DB2 product should use only as much memory as fits into main memory.

Always monitor DB2 memory usage with operating system memory usage to ensure that the
DB2 product does not exhaust the main memory resources.

The most important DB2 memory consumers are as follows:

 FCMBP: The shared memory for the FCM, which is controlled by the fcm_num_buffers
database manager configuration parameter. The DB2 product attempts to determine an optimal
value, so you do not have to change this setting.

Performance monitoring in a data warehouse Page 20 of 51

 Utility: Memory that is used by utilities such as RUNSTATS, LOAD, and BACKUP, whose upper
limit per database is specified by the value of the util_heap_sz database configuration parameter.

 BufferPool: The size of the buffer pools.

 SortHeap: The current total size of the sort heap that are used for sorts and hash joins. Because
each application allocates its own sort heap, the total size can vary considerably over time.

Monitoring memory usage

You can monitor DB2 memory usage by using the DB2 memory information of the db2top command,
which you can get with the “m” interactive command, as shown in the following example:

Figure 10. DB2 memory view of the db2top command

To determine memory usage across data modules, sum the values for the biggest memory consumers,
and compare the result with the available main memory. The db2top command default screen in Figure
10 shows the aggregated memory usage for all database partitions. To get an impression of the memory
usage of the IBM Smart Analytics System data modules, you can sum the values for the biggest memory
consumers and compare the result with the available main memory in all data modules. In the sample
db2top command output in Figure the most important memory consumers, which are FCMBP,
(Instance), Other, Bufferpool, and SortHeap, are using approximately 106.5 GB of main memory. The two
data modules together are using 256 GB of RAM on the IBM Smart Analytics System 7700. This shows
that main memory is not a critical resource.

To check whether main memory is sufficient even when all memory pools have reached the maximum
specified size, you can sum the values for the high watermark.

The db2top command shows the database and application memory values for only one database. To get
a complete picture of the memory consumption, you must run the db2top command for each active
database.

With DB2 V9.7 Fix Pack 5 and later, you can also use the MON_GET_MEMORY_POOL monitoring table
function to compute values for all databases together with the total memory usage of DB2 instance per
host name:

Performance monitoring in a data warehouse Page 21 of 51

with mon_mem as (
SELECT varchar(host_name, 20) AS host_name,
 varchar(memory_set_type, 20) AS set_type,
 varchar(memory_pool_type,20) AS pool_type,
 varchar(db_name, 20) AS db_name,
 memory_pool_used,
 memory_pool_used_hwm
FROM TABLE(
 MON_GET_MEMORY_POOL(NULL, CURRENT_SERVER, -2))
)
select host_name, set_type, pool_type, db_name,
 sum(memory_pool_used)/1000000 as memory_pool_used_MB,
 sum(memory_pool_used_hwm)/1000000 as memory_pool_used_hwm_MB
from mon_mem
-- group by set_type, pool_type, dbname
group by grouping sets ((set_type, pool_type, db_name), (host_name));

Locking

Locking monitoring is important for assuring optimal concurrency and for detecting and minimizing lock
wait and deadlock situations. In particular, you should monitor the following items:

 The number of lock waits and the lock wait times
 The number of deadlocks
 The number of lock escalations.

In the case of locks, you should determine the blocking application and blocked application, together
with the responsible table. Values for measurements should be as low as possible.

Using the db2top command, you can monitor these measures at the database level through the database
view (the d interactive option). It gives you an overview of the whole database. For monitoring locking,
check the values for lock waits, deadlocks, and lock escalation, as shown in the sample in Figure 11:

Performance monitoring in a data warehouse Page 22 of 51

Figure 11. Database view of db2top command

You can see details about the lock status of each application in the Locks view (interactive option U) of
the db2top command, as shown in the sample output in Figure 12. It shows, for each application, the
locked object, lock mode, locks status, and lock count and shows whether the application is blocking
another application.

Figure 12. Locks view of db2top command

In Figure 13, the Lock chain view (interactive option L) shows the blocked application with the blocking
agents:

Figure 13. Lock chain view of db2top command

The MON_GET_UNIT_OF_WORK and MON_GET_CONNECTION monitoring table functions provide an
overview of the locking situation. The following monitor elements are of interest:

 lock waits: The total number of lock waits
 lock_wait_time: The total wait time due to locks, in milliseconds
 lock_timeouts: The number of lock timeouts

Performance monitoring in a data warehouse Page 23 of 51

 lock_escals: The total number of lock escalations
 deadlocks: The total number of deadlocks

The following query retrieves these measures for each application:

select APPLICATION_HANDLE,
 count(MEMBER) as NUM_MEMBER,
 max(connection_start_time) as connection_start_time,
 sum(LOCK_ESCALS) as LOCK_ESCALS,
 sum(LOCK_TIMEOUTS) as LOCK_TIMEOUTS,
 integer(sum(LOCK_WAIT_TIME)/1000) as LOCK_WAIT_TIME_SEC,
 sum(LOCK_WAITS) as LOCK_WAITS,
 sum(DEADLOCKS) as DEADLOCKS
from TABLE(MON_GET_CONNECTION(cast(NULL as bigint), -2)) AS t
group by APPLICATION_HANDLE;

You can use the MON_LOCKWAITS administrative view to show details for the blocked applications.
For example, the following query retrieves the application handle of the requester and holder of the lock
together with the lock object type, lock mode, and name of the locked table:

select REQ_APPLICATION_HANDLE, REQ_MEMBER,
 HLD_APPLICATION_HANDLE, HLD_MEMBER,
 LOCK_OBJECT_TYPE, LOCK_MODE,
 varchar(TABSCHEMA, 20) as TABSCHEMA,
 varchar(TABNAME, 20) as TABNAME
from SYSIBMADM.MON_LOCKWAITS ;

Sorts and hash joins

The DB2 product allocates a separate sort heap for every sort and hash join operation in main memory
whose maximum size is controlled by the SortHeap database configuration parameter. If this space is
not sufficient, a sort heap overflow occurs, and the sort “spills” into temporary tables in the system
temporary table space.

Avoid sort heap overflows, because of their negative impact on performance. This effect is less important
if the spilled data remains in the buffer pool, such that no I/O operations are triggered. The same is true if
you define a system temporary table space on solid state disks (SSDs).

As the total size of the sort heaps in main memory grows with the number of running sorts, it can exceed
the threshold that you specify by using the sheapthres database manager configuration parameter.
Sorts that are requested after this are called post-threshold sorts.

Avoid post-threshold sorts because the main memory might be exhausted, and paging
might start, slowing down the system.

Performance monitoring in a data warehouse Page 24 of 51

Furthermore, it is worthwhile having a closer look at a sort if the sort time is a significant percentage
(such as 20% - 25%) of the total execution time. Consider query optimization techniques, such as defining
an index on the sort column to avoid the sort operation.

For hash joins, you should avoid hash loops because they cause a considerable slowdown. Hash loops are
less likely for the standard IBM Smart Analytics System or IBM PureData System for Operational
Analytics settings of 35,000 4 KB blocks for the sortheap database configuration parameter. However,
hash join overflows are quite common in a data warehouse environment when two big tables are joined.

