IBM DB2 for Linux, UNIX, and Windows

Best Practices
Physical database design for data
warehouse environments

..ll

Authors

This paper was developed by the following authors:

Maksym Petrenko
DB2® Warehouse Integration Specialist

Amyris Rada
Senior Information developer
DB2 Information Development
Information Management Software

Garrett Fitzsimons
Data Warehouse Lab Consultant
Warehousing Best Practices
Information Management Software
Enda McCallig
DB2 Data Warehouse QA Specialist
Information Management Software
Calisto Zuzarte
Senior Technical Staff Member

Information Management Software

© Copyright IBM Corp. 2012

iii

1V Best Practices: Physical database design for data warehouse environments

Contents

Executive Summary
About this paper .

Introduction to data warehouse design

Planning for data warehouse design
Designing physical data models . .
Choosing between star schema and snowﬂake
schema .

Best practices .

Designing a physical data model
Defining and choosing level keys .
Guidelines for the date dimension.

The importance of referential integrity
Best practices.

Implementing a physical data model .
The importance of database partition groups .
Table space design effect on query performance .
Choosing buffer pool and table space page size
Table design for partitioned databases .
Partitioning dimension tables

Range partitioned tables for data avallablhty and
performance . .

Candidates for multldlmensmnal clustermg
Including row compression in data warehouse
designs .

Best practices .

Designing an aggregation layer .

© Copyright IBM Corp. 2012

N

. M
.11
.13
.13
.14

. 15
.15
.16
.17
.18
.19

. 20
.21

.23
.25

. 27

Using materialized query tables
Using views and view MQTs to define data marts
Best practices.

DB2 Version 10.1 features for data
warehouse designs
Best practices.

Data warehouse design for a sample
scenario . .
Physical data model de51gn .
Implementation of the physical data model
Materialized query tables.
Replicated dimension tables .

Best practices summary .
Conclusion.

Important references.
Contributors

Notices
Trademarks
Contacting IBM .

Index

.27

29

. 30

. 31
. 33

. 35
.35
. 36
.41
.44

. 47

. 51

. 53

. 55

. 57
. 59
. 59

. 61

Vi Best Practices: Physical database design for data warehouse environments

Executive Summary

This paper provides best practice recommendations that you can apply when
designing a physical data model to support the competing workloads that exist in
a typical 24x7 data warehouse environment.

It also provides a sample scenario with completed logical and physical data
models. You can download a script file that contains the DDL statements to create
the physical database model for the sample scenario.

This paper targets experienced users who are involved in the design and
development of the physical data model of a data warehouse in DB2 Database for
Linux, UNIX, and Windows or IBM® InfoSphere® Warehouse Version 9.7
environments. For details about physical data warehouse design in Version 10.1
data warehouse environments, see “DB2 Version 10.1 features for data warehouse
designs” on page 31.

For information about database servers in OLTP environments, see “Best practices:
Physical Database Design for Online Transaction Processing (OLTP) environments”
at the following URL: http://www.ibm.com/developerworks/data/bestpractices/

databasedesign/.

About this paper

This paper provides guidance to experienced database administrators and solution
architects on physical data warehouse design for DB2 Database for Linux, UNIX,
and Windows or IBM InfoSphere Warehouse environments and how to design a
data warehouse for a partitioned database environment.

“Planning for data warehouse design” on page 5 looks at the basic concepts of
data warehouse design and how to approach the design process in a partitioned
data warehouse environment. This chapter compares star schema and snow flake
schema designs along with their advantages and disadvantages.

“Designing a physical data model” on page 11 examines the physical data model
design process and how to create tables and relationships.

“Implementing a physical data model” on page 15 describes the best approach to
implement a physical model that considers both query performance and ease of
database maintenance. It also describes how to incorporate DB2 capabilities such as
database partitioning and using row level compression included with the IBM DB2
Storage Optimization Feature.

“Designing an aggregation layer” on page 27 explains how to aggregate data and
improve query performance by using DB2 database objects such as materialized
query tables.

The examples illustrated throughout this paper are based on a sample data
warehouse environment. For details about this sample data warehouse
environment, including the physical data model, see “Data warehouse design for a
sample scenario” on page 35.

© Copyright IBM Corp. 2012 1

http://www.ibm.com/developerworks/data/bestpractices/databasedesign/
http://www.ibm.com/developerworks/data/bestpractices/databasedesign/

2 Best Practices: Physical database design for data warehouse environments

Introduction to data warehouse design

A good data warehouse design is the key to maximizing and speeding the return
on investment from your data warehouse implementation. A good data warehouse
design leads to a data warehouse that is scalable, balanced, and flexible enough to
meet existing and future needs. Following the best practice recommendations in
this paper, you set your data warehouse up for long-term success through efficient
query performance, easier maintenance, and robust recovery options.

Designing a data warehouse is divided into two stages: designing the logical data
model and designing the physical data model.

The first stage in data warehouse design is creating the logical data model that
defines various logical entities and their relationships between each entity.

The second stage in data warehouse design is creating the physical data model. A
good physical data model has the following properties:

¢ The model helps to speed up performance of various database activities.

* The model balances data across multiple database partitions in a clustered
warehouse environment.

* The model provides for fast data recovery.

The database design should take advantage of DB2 capabilities like database
partitioning, table partitioning, multidimensional clustering, and materialized
query tables.

The recommendations in this paper follow some of the guidelines for the IBM
Smart Analytics System product to help you develop a physical data warehouse
design that is scalable, balanced, and flexible enough to meet existing and future
needs. The IBM Smart Analytics System product incorporates the best practices for
the implementation and configuration of hardware, firmware, and software for a
data warehouse database. It also incorporates guidelines in building a stable and
scalable data warehouse environment.

© Copyright IBM Corp. 2012 3

4 Best Practices: Physical database design for data warehouse environments

Planning for data warehouse design

Planning a good data warehouse design requires that you meet the objectives for
query performance in addition to objectives for the complete lifecycle of data as it
enters and exits the data warehouse over a period of time.

Knowing how the data warehouse database is used and maintained plays a key
part in many of the design decisions you must make. Before starting the data
warehouse design, answer the following questions:

What is the expected query performance and what representative queries look
like?

Understanding query performance is key because it affects many aspects of your
data warehouse design such as database objects and their placement.

What is the expectation for data availability?

Data availability affects the scheduling of maintenance operations. The schedule
determines what DB2 capabilities and partitioning table options to choose.

What is the schedule of maintenance operations such as backup?

This schedule affects your data warehouse design. The strategy for these
operations also affects the data warehouse design.

How is the data loaded into and removed from your data warehouse?

Understanding how to perform these operations in your data warehouse can
help you to determine whether you need a staging layer. The way that you
remove or archive the data also influences your table partitioning and MDC
design.

Does the system architecture and data warehouse design support the type of
volumes expected?

The volume of data to be loaded affects indexing, table partitioning, and
maintaining the aggregation layer.

The recommendations and samples in this paper provide answers to these
questions. This information can help you in planning your data warehouse design.

Designing database models for each layer

Consider having a separate database design model for each of the following layers:

Staging layer

© Copyright IBM Corp. 2012

The staging layer is where you load, transform, and clean data before
moving it to the data warehouse. Consider the following guidelines to
design a physical data model for the staging layer:

* Create staging tables that hold large volumes of fact data and large
dimension tables across multiple database partitions.

* Avoid using indexes on staging tables to minimize 1/O operations
during load. Although, if data has to be manipulated after it has been
loaded, you might want to define indexes on staging tables depending
on the extract, transform, and load (ETL) tools that you use.

* DPlace staging tables into dedicated table spaces. Omit these table spaces

from maintenance operations such as backup to reduce the data volume
to be processed.

* Place staging tables into a dedicated schema can also help you. A
dedicated schema can also help you reduce data volume for
maintenance operations.

* Avoid defining relationships with tables outside of the staging layer.
Dependencies with transient data in the staging later might cause
problems with restore operations in the production environment.