Monitoring sorts and hash joins

For monitoring sort behavior, you can use the database view of the db2top command, which you also
use for identifying a lock situation (see Figure). Look at the values for the Sortheap, SortOvf, and
PctSortOvf. The PctSortOvf shows the percentage of the total number of sort overflows.

As shown in the sample in Figure 14, the upper part of the application view of the db2top command
shows the number of sorts, the number of sort overflows, and the sort time. For hash joins, it shows the
number together with the number of hash loops and hash join overflows.

Figure 14. Upper part of application view of db2top command

You can also use the following monitor elements of the MON_GET_CONNECTION and
MON_GET_UNIT_OF_WORK monitoring table functions:

 total_sorts: The total number of sorts.
 total_section_sorts: The total number of sorts that are executed by a compiled SQL

statement.
 sort_overflows: The number of sort overflows.
 post_threshold_sorts: The number of post-threshold sorts, that is, those sorts that are

requested after the total sort heap has exceeded the threshold that you specified by using the
sheapthres database manager configuration parameter.

 total_section_proc_time: The total time, in milliseconds, that are spent processing a
compiled SQL statement, without wait times. The value can exceed the total execution time for a
member if intraparallelism is turned on.

Performance monitoring in a data warehouse Page 25 of 51

 total_section_sort_proc_time: The total time, in milliseconds, for processing section
sorts, without wait times.

 rows modified: The number of modified rows, which can be rows that are written to a
temporary table from spilled sorts or hash join overflows.

 pool_data_writes: The number of pages that are written from the buffer pool to disk, which
can be pages that are written to temporary table space containers. If this value is still 0 when sort
or hash join overflows occur, the temporary tables for the spilled sorts can be kept in the buffer
pool.

 total_hash_joins: The total number of hash joins
 total_hash_loops: The total number of hash loops
 hash_join_overflows: The total number of hash join overflows

The hash joins specific monitoring elements are included in MON_GET_CONNECTION and
MON_GET_UNIT_OF_WORK starting with DB2 V10.5. For prior versions of DB2 you can use the
snapshot-based monitoring table functions SNAP_GET_APPL or SNAP_GET_APPL_V95.

For each connected database application, the following query computes these values for sort and hash
join overflows for the data partitions and aggregates them:

SELECT APPLICATION_HANDLE,
 count(*) as NUM_MEMBER,
 sum(TOTAL_SORTS) as SUM_TOTAL_SORTS,
 sum(TOTAL_SECTION_SORTS) as SUM_TOTAL_SECTION_SORTS,
 sum(SORT_OVERFLOWS) as SUM_SORT_OVERFLOWS,
 sum(POST_THRESHOLD_SORTS) as SUM_POST_THRESHOLD_SORTS,
 decimal(avg(TOTAL_SECTION_PROC_TIME)/1000.0,8,2) as AVG_TOTAL_SECTION_PROC_TIME_SEC,
 decimal(avg(TOTAL_SECTION_SORT_PROC_TIME)/1000.0,8,2) as
AVG_TOTAL_SECTION_SORT_PROC_TIME_SEC,
 sum(TOTAL_HASH_JOINS) as SUM_TOTAL_HASH_JOINS,
 sum(TOTAL_HASH_LOOPS) as SUM_TOTAL_HASH_LOOPS,
 sum(HASH_JOIN_OVERFLOWS) as SUM_HASH_JOIN_OVERFLOWS,
 sum(ROWS_MODIFIED) as SUM_ROWS_MODIFIED,
 sum(POOL_DATA_WRITES) as SUM_POOL_DATA_WRITES
FROM TABLE(MON_GET_CONNECTION(cast(NULL as bigint), -2)) AS t
WHERE MEMBER > 0
GROUP BY APPLICATION_HANDLE;

Performance monitoring in a data warehouse Page 26 of 51

Data skew

Data skew represents the uneven distribution of data across database partitions. Static data skew occurs
when the data of a single table is not equally distributed. A dynamic data skew can occur during the
execution of a query, for example, if two tables are joined or if a query predicate selects different
percentages of data from the partitions.

Because the run time of a query is bounded by the “slowest” partition, the difference between the
maximum and average execution times of the database partitions should be as small as possible. The
following is the definition of skew, where measure can represent CPU time, the number of rows that are
read, or the number of rows that are written:

1 - avg(measure) / max(measure)

This value should be as close to 0 as possible.

When monitoring CPU skew, calculate the acceleration of a query to estimate the
performance improvement with an even distribution of the data. Given that the execution
time of a query is bounded by the slowest performing partition (with maximum CPU time),
it is defined as follows:

max(CPU_time) / avg(CPU_time)

Monitoring data skew

The skew view of the db2top command (by using the J option) shows the CPU time and number of
rows that are read and written (per second and total) for each partition. As shown in Figure 15, you can
get a similar view for a specific application by using the extended application view. To get this view,
specify interactive command option a with an application ID, and then type option X.

Performance monitoring in a data warehouse Page 27 of 51

Figure 5. Skew monitoring for one application

In this example, the numbers differ considerably for partitions 4, 6, and 10. To find the reason for these
differences, you must first determine the application in which this skew occurs. Then, check the
distribution of the tables that are involved in the query that is run by this application.

The following query retrieves the average, maximum, and corresponding skew values for the CPU time,
section processing time, number of rows that are read, and number of rows that are written for the data
partitions for each application. The query also retrieves the CPU slowdown value. This query uses the
MEM_GET_CONNECTION table function and the following monitor elements:

 total_cpu_time: The total user and system CPU time, measured in milliseconds
 total_rqst_time: The time that the DB2 product spends executing requests
 rows read: The number of rows that are read
 rows written: The number of rows that are written
 rows modified: The number of rows that are inserted, updated, or deleted

SELECT APPLICATION_HANDLE,
 count(MEMBER) as NUM_PARTITIONS,
 avg(TOTAL_CPU_TIME/1000) as AVG_TOTAL_CPU_TIME_MS,
 max(TOTAL_CPU_TIME/1000) as MAX_TOTAL_CPU_TIME_MS,
 decimal(case when max(TOTAL_CPU_TIME) > 0 then (1-
avg(TOTAL_CPU_TIME*1.0)*1.0/max(TOTAL_CPU_TIME)) else 0 end, 8,4) as SKEW_TOTAL_CPU_TIME,
 decimal(case when avg(TOTAL_CPU_TIME) > 0 then max(TOTAL_CPU_TIME)*1.0/avg(TOTAL_CPU_TIME)
else 1 end, 8, 4) as SLOWDOWN_CPU_TIME,
 avg(TOTAL_RQST_TIME) as AVG_TOTAL_RQST_TIME_MS,
 max(TOTAL_RQST_TIME) as MAX_TOTAL_RQST_TIME_MS,
 decimal(case when max(TOTAL_RQST_TIME) > 0 then (1-
avg(TOTAL_RQST_TIME)*1.0/max(TOTAL_RQST_TIME)) else 0 end, 8, 4) as SKEW_TOTAL_RQST_TIME,

Performance monitoring in a data warehouse Page 28 of 51

 avg(ROWS_READ) as AVG_ROWS_READ,
 max(ROWS_READ) as MAX_ROWS_READ,
 decimal(case when max(ROWS_READ) > 0 then (1- avg(ROWS_READ)*1.0/max(ROWS_READ)) else 0 end, 8,
4) as SKEW_ROWS_READ,
 avg(ROWS_MODIFIED) as AVG_ROWS_WRITTEN,
 max(ROWS_MODIFIED) as MAX_ROWS_WRITTEN,
 decimal(case when max(ROWS_MODIFIED) > 0 then (1- avg(ROWS_MODIFIED)*1.0/max(ROWS_MODIFIED))
else 0 end, 8, 4) as SKEW_ROWS_WRITTEN
FROM TABLE(MON_GET_CONNECTION(cast(NULL as bigint), -2)) AS t
where MEMBER > 0
group by APPLICATION_HANDLE;

FCM
Data is exchanged between database partitions through the fast communication manager (FCM). It uses
shared memory if the database partitions are on the same server/LPAR or, otherwise, the internal
application network.