Data warehouse layer
The data warehouse tables are the main component of the database design.
They represent the most granular level of data in the data warehouse.
Applications and query workloads access these tables directly or by using
views, aliases, or both. The data warehouse tables are also the source of
data for the aggregation layer. The data warehouse layer is also called the
system of record (SOR) layer because it is the master data holder and
guarantees data consistency across the entire organization.

Data mart layer
A data mart is a subset of the data warehouse for a specific part of your
organization like a department or line of business. A data mart can be
tailored to provide insight into individual customers, products, or
operational behavior. It can provide a real-time view of the customer
experience and reporting capabilities.

You can create a data mart by manipulating and extracting data from the
data warehouse layer and placing it in separate tables. Also, you can use
views based on the tables in the data warehouse layer.

Aggregation layer
Aggregating or summarizing data helps to enhance query performance.
Queries that reference aggregated data have fewer rows to process and
perform better. These aggregated or summary tables need to be refreshed
to reflect new data that is loaded into the data warehouse.

Designing physical data models

6

The physical data model of the data warehouse contains the design of each table
and the relationships between each table. The implementation of the physical data
model results in an operational database. Because of the high data volumes in a
typical data warehouse, decisions that you make when developing the physical
design of your data warehouse might be difficult to reverse after the database goes
into production.

Plan to build prototypes of the physical data model at regular intervals during the
data warehouse design process. Test these prototypes with data volumes and
workloads that reflect your future production environment.

The test environment must have a database that reflects the production database. If
you have a partitioned database in your production environment, create the test
database with the same number of partitions or similar. Consider the scale factors
of the test system compared to the production system when designing the physical
model.

Best Practices: Physical database design for data warehouse environments

Figure 1 shows a sample architecture of a data warehouse with a staging area and

data marts:
Data Staging
Sources Area Warehouse Data Marts Users
I I
%
=
Operational Purchasing Analysis
System |:]
Metadata
; D [|
|:] [] Summary
Operational Staging Data Sales Reporting
System Database [
Raw Data
Flat Files \—>D<— |
Invento o
¥ Mining

Figure 1. Sample architecture of a data warehouse

For details about the examples of the physical data model examples used in this
paper, see”Data warehouse design for a sample scenario” on page 35.

Choosing between star schema and snowflake schema

A star schema and snowflake schema are based on dimensional modeling which is
the recommended approach for data warehouse design. Use the schema design
that best fits your needs for maximizing query performance.

A star schema might have more redundant data than a snowflake schema,
especially for upper hierarchical level keys such as product type. A star schema
might have relationships between various levels that are not exposed to the
database engine by foreign keys. To choose better query execution plans, use
additional information like column group statistics to provide the optimizer with
knowledge of statistical correlation between column values of related level keys in
dimensional hierarchies.

A snowflake schema has less data redundancy and clearer relationships between
dimension levels than a star schema. However, query complexity increases as the
join to the fact table has more dimension tables.

Place small dimensions such as DATE into one table and, as per the snowflake

method, consider splitting large dimensions with over 1 million rows into multiple
tables.

Planning for data warehouse design 7

8

Regardless of what schema style you choose, avoid having degenerate dimensions
in your schema. A degenerate dimension consists of a dimension in a single
physical fact table. For example, avoid placing dimension data in fact tables.

While row compression can substantially reduce the size of a table with redundant
data, very large fact tables that are compressed can still present challenges with

respect to the optimal use of memory and space for query performance.

Figure 2 shows a data warehouse database model that uses both the star and
snowflake schema:

FAMILY

LINE —— DATE

PRODUCT — SALES

— STORE

REGION-STATE-CITY

Figure 2. Data warehouse database model that uses both the star and snowflake schema

A SALES fact table is surrounded by the PRODUCT, DATE, and STORE dimension
tables.

The PRODUCT dimension is a snowflake dimension that has three levels and three
tables because a large number of rows (row count) is expected.

The DATE dimension is a star dimension that has four levels (YEAR, QUARTER,
MONTH, DAY) in a single physical table because a low row count is expected.