In an ideal partitioned database setup, the FCM traffic between data partitions is minimal, and the only
major traffic is between the administrator/coordinator partition and the data partitions.

Check the reasons for FCM traffic if its volume represents more than 10% of the total volume of
data that is read.

Monitoring FCM

You can use the partition view of the db2top command to monitor the FCM traffic for all partitions of a
database (p option). The view compares the work load of the administration node and the other data
nodes.

As shown in the sample in Figure 16, the values of the columns Actual BufSent and Actual BufRcvd
represent the FCM traffic. The Actual BufSent column shows the total number of FCM buffers, in 4 KB
blocks, which were sent per second. The Actual BufRcvd column shows the total number of FCM buffers
that were received per second.

Performance monitoring in a data warehouse Page 29 of 51

Figure 6. Partition view of db2top command

The following monitor elements are useful for monitoring the FCM traffic:

 fcm_recv_volume: The total amount of data, in bytes, that was received through the FCM
 fcm_recs_total: The total number of buffers that were received through the FCM
 fcm_send_volume: The total amount of data, in bytes, that was sent through the FCM
 fcm_sends_total: The total number of buffers that were sent through the FCM

You can use the following query to retrieve these measures for each application and database partition. It
computes the data volumes in megabytes. For comparison, it also returns the volumes of logical reads.

SELECT APPLICATION_HANDLE,
 MEMBER,
 decimal(FCM_RECV_VOLUME*1.0 /(1024*1024), 12,3) as FCM_RECV_VOLUME_MB,
 FCM_RECVS_TOTAL,
 decimal(FCM_SEND_VOLUME*1.0 /(1024*1024), 12,3) as FCM_SEND_VOLUME_MB,
 FCM_SENDS_TOTAL,
 decimal(
(POOL_DATA_L_READS+POOL_INDEX_L_READS+POOL_TEMP_DATA_L_READS+POOL_TEMP_INDEX_L_RE
ADS+POOL_TEMP_XDA_L_READS+POOL_XDA_L_READS)*16.0/1024, 12,3) as L_READS_VOLUME_MB
FROM TABLE(MON_GET_CONNECTION(cast(NULL as bigint), -2)) AS t
ORDER BY APPLICATION_HANDLE, MEMBER;

Performance monitoring in a data warehouse Page 30 of 51

Determining the SQL statements that are being executed

If you determine a significant performance problem at the connection, unit of work, or activity level,
determine the SQL statement that is responsible for that behavior.

Using the db2top command with the application_id interactive command option, you get the
application view. This view shows the SQL statement that is being executed for the selected application.
You can use the e interactive option to create an explain report for this statement with the db2expln
command.

You can also use the SYSIBMADM.MON_CURRENT_SQL administrative view to determine the statements
that are being executed, together with their associated application ID or handle:

select APPLICATION_HANDLE,
 varchar(substr(APPLICATION_NAME, 1, 20),20) as APPLICATION_NAME,
 varchar(substr(SESSION_AUTH_ID, 1, 20),20) as SESSION_AUTH_ID,
 varchar(substr(CLIENT_APPLNAME, 1, 20),20) as CLIENT_APPLNAME,
 varchar(substr(STMT_TEXT, 1, 100), 100) as STMT_TEXT
from SYSIBMADM.MON_CURRENT_SQL;

With this query, you can also retrieve the application ID for a specific query for which you might have
only partial information, such as the names of the tables that are accessed by that query or the application
name. For generating EXPLAIN, use the db2expln and db2exfmt utilities.

Some typical performance scenarios

This section describes some typical performance problems and how to determine the causes. Always first
check the operating system performance measures and compare them to the standard behavior of the
system to see whether there are any bottlenecks or other peculiarities. After that, check the DB2 KPIs that
can help explain these peculiarities.

So, the recommended process for analyzing a DB2 performance problem is as follows:

1. Check the operating system parameters to find the bottlenecks or peculiarities.
2. Check the DB2 KPIs to better understand the problem.
3. Depending on the results, determine the reasons for the performance problem and a possible

solution for it.

Performance monitoring in a data warehouse Page 31 of 51

CPU performance
It is important to monitor CPU performance to ensure that the system is running at optimal level.

High user CPU
Ideally, the DB2 product uses almost all computing resources for executing a query, resulting in a high
user CPU measurement. If the execution plan is efficient, expect an optimal execution time for the query.

However, sometimes the execution plan is not optimal. An example is when a nested loop join of two
tables with a small number of rows is used but a hash join would be a better choice. Since the number of
rows that are read for executing a nested loop join is the product of the cardinality of the two tables,
joining two relatively small tables with 100,000 rows leads to reading 10 billion rows. Because both tables
fit into the buffer pool, there is no I/O where the CPUs are busy reading rows and comparing values.

The best practices paper Query optimization in a data warehouse gives hints on how to optimize the
execution of SQL queries in the warehousing context.

If a query is still running, proceed as follows to determine the queries that are responsible for the high
CPU load:

You can use the session view of the db2top command to determine the applications with the highest
CPU share, as shown in Figure. Use the application view for these applications to determine the SQL
statement that is being executed, and create the execution plan by using the e interactive option.
In the extended application view, where you get to with the X interactive option can see what sections use
the largest percentage of CPU time. To determine possible improvements, look at these parts of the
execution plan first.

Alternatively, you can determine the most active connections and the SQL statements that are being
executed by combining the queries in the sections “CPU time and usage“and “Determining the SQL
statements that are being executed” through an outer join in the following way:

with connect_agg as (
SELECT t.APPLICATION_HANDLE,
 count(t.member) as NUM_MEMBER,
 decimal(avg(t.TOTAL_CPU_TIME*1.00)/1000000, 12,2) as AVG_TOTAL_CPU_TIME_SEC,
 decimal(avg(t.TOTAL_WAIT_TIME*1.00)/1000, 12,2) as AVG_TOTAL_WAIT_TIME_SEC,
 decimal(avg(t.TOTAL_RQST_TIME*1.00)/1000, 12,2) as AVG_TOTAL_RQST_TIME_SEC,
 decimal(avg(t.TOTAL_SECTION_TIME*1.00)/1000,12,2) as AVG_TOTAL_SECTION_TIME_SEC,
 decimal(avg(t.TOTAL_SECTION_PROC_TIME*1.00)/1000, 12,2) as AVG_TOTAL_SECTION_PROC_TIME_SEC
FROM TABLE(MON_GET_CONNECTION(cast(NULL as bigint), -2)) AS t
WHERE t.MEMBER > 0
GROUP BY t.APPLICATION_HANDLE
)
select c.APPLICATION_HANDLE, NUM_MEMBER,

https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Wc9a068d7f6a6_4434_aece_0d297ea80ab1/page/Query%20optimization%20in%20a%20data%20warehouse

Performance monitoring in a data warehouse Page 32 of 51

 AVG_TOTAL_CPU_TIME_SEC, AVG_TOTAL_WAIT_TIME_SEC, AVG_TOTAL_RQST_TIME_SEC,
 AVG_TOTAL_SECTION_TIME_SEC, AVG_TOTAL_SECTION_PROC_TIME_SEC,
 decimal(t0.TOTAL_APP_RQST_TIME/1000.0, 12,2) as TOTAL_APP_RQST_TIME_SEC,
 case when t0.TOTAL_APP_RQST_TIME > 0 then
decimal(AVG_TOTAL_CPU_TIME_SEC*100000/(t0.TOTAL_APP_RQST_TIME*2),12,2) end as CPU_USAGE_PCT,
 varchar(substr(STMT_TEXT, 1, 100), 100) as STMT_TEXT
FROM connect_agg c
inner join TABLE(MON_GET_CONNECTION(cast(NULL as bigint), -2)) AS t0 on (c.APPLICATION_HANDLE =
t0.APPLICATION_HANDLE)
left outer join SYSIBMADM.MON_CURRENT_SQL m on (c.APPLICATION_HANDLE =
m.APPLICATION_HANDLE)
where t0.MEMBER = t0.COORD_MEMBER;

The left outer join is important, because with an inner join, the queries would disappear from the result
set together with the computed final measures after their SQL statement terminates. If these queries are
not running any more, determine the queries in the DB2 package cache with the overall highest CPU time
consumption. These are candidates for query optimization.

You can use the Dynamic SQL view of the db2top command (D interactive command option) to
determine where to look for the statements with the highest CPU time. To put the SQL statements with
the highest CPU times at the top, you need to sort column 5 (CPU Time) in descending order, by using
the z interactive option. You can also use the following query, which returns for the statements in the
package cache the total and average CPU times in seconds per member or database partition:

SELECT EXECUTABLE_ID,
 max(SECTION_TYPE) as SECTION_TYPE,
 integer(avg(NUM_EXEC_WITH_METRICS)) as AVG_NUM_EXEC_WITH_METRICS,
 decimal(sum(TOTAL_CPU_TIME)/(1000000.0*count(distinct member)),10,2) as
TOTAL_CPU_TIME_SEC_PER_MEMBER,
 decimal(sum(TOTAL_CPU_TIME)/sum(NUM_EXEC_WITH_METRICS)/1000000.0, 10,2) as
AVG_CPU_TIME_SEC_PER_MEMBER,
 max(varchar(substr(STMT_TEXT, 1, 100), 100)) as STMT_TEXT
FROM TABLE(MON_GET_PKG_CACHE_STMT ('D', NULL, NULL, -2)) as T
WHERE T.NUM_EXEC_WITH_METRICS > 0
GROUP BY EXECUTABLE_ID
ORDER BY TOTAL_CPU_TIME_SEC_PER_MEMBER;

High I/O waits

I/O waits occur when CPU I/O demand (due to table scans, for example) cannot be satisfied by the
storage subsystem. The IBM Smart Analytics System is designed so that the storage subsystem offers
sufficient I/O bandwidth for the typical workloads, such that the value I/O wait should be below the
tolerable value of 25%.

High I/O waits might be due to table scans of broad tables, that is, tables with rows with a length of
several hundred bytes, where only a few small columns are used in queries. In such a case, the DB2
product must read a huge amount of data from disk to process only a small fraction of it. Because this

Performance monitoring in a data warehouse Page 33 of 51

situation occurs when pages are accessed sequentially, it is characterized by high amounts of data read
per second (for example, blocks read per second) from the physical storage.

High values for I/O waits can also occur when the DB2 product accesses pages of a table in random order.
A combination of index scan and row fetch from a table can be the reason. In such a situation, the CPU
must wait until the page with the selected row is loaded into the buffer pool. Because of the random page
access, the amount of data that is read per second is low.

To determine possible sources of I/O waits, identify applications with a low ratio of number
of rows that are read to number of physical read operations.

In the sessions view (l interactive option) of the db2top command, examine the values of the Actual
RowsRead and Actual IOReads columns. The value in the Actual IOReads column is the sum of logical
data, index, and temporary read operations for data pages. Not all of these items might be responsible for
I/O waits. There might be applications with high logical I/O but low physical I/O. For other applications,
the Actual RowsRead to Actual IOReads ratio might have been diluted by a high percentage of index or
temporary reads for which one I/O read operation corresponds to one row that is read.

Figure 7 shows four applications. For the application with ID 300, the value of Actual RowsRead divided
by Actual IOReads is less than 15 (380,928,039 / 25,756,192 = 14.79). That is, fewer than 15 rows are read
per data page. For the other applications, this fraction is more than 300, which is why they are not
responsible for an I/O wait.

Figure 7. I/0 monitoring by using db2top command sessions view

After you determine the candidate applications, retrieve the SQL statement that is running by using the
db2top command or the SYSIBMADM.MON_CURRENT_SQL administrative view, as described in the
section “Determining the SQL statements that are being executed.”

You can get the corresponding values at the connection level for the data partitions by using the
following query. The query also reports the ratio of the number of rows that are read to the number of
logical reads; the numbers of data, index, and temporary reads; and the SQL statements that are being
executed. The query uses the following monitor elements of the MON_GET_CONNECTION table function:

 rows_read: The total number of rows that are read
 pool_data_l_reads and pool_index_l_reads: The total numbers of data and index

pages that are requested from the buffer pool for regular or large table spaces
 pool_temp_data_l_reads and pool_temp_index_l_reads: The total numbers of data

and index pages that are requested from the buffer pool for temporary table spaces

WITH READ_METRICS as (

Performance monitoring in a data warehouse Page 34 of 51

SELECT APPLICATION_HANDLE,
 count(*) as NUM_MEMBER,
 sum(ROWS_READ) as ROWS_READ,
 sum(POOL_DATA_L_READS) as POOL_DATA_L_READS,
 sum(POOL_INDEX_L_READS) as POOL_INDEX_L_READS,
 sum(POOL_TEMP_DATA_L_READS+POOL_TEMP_INDEX_L_READS) as POOL_TEMP_L_READS
FROM TABLE(MON_GET_CONNECTION(cast(NULL as bigint), -2)) AS m
where member > 0
group by application_handle
)
select r.APPLICATION_HANDLE, NUM_MEMBER,
 r.ROWS_READ,
 case when POOL_DATA_L_READS+POOL_TEMP_L_READS > 0 then
decimal(r.ROWS_READ*1.00/(POOL_DATA_L_READS+POOL_TEMP_L_READS), 8,2) end as
ROWS_READ_PER_POOL_L_READ,
 POOL_DATA_L_READS, POOL_INDEX_L_READS, POOL_TEMP_L_READS,
 varchar(STMT_TEXT,100) as STMT_TEXT
from READ_METRICS r left outer join SYSIBMADM.MON_CURRENT_SQL s
ON r.APPLICATION_HANDLE = s.APPLICATION_HANDLE
order by pool_data_l_reads desc ;

For reducing I/0 waits, take the following actions:

 If broad tables are the probable reason for the high I/O wait, check the DDL statements of the
referenced tables to determine those with the longest row lengths. You can compress the tables
with long rows such that fewer I/0 operations are needed for reading the same number of rows.
Alternatively, consider redesigning the table by moving the less-utilized long columns into a
separate table, or consider defining an MQT for the most frequently used columns.