The STORE dimension is partly denormalized. A table contains the STORE level
and a second table that contains the REGION, STAGE, and CITY levels.

Best Practices: Physical database design for data warehouse environments

Figure 3 shows the hierarchy of the dimension levels for Figure 2 on page 8:

Date Store Product
All Dates All Stores All Products
Year Region Family

Quarter State Line
Month City Product
Day Store

Figure 3. Dimension levels hierarchy

Best practices

Use the following best practices when planning your data warehouse design:

* Build prototypes of the physical data model at regular intervals during the
data warehouse design process. For more details, see “Designing physical data
models” on page 6

* If a single dimension is too large, consider a star schema design for the fact
table and a snowflake design such as hierarchy of tables for dimension tables.

* Have a separate database design model for each layer. For more details, see
Database design layers.

Planning for data warehouse design 9

10 Best Practices: Physical database design for data warehouse environments

Designing a physical data model

When designing a physical data model for a data warehouse focus on the
definition of each table and the relationships between the tables.

When designing tables for the physical data model, consider the following
guidelines:

Define a primary key for each dimension table to guarantee uniqueness of the
most granular level key and to facilitate referential constraints where necessary.

Avoid primary keys and unique indexes on fact tables especially when a large
number of dimension keys are involved. These database objects incur in a
performance cost when ingesting large volumes of data.

Define referential constraints as informational between each pair of dimensions
that are joined to help the optimizer in generating efficient access plans that
improve query performance.

Define columns with the NOT NULL clause. Identifying NULL values is a good
indicator of data quality issues in the database and you should investigate
before the data gets inserted into the database.

Define foreign key columns as NOT NULL where possible.

For DB2 Version 9.7 or earlier releases, define individual indexes on each foreign
key to improve performance on star join queries.

For DB2 Version 10.1, define composite indexes that have multiple foreign key
columns to improve performance on star join queries. These indexes enable the
optimizer to exploit the new zigzag join method. For more details, see “Ensuring
that queries fit the required criteria for the zigzag join” at the following URL:
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/
com.ibm.db2.luw.admin.perf.doc/doc/t0058611.html.

Define dimension level keys with the NOT NULL clause and based on a single
integer column where appropriate. This way of defining level keys provides for
efficient joins and groupings. For snowflake dimensions, the level key is
frequently a primary key which is commonly a single integer column.

Implement standard data types across your data warehouse design to provide
the optimizer with more options when compiling a query plan. For example,
joining a CHAR(10) column that contains numbers to an INTEGER column
requires cast functions. This join degrades performance because the optimizer
might not choose appropriate indexes or join methods. For example, in DB2
Version 9.7 or earlier releases, the optimizer cannot choose a hash join or might
not exploit an appropriate index.

For more details, see “Best Practices: Query optimization in a data warehouse”
at the following URL: http://www.ibm.com/developerworks/data/bestpractices/
smartanalytics/queryoptimization/index.html.

Defining and choosing level keys

A level key is one column or a combination of columns in a table that uniquely
identifies a hierarchy level within a dimension table. An example of a hierarchy of
levels is DAY, WEEK, MONTH, YEAR in a date dimension. Another example is a
column for the STORE dimension table that holds data for a retail store. A more
complex example of level keys is the combination of the CITY, STATE, and
COUNTRY columns in the same STORE table.

© Copyright IBM Corp. 2012

11

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.perf.doc/doc/t0058611.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.perf.doc/doc/t0058611.html
http://www.ibm.com/developerworks/data/bestpractices/smartanalytics/queryoptimization/index.html
http://www.ibm.com/developerworks/data/bestpractices/smartanalytics/queryoptimization/index.html

12

Level keys are used extensively in a data warehouse to join dimension tables to
fact tables and to support aggregated tables and OLAP applications. The
performance of data warehouse queries can be optimized by having a good level
key design.

A level key can be of one of the following types:

* A natural key identifies the record within the data source from which it
originates. For example, if the CITY_NAME column has unique values in the
dimension table, you can use it as a natural key to indicate the level in the CITY
dimension.