 In the case of random page accesses, check whether the execution plan of the query contains the

combination of an index scan and fetch operator on the right side of a nested loop join. This is
described in the section “Random lookups” on page 40 of the Query optimization in a data
warehouse best practices paper. Take the actions described there.

High system CPU time

High system CPU time can be caused by swapping or a large number of context switches. The section
“High memory usage” describes measures to avoid swapping.

A large number of connections might require high system CPU time because of a high number of context
switches, particularly on the administration node or on the server/LPAR where the DB2 coordinator
partition is located. Because the number of context switches is determined by the number of concurrent
connections, you can use workload management to avoid having this number grow too high.

Intraparallelism increases the number of context switches. If system CPU times are constantly too high,
consider decreasing the value of the dft_degree database configuration parameter or setting the value
of the intra_parallel database manager configuration parameter to NO.

https://www.ibm.com/developerworks/mydeveloperworks/wikis/home/wiki/Wc9a068d7f6a6_4434_aece_0d297ea80ab1/page/Query%20optimization%20in%20a%20data%20warehouse?lang=en

Performance monitoring in a data warehouse Page 35 of 51

Imbalanced CPU load

In a partitioned database environment, during the execution of a query, you should ensure that the data
server CPUs is equally used. However, even if all hash-partitioned tables are evenly distributed across all
database partitions, the load on certain CPUs might be higher than on others. This might happen, for
example, if certain where-conditions have different selectivity on the database partitions. The section
“Data skew” describes how to monitor skews.

In the case of a CPU skew on the data nodes, check whether you obtain better results with another
distribution key. Usually, more fine-grained distribution keys with more distinct values and a more
balanced frequency distribution are less sensitive to skews on subsets. If a few values, such as NULL or
default values with high frequencies are responsible for the skew, a multicolumn distribution key can
help as well. If the skew occurs only with some specific where-conditions, you might decide to live with
that situation.

A major percentage of the workload might be running on the administration node, that is, on the
coordinator partition. This can happen if a query returns huge result sets or if a query compares values
that are distributed across all partitions. An example of such a query is as follows. In this query, the table
yourschema.yourtable is partitioned according to different columns.

select count (distinct col) from yourschema.yourtable

Another possible reason for such a skew is that a large table is not partitioned across the data nodes. In
such a situation, it might be better to partition it or to replicate it across the data nodes. Guidelines on this
topic are in the section “Determine how to partition the database” of the best practices paper Query
optimization in a data warehouse.

High I/O rates

High I/O rates can have severe negative consequences on the performance of your database system.

High read I/O rates
High read I/O rates are typical for data warehousing applications because scans of large fact tables can
occur frequently. However, only a percentage of the rows of a table might be selected through a WHERE
clause. In such a case, data partitioning, multidimensional clustering (MDC) tables, or indexes can help to
read the data in a more selective way.

To determine the candidate tables for this optimization, use one of the following approaches:

 For running queries determine the applications and associated SQL statements with the highest
read activity (number of rows that are read and number of logical reads).

 For an ex-post analysis, use the MON_GET_TABLE monitoring table function to determine the

tables with read activity and table scans since the last database activation, using the rows_read

https://www.ibm.com/developerworks/mydeveloperworks/wikis/home/wiki/Wc9a068d7f6a6_4434_aece_0d297ea80ab1/page/Query%20optimization%20in%20a%20data%20warehouse?lang=en
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home/wiki/Wc9a068d7f6a6_4434_aece_0d297ea80ab1/page/Query%20optimization%20in%20a%20data%20warehouse?lang=en

Performance monitoring in a data warehouse Page 36 of 51

and table_scans monitor elements. Next use the MON_GET_PACKAGE_CACHE_STMT function
to determine the statements in the package cache containing those tables, and examine those
statements with high numbers of rows read and logical reads.

The following query determines a superset of these table and SQL statement combinations,
because of the use of the LIKE predicate that is used to determine whether a schema-table name
combination occurs in an SQL statement. It assumes that the table names are fully qualified with
the schema tabschema in the queries and returns apart from the table schema with name, the
statement text, the number of table scans, the total number of rows that are read from the table,
the number of executions of the statement, its number of rows read, logical reads, and its total
activity time.

with montable as (
SELECT varchar(tabschema,20) as tabschema,
 varchar(tabname,20) as tabname,
 max(table_scans) as table_scans,
 sum(rows_read) as table_rows_read
FROM TABLE(MON_GET_TABLE('','',-2)) AS t
WHERE tabschema not in ('SYSCAT', 'SYSIBM', 'SYSIBMADM', 'SYSPUBLIC', 'SYSSTAT', 'SYSTOOLS') and
rows_read > 0 GROUP BY tabschema, tabname
)
select tabschema, tabname, max(table_scans) as table_scans, max(table_rows_read) as table_rows_read,
 count(member) as NUM_MEMBER,
 max(NUM_EXEC_WITH_METRICS) as STMT_NUM_EXECS_WITH_METRICS,
 decimal(sum(TOTAL_ACT_TIME)/1000.00,10,2) as STMT_ACT_TIME_SEC,
 sum(ROWS_READ) as STMT_ROWS_READ,
sum(POOL_DATA_L_READS+POOL_INDEX_L_READS++POOL_TEMP_DATA_L_READS+POOL_TEMP_INDEX_
L_READS) as STMT_POOL_L_READS,
 sum(POOL_DATA_L_READS) as STMT_POOL_DATA_L_READS,
 sum(POOL_INDEX_L_READS) as STMT_POOL_INDEX_L_READS,
 sum(POOL_TEMP_DATA_L_READS+POOL_TEMP_INDEX_L_READS) as STMT_POOL_TEMP_L_READS,
 varchar(substr(s.stmt_text, 1,100),100) as stmt_text
from montable t,
 TABLE(MON_GET_PKG_CACHE_STMT('D', null, null, -2)) as s
where rows_read > 0 and lcase(s.stmt_text) like '%' || lcase(trim(t.tabschema)) || '%' || '.%' ||
lcase(trim(t.tabname)) || '%'
group by t.tabschema, t.tabname, varchar(substr(s.stmt_text, 1,100),100)
order by stmt_rows_read ;

High write I/O rates

For a query workload, write I/O activity can occur if the sort heap is too small for the temporary space
that is needed for sorting a table or for performing a hash join. In such a case, a percentage of the
temporary space is allocated in temporary tables that are written to the system temporary table space.

If the system temporary table space is located on its own file system (which is the case if you use SSD
storage for temporary data) you can check for write I/O at the operating system level by using tools such
as the nmon utility or iostat command.

Performance monitoring in a data warehouse Page 37 of 51

In any case, increase the value of the sortheap database configuration parameter if hash loops occur
frequently because they can slow down a query by a factor higher than 10. If the value of the sortheap
parameter is below the one that is recommended for the IBM Smart Analytics System, increase the value
of the parameter to the recommended value. Otherwise, increase it by 50% - 100%, and then check
whether hash loops still occur.

In general, when turning the value of the sortheap parameter, consider the maximum number of
applications (APPMAX) that perform sorts concurrently. Generally, the value of the sortheap parameter
should not be greater than the value of the sheapthres database manager configuration parameter
divided by the value of APPMAX.

Monitor the main memory usage for sort and hash joins after every increase of the sortheap
parameter to check that no paging occurs. If the memory usage gets close to 100%, restrict the
number of concurrent applications through workload management.

Be careful not to set the sortheap parameter to a value that is too high. Otherwise, just a

few concurrently running applications with large sorts or hash joins can lead to such a large sort heap
that the system memory starts paging.

High network traffic
In a partitioned database, there might be the need to transfer data between partitions. Best case, small
result sets must be sent from data nodes to the coordinator node for consolidation only. However, large
amounts of data might have to be exchanged between the data partitions when a query is being executed.

Because FCM controls the exchange of data between database partitions, you should check the FCM-
related performance metrics even though it results in network traffic only if the partitions are on different
hosts.

High network traffic between data nodes
In a partitioned database environment where the data is spread across different partitions, non-collocated
joins are a common problem. These result in high network traffic through the FCM between the data
partitions. Identify the applications that cause the highest network traffic by using the query in the
section “FCM monitoring,” by using the MON_GET_CONNECTION table function, and check the values for
the fcm_recv_volume_mb and fcm_send_volume_mb monitor elements.

If you want to determine the SQL statement that is currently causing highest FCM traffic, you can use a
query that is similar to the query in the section “High I/O wait,” which is based on the
MON_GET_CONNECTION table function and MON_CURRENT_SQL administrative view. Include the
fcm_recv_volume and fcm_send_volume monitor elements.

An alternative is to use the session view of the db2top command. First, switch to the non-delta view by
using the k option. Next, order the session view based on the column TQr+w, which shows the number of
rows that are read from and written to table queues. For a descending sort of the view, use the z option
and enter 10 for the column TQr+w.

Figure 18.8 shows that the session with application handle 36256 has a high value in the TQr+w column,
which means there might be a problem with the collocation that is based on table queues:

Performance monitoring in a data warehouse Page 38 of 51

Figure 18.8 Table queue monitoring with the db2top command

Finally, create the explain plans as described in the section “Determining the SQL statements that are
being executed” for the currently running queries that generate network traffic. Within these access plans,
you should see at least one directed table queue (DTQ). The Query optimization in a data warehouse best
practices paper shows you how to avoid table queues and ensure collocation.

High network traffic toward the coordinator partition or administration node

If there is high network traffic toward the coordinator or administration node, you can proceed in a
similar way to that explained in the previous section, but restrict your analysis to the FCM traffic for
partition 0.

A possible reason for such high network traffic is that a big non-partitioned table is stored to all data
partitions, which you can see as the broadcast table queue (BTQ) in the explain plan of the query. In this
case, consider replicating or partitioning the table. Another reason can be that the query returns a huge
result set that must be sent from the data partition to the coordinator partition.

High memory usage
IBM Smart Analytics Systems are preconfigured to avoid swapping. All database and instance
parameters are set to values that should not require swapping under normal circumstances.

If swapping occurs or main memory usage gets close to 100%, determine the most important DB2
memory consumers.

These consumers are as follows:

 FCMBP shared memory: The amount of this memory is controlled by the DB2 product. You
should not modify the amount of this memory.

 Buffer pools: The buffer pools are, in general, the most important main memory consumers. On

an IBM Smart Analytics System 7700 or IBM PureData System for Operational Analytics, the
buffer pool occupies a data node that uses approximately 30% of main memory. This huge size
was calculated for the IBM Smart Analytics System under the assumption that only one database
is active at a time.

If the buffer pool occupies more main memory, check whether more than one database is active.
If that is true, ensure that only one database can be active by setting the numdb database

Performance monitoring in a data warehouse Page 39 of 51

manager configuration parameter to 1, or consider reducing the size of the largest buffer pool,
BP_16K.

 Utilities: The IBM Smart Analytics System default value for the util_heap_sz database

configuration parameter should not cause paging if only one database is active. However, the
size of the utility heap can grow above the size that is specified by the util_heap_sz
configuration parameter if you run load jobs using the DATA BUFFER parameter with high
values. Limit the number of concurrently running load jobs, and set the DATA BUFFER
parameter for those jobs to lower values.

 Sort heap: The possibilities for tuning the sort heap are covered in the section “Error! Reference

source not found..”

Underutilized system
An underutilized system is characterized on the DB2 side by high wait times. In such a situation, check
the following wait time-related monitor elements. The values are in milliseconds.

 total_wait_time: The total wait time.
 total_act_wait_time: The total wait time within an activity such as execution of SQL

statements, loads, or stored procedures.
 Fcm_recv_wait_time and fcm_send_wait_time: The time that is spent waiting to receive

or send data through the FCM. Typically, the coordinator partition has a high value for the
fcm_recv_wait_time monitor element because it waits for the results from the data partitions.
High values for the data partitions indicate a skew of the data that is sent by the FCM.

 lock_wait_time: The time that is spent waiting for locks. In this case, determine the blocking
applications as described in the section “Locking ” and, if necessary, force the blocking
applications.

To avoid having an underutilized system, see “Diagnosing and resolving locking problems” in the DB2
10.5 Information Centre
(http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.trb.doc/doc/c005
5071.html).

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.trb.doc/doc/c0055071.html

Performance monitoring in a data warehouse Page 40 of 51

Conclusion

This paper presented the main monitoring methods for operating system and database performance
issues for warehouse systems that are based on DB2 software, such as the IBM Smart Analytics System
and IBM PureData System for Operational Analytics. For these methods, this paper described how to
monitor the system with the commands, utilities, or DB2 monitoring functions.

The recommended overall approach for finding the reason for a performance problem is to look first at
the operating system measurements to check whether they have unusual values. Then, look at the
corresponding DB2 measurements to determine the cause for the problem.

Performance monitoring in a data warehouse Page 41 of 51

Best practices

 Monitor all servers of a cluster to detect anomalies that might impact overall

performance. To run a command-line tool on all servers of a cluster in a single
invocation, use the rah command.

 For multi-core and multithreaded CPUs, in addition to checking the overall CPU

usage, check the usage at the thread or core level to determine core-related or thread-
related bottlenecks.

 Examine the length of the run queue and the number of process switches to determine
whether they are the reason for high system CPU usage.

 Understand the performance characteristics of your storage system. To determine the
maximum possible I/O performance, generate a sample I/O workload that reads from
and writes to raw physical devices by using the dd command on AIX operating
systems and the sg_dd command on Linux operating systems.