* A surrogate key serves an identification purpose and helps reduce the size of a
lower dimension table or a fact table. In most cases, a surrogate key is a single
integer column. You can also use the BIGINT or DECIMAL data types for larger
surrogate keys. For example, STORE_ID is a generated unique integer value that
identifies a store. Using an integer instead of a large character string to
represents a store name or a combination of columns like STORE_NAME,
CITY_NAME, and STORE_ID occupies less storage space in the fact table.

Using surrogate keys for all dimension level columns helps in the following areas:
* Increased performance through reduced 1/0.
* Reduced storage requirement for foreign keys in large fact tables.

* Support slowly changing dimensions (SCD). For example, the CITY_NAME can
change but the CITY_ID remains.

When dimensions are denormalized there is a tendency to not use surrogate keys.
This example shows the statement to create the STORE dimension table without
surrogate keys on some levels:

CREATE TABLE STORE_DIMENSION (
STORE_ID INTEGER NOT NULL,
STORE_NAME VARCHAR(30),
CITY_NAME VARCHAR(30),
STATE_NAME VARCHAR(30),
COUNTRY_NAME VARCHAR(30));

The STORE dimension is functionally correct because level keys can be defined to
uniquely identify each level. For example, to uniquely identify the CITY level,
define a key as [COUNTRY_NAME, STATE_NAME, CITY_NAME]. Unfortunately, a key that
is a combination of three character columns does not perform as well as a single
integer column in a table join or GROUP BY clause.

Consider the approach of explicitly defining a single integer key for each level. For
queries that use a GROUP BY CITY_ID, STATE_ID, COUNTRY_ID clause instead
of a GROUP BY CITY_NAME, STATE_NAME, COUNTRY_NAME clause, this
approach works well. The following example shows the statement to create the
STORE dimension table that uses this approach:

Best Practices: Physical database design for data warehouse environments

CREATE TABLE STORE_DIMENSION (
STORE_ID INTEGER NOT NULL,
STORE_NAME VARCHAR(30),
CITY_ID INTEGER,

CITY_NAME VARCHAR(30),
STATE_ID INTEGER,
STATE_NAME VARCHAR(30),
COUNTRY_ID INTEGER,
COUNTRY_NAME VARCHAR(30));

Collect “column group statistics” with the RUNSTATS command in order to capture
the statistical correlation between the surrogate key columns in addition to the
correlation between the CITY_ NAME, STATE_ NAME and COUNTRY_NAME
columns.

Guidelines for the date dimension

If a DATE column is used as a range partition column, the recommendation to use
an INTEGER column as surrogate keys does not apply. Instead of an INTEGER
column, use the DATE data type as the primary key on the date dimension table
and as corresponding foreign key in the fact table.

Having a DATE column as the primary key for the date dimension does not
consume additional space because the DATE data type length is the same as the
INTEGER data types (4 bytes).

Using a DATE data type as a primary key enables your range partitioning strategy
for the fact table to be based on this primary key. You can roll in or rollout data
based on known date ranges rather than generated surrogate key values.

In addition, you can directly apply date predicates that limit the range of date
values considered for a query to a fact table. Also, you can transfer these date
predicates from the dimension table to the fact table by using a join predicate. This
use of date predicates facilitates good range partition elimination for dates not
relevant to the query. If you need only the date range predicate for a query, you
might even be able to eliminate the use of a join with the DATE dimension table.

The importance of referential integrity

Referential integrity (RI) constraints are defined primarily to guarantee the
integrity of data relationships between the tables. However, the optimizer also uses
information about constraints to process queries more efficiently. Keep RI
constraints in mind as an important factor when designing your physical data
model.

The following options are available when defining RI constraints:

Enforced referential integrity constraints
The integrity of the relationship specified is enforced by the database
manager when rows are inserted, updated, or deleted. There is a
performance effect on insert, update, delete, and load operations when the
database manager must enforce RI constraints.

Informational constraints
Informational constraints are constraint rules that the DB2 optimizer can
use but that are not enforced by the database manager. Informational

Designing a physical data model 13

constraints permit queries to benefit from improved performance without
incurring on the overhead of referential constraints during data
maintenance. However, if you define these constraints, you must enforce RI
during the ETL process by populating data in the correct sequences.