 If the network performance is lower than you expect, look at the number of sent and

received packages and the number of transmission errors. These errors should be less
than 1% of the number of received and sent packages.

 Avoid paging. Short periods of small amounts of paging space usage, where the

amount of paging space is less than 5% - 10 % of the physical main memory size, are
tolerable. However, higher paging space usage can lead to a severe system slowdown,
so that simple DB2 or operating system commands seem to hang.

 For monitoring DB2 performance, use the table functions that are based on the in-

memory metrics. To monitor running queries, use the MON_GET_UNIT_OF_WORK and
MON_GET_ACTIVITY_DETAILS functions. If a query ends and the connection is still
open, you can use the MON_GET_CONNECTION function to return the aggregated
performance measurements for all activities that were executed for that connection.
Separately determine the measures for each DB2 partition (referred to as member by
these functions) by specifying -2 as the second parameter for these functions so that
all members are considered. Then, aggregate the measures for the whole system.

 For SQL queries, review wait times, such as lock wait time, I/O wait time, and FCM

wait time. These wait times should be as low as possible, except for the coordinator
partition. The coordinator partition, which can wait on the results of the data
partitions because they should do almost all the processing in a well-partitioned
database setup.

Performance monitoring in a data warehouse Page 42 of 51

 To see the effectiveness of the prefetchers, compare the number of asynchronous read

and writes with the total number of physical read and write operations. If
asynchronous reads and writes are considerably below 80% of the number of physical
read and write operations, increase the value of the num_ioservers database
configuration parameter.

 To ensure that the DB2 software does not exhaust the main memory resources, always
monitor DB2 memory usage with operating system memory usage.

 Avoid post-threshold sorts. Otherwise, main memory might be exhausted, and
paging might start, slowing down the system.

 When monitoring CPU skew, calculate the slowdown of a query for estimating the
performance improvement with an even distribution of the data. Given that the
execution time of a query is bounded by the slowest partition (with maximum CPU
time), it is defined as max(CPU_time) / avg(CPU_time).

 If the volume of FCM traffic is more than 10% of the total volume of data that is read,

check the reasons for the traffic.

 To determine possible sources of I/O waits, identify applications with a low ratio of
number of rows that are read to number of physical read operations.

 To check that no paging occurs, monitor the main memory usage for sort and hash

joins after every increase of the sort heap. If the memory usage gets close to 100%,
restrict the number of concurrently running applications through workload
management.

Performance monitoring in a data warehouse Page 43 of 51

Appendix A. db2top command hints

Batch mode of db2top command
You can use the batch mode of the db2top command for recording the performance of a workload. For
information about the batch mode and how to reproduce it, see the “DB2 problem determination using
db2top utility” article (http://www.ibm.com/developerworks/data/library/techarticle/dm-
0812wang/#batch_mode).

Monitoring a single partition
In a partitioned database environment, you might want to monitor a specific partition rather than the
whole system. To monitor a specific partition, specify the P option and the partition id. To change the
order of the columns, you can use the c option together with a list of the numbers of the columns to be
displayed. A recommended column selection and order for the best overview of possible bottlenecks as
shown in Figure 19 is:
“0,5,23,24,1,2,3,14,15,16,30,31,10,36,37”

Figure 19. Rearranged db2top command view to show possible bottlenecks

If you use option w in the session, you can save this order in the .db2toprc db2top configuration file so
that this setting is available every time that you issue the db2top command.

Collecting operating system measurements in the db2top command
You can modify the header of the db2top command screen to show operating system measurements by
updating the .db2toprc configuration file. Include the following two lines:

cpu=vmstat 2 2 | tail -1 | awk '{printf("%d(usr+sys)",$14+$15);}'
io=vmstat 2 2 | tail -1 | awk '{printf("%d(bi+bo)",$10+$11);}'

They show the CPU usage of the server where you issued the db2top command. The CPU usage is
displayed in the upper right of the db2top command output, and the I/O load is displayed in the upper
left.

http://www.ibm.com/developerworks/data/library/techarticle/dm-0812wang/#batch_mode
http://www.ibm.com/developerworks/data/library/techarticle/dm-0812wang/#batch_mode

Performance monitoring in a data warehouse Page 44 of 51

Linux operating system monitoring

CPU monitoring
For CPU monitoring, you can use the rah command with the vmstat command or “sar –u” command.
You can obtain details for each core by entering “sar –u –P ALL”. For details about the usage of the
sar command see ”Appendix B. Operating system monitoring for a cluster.”

I/O monitoring
To display I/O performance by file system, use the sar command with the –p and -d options, as shown
in Figure 20:

Figure 20. Output of the sar -p -d 10 command

The amount of data that is transferred is shown in 512 byte sectors, for example, as writes per seconds in
the wr_sec/s column or reads per second in the rd_sec/s column. The outputError! Reference source
not found. shows a mix of activity by physical device and logical volume. You can use output from the
devices to check whether the activity is balanced. The file system view describes where activity happens,
for example, activity about lvstage reading load files.

Network monitoring
The sar –n DEV command displays the network activity for all available interfaces, as shown in the
example in Figure 21. The throughput for the bond0 network, which is the FCM network for IBM Smart
Analytics Systems clusters that are based on Linux operating systems, is the sum of the eth2 and eth3
activity. Important for performance monitoring are the columns reporting the numbers of packages that
are received or sent per second and the number of kilobytes that are received or sent per second.

Performance monitoring in a data warehouse Page 45 of 51

Figure 11. Using the sar -n DEV command to monitor network activity

To monitor data transfer between servers in a cluster, issue the following command on the management
node:

dsh –a -s sar –n DEV 10 0 | egrep –I “iface|bond”

This restricts the output to the bonded FCM network device. If you need additional details for all
network interfaces, exclude the egrep statement.

Appendix B. Operating system monitoring for a cluster

For operational system monitoring, use the sar command, which collects and stores operating system
performance data in a space-efficient way. Collecting data for all system parameters (disk, CPU, network,
and process queue) in 10-second intervals requires approximately 44 MB of space in binary format per
server and per day. If you provide more space, you can store performance data in 1-second or 2-second
intervals.

The following commands apply only to Linux operating systems:

A sample entry in the /etc/inittab file has the following sample content:

sar:2345:respawn:/usr/bin/sar -A -o 10 0 1>/dev/null

To add this entry to all /etc/inittab files in the cluster, issue the following command as root user from the
management node, after editing the /etc/inittab file:

dsh -a "echo 'sar:2345:respawn:/usr/bin/sar -A -o 10 0 1>/dev/null' >> /etc/inittab"

Performance monitoring in a data warehouse Page 46 of 51

Apply the change on all nodes by issuing the following command:

dsh -a "telinit q"

The output is written to the /var/log/sa/saDD file, where DD is the number of the current day.

To extract the CPU performance data for the ninth day of the current month between 10:00 a.m. and 11:00
a..m. in 60-second intervals from a binary format, issue the following command on one node:

sar -f /var/log/sa/sa09 -u -s 10:00:00 -e 11:00:00 60

The following sample output is obtained:

Figure 22. Sample operating system cluster output

One benefit of sar command output compared to vmstat or iostat command output is that sar
command output has a time stamp to allow the analysis of previous system situations.

The sar command does not overwrite old files. After one month, content is added to the corresponding
file of the preceding month in the /var/log/sa folder. To avoid this, setup the following commands as cron
job for the root user:

5 0 * * * find /var/log/sa -name sa?? -ctime +24 -exec compress {} \; 2>&1

10 0 * * * find /var/log/sa -name sa??.Z -ctime +24 -exec rm {} \; 2>&1

The first command identifies all files that are older than 24 days and compresses them. The second one
removes all compressed files that are older than 24 days. These commands provide a space-efficient way
of storing performance data for approximately 50 days.

To implement changes for a cron job, issue the following commands:

dsh -a "echo '5 0 * * * find /var/log/sa -name sa?? -ctime +24 -exec compress {} \; 2>&1' >>
/var/spool/cron/tabs/root"

dsh -a "echo '10 0 * * * find /var/log/sa -name sa??.Z -ctime +24 -exec rm {} \; 2>&1' >>
/var/spool/cron/tabs/root"

Performance monitoring in a data warehouse Page 47 of 51

Displaying performance data in the cluster
The following command, issued from the management node, stored performance data from nodes as a
formatted table, as shown in Figure 23:

dsh -N BCUDATA "sar -u -f /var/log/sa/sa10 10 -s 10:00:00 -e 10:01:00 | egrep -v 'Linux|^$|Average'"

Figure 23. Sample operating system cluster output

If you want to work with this data, you can copy and paste it into a spreadsheet. The fixed column format
allows data to be easily formatted and displayed as a graph.

Performance monitoring in a data warehouse Page 48 of 51

Further reading

 The Information Management Best Practices portal is the entry point to the best practices
publications for all IBM Information Management products, including DB2 for Linux, UNIX, and
Windows and DB2 Warehouse (http://www.ibm.com/developerworks/data/bestpractices).

 The Managing data warehouse performance with IBM InfoSphere Optim Performance Manager best
practices paper describes how to use IBM InfoSphere Optim Performance Manager for
monitoring the performance of a data warehouse.

 The Query optimization in a data warehouse best practices paper gives hints and tips on how to
optimize queries in the data warehouse context.

 The Tuning and Monitoring Database System Performance best practices paper treats the monitoring
a DB2 database from the OLTP perspective.

 Workload management is a key element in helping to achieve consistent data warehouse
performance. The Implementing DB2 workload management in a data warehouse best practices paper
gives guidance on how to implement workloads with the DB2 workload management
functionality.

 The db2top utility is described in the “DB2 problem determination using db2top utility” IBM
DeveloperWorks article

 To learn more about IBM Information Management products, see the Information Management
website (http://www.ibm.com/software/data).

http://www.ibm.com/developerworks/data/bestpractices/
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Wc9a068d7f6a6_4434_aece_0d297ea80ab1/page/Managing%20data%20warehouse%20performance%20with%20IBM%20InfoSphere%20Optim%20Performance%20Manager
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Wc9a068d7f6a6_4434_aece_0d297ea80ab1/page/Query%20optimization%20in%20a%20data%20warehouse
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Wc9a068d7f6a6_4434_aece_0d297ea80ab1/page/Tuning%20and%20Monitoring%20Database%20System%20Performance
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Wc9a068d7f6a6_4434_aece_0d297ea80ab1/page/Implementing%20DB2%20workload%20management%20in%20a%20data%20warehouse
http://www.ibm.com/developerworks/data/library/techarticle/dm-0812wang/
http://www.ibm.com/software/data/

Performance monitoring in a data warehouse Page 49 of 51

Contributors
Garrett Fitzsimons

Data Warehouse Specialist

Richard Lubell
Data Warehouse Information Developer

Serge Boivin
Senior DB2 Information Developer

Performance monitoring in a data warehouse Page 50 of 51

Notices
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and services
currently available in your area. Any reference to an IBM product, program, or service is not
intended to state or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any IBM
intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in
this document. The furnishing of this document does not grant you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where
such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

Without limiting the above disclaimers, IBM provides no representations or warranties
regarding the accuracy, reliability or serviceability of any information or recommendations
provided in this publication, or with respect to any results that may be obtained by the use of
the information or observance of any recommendations provided herein. The information
contained in this document has not been submitted to any formal IBM test and is distributed
AS IS. The use of this information or the implementation of any recommendations or
techniques herein is a customer responsibility and depends on the customer’s ability to
evaluate and integrate them into the customer’s operational environment. While each item
may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Anyone attempting to adapt
these techniques to their own environment does so at their own risk.

This document and the information contained herein may be used solely in connection with
the IBM products discussed in this document.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only
and do not in any manner serve as an endorsement of those Web sites. The materials at
those Web sites are not part of the materials for this IBM product and use of those Web sites is
at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary significantly. Some
measurements may have been made on development-level systems and there is no
guarantee that these measurements will be the same on generally available systems.
Furthermore, some measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for their specific
environment.

Performance monitoring in a data warehouse Page 51 of 51

Information concerning non-IBM products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. IBM has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products. Questions on the capabilities of non-IBM products should
be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To
illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE: Copyright IBM Corporation 2013. All Rights Reserved.

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and
distribute these sample programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs conforming to the
application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions.
IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both. If these and
other IBM trademarked terms are marked on their first occurrence in this information with a
trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may
also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml

Windows is a trademark of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Contacting IBM
To provide feedback about this paper, write to db2docs@ca.ibm.com.

To contact IBM in your country or region, check the IBM Directory of Worldwide
Contacts (http://www.ibm.com/planetwide).

mailto:db2docs@ca.ibm.com?subject=Best%20Practices:%20Performance%20monitoring%20in%20a%20data%20warehouse
http://www.ibm.com/planetwide

	Executive summary
	Introduction
	Operating system performance measures
	CPU usage
	Monitoring CPU usage
	Monitoring I/O

	Network traffic
	Monitoring network traffic

	Main memory
	Monitoring main memory

	Database-related performance measures
	CPU time and usage
	Monitoring CPU time and usage

	I/O-related performance measures
	Buffer pools
	Monitoring buffer pools
	Table spaces
	Monitoring table spaces

	Memory usage
	Monitoring memory usage

	Locking
	Using the db2top command, you can monitor these measures at the database level through the database view (the d interactive option). It gives you an overview of the whole database. For monitoring locking, check the values for lock waits, deadlocks, and lock escalation, as shown in the sample in Figure 11:

	Sorts and hash joins
	Data skew
	Monitoring data skew

	FCM
	Monitoring FCM

	Determining the SQL statements that are being executed

	Some typical performance scenarios
	CPU performance
	High user CPU
	High I/O waits
	High system CPU time
	Imbalanced CPU load

	High I/O rates
	High read I/O rates
	High write I/O rates

	High network traffic
	High network traffic between data nodes
	High network traffic toward the coordinator partition or administration node

	High memory usage
	Underutilized system

	Appendix A. db2top command hints
	Batch mode of db2top command
	Monitoring a single partition
	Collecting operating system measurements in the db2top command
	Linux operating system monitoring
	CPU monitoring
	I/O monitoring
	Network monitoring

	Appendix B. Operating system monitoring for a cluster
	Displaying performance data in the cluster

	Contacting IBM