Best practices

14

Use the following best practices when designing a physical data model:

Define indexes on foreign keys to improve performance on start join queries.
For Version 9.7, define an individual index on each foreign key. For Version
10.1, define composite indexes on multiple foreign key columns.

Ensure that columns involved in a relationship between tables are of the same
data type.

Define columns for level keys with the NOT NULL clause to help the
optimizer choose more efficient access plans. Better access plans lead to
improved performance. For more information, see “Defining and choosing
level keys” on page 11.

Define date columns in dimension and fact tables that use the DATE data
type to enable partition elimination and simplify your range partitioning
strategy. For more information, see “Guidelines for the date dimension” on
page 13.

Use informational constraints. Ensure the integrity of the data by using the
source application or by performing an ETL process. For more information,
see “The importance of referential integrity” on page 13.

Best Practices: Physical database design for data warehouse environments

Implementing a physical data model

Implementing a physical data model transforms the physical data model into a
physical database by generating the SQL data definition language (DDL) script to
create all the objects in the database.

After you implement a physical data model in a production environment and
populate it with data, the ability to change the implementation is limited because
of the data volumes in a data warehouse production environment.

The main goal of physical data warehouse design is good query performance. This
goal is achieved by facilitating collocated queries and evenly distributing data
across all the database partitions.

A collocated query has all the data required to complete the query on the same
database partition. An even distribution of data has the same number of rows for a
partitioned table on each database partition. Improving one these aspects can come
at the expense of the other aspect. You must strive for a balance between
collocated queries and even data distribution.

Consider the following areas of physical data warehouse design:
* Database partition groups

* Table spaces

* Tables

* Indexes

* Range partition tables

* MDC tables

* Materialized query tables (aggregated or replicated)

The importance of database partition groups

Each table resides in a table space and each table space belongs to a database
partition group. Each database partition group consists of one or more database
partitions to which table spaces are assigned. When a table is created and assigned
to a table space it is also assigned to the database partition group in which the
table space exists.

Collocated queries can only occur within the same database partition group
because the partition map is created and maintained at database partition group
level. Even if the partitions covered by two database partition groups are the same,
the database partitions have different partition maps associated with them. For this
reason, different partition groups are not considered for join collocation.

Implement a physical design model that follows the IBM Smart Analytics Systems
best practices for data warehouse design. The IBM Smart Analytics Systems
implementation has multiple database partition groups. Two of these database
partition groups are called SDPG and PDPG. SDPG is created on the catalog
partition for tables in one database partition. PDPG is created across each database
partition and contains tables that are divided across all database partitions.

© Copyright IBM Corp. 2012 15

The following figure illustrates the database partition groups called SDPG and

PDPG:

Catalog partition Data partition 1 Data partition 2
Administration Data ...| Data Data ...| Data
BPU 0 BPU 1 BPU 4 BPU 5 BPU 8

IBMTEMPGROUP
db2tmp - Temporary table space
I I I []] I I
SDPG PDPG
el sl G ts_pd_data_001 - First table space for large tables
ts_pd_ldx_001 - First table space for large table indexes
DWECONTROL GROUP
- dwedefaultcontrol
IBMCATGROUP
syscatspace

Figure 4. Partition groups in the IBM Smart Analytics System

Consider the following guidelines when designing database partition groups:

* Use schemas as a way of logically managing data. Avoid creating multiple
database partition groups for the same purpose.

* Group tables at the database partition group level to design a partitioned
database that is more flexible in terms of future growth and expansion.
Redistribution takes place at the database partition group level. To expand a
partitioned database to accommodate additional servers and storage, you must
redistribute the partitioned data across each new database partition.

Table space design effect on query performance

A table space physically groups one or more database objects for the purposes of
common configuration and application of maintenance operations.

Discrete maintenance operations can help increase data availability and reduce
resource usage by isolating these operations to related table spaces only. The
following situations illustrate some of the benefits of discrete maintenance
operations:

* You can use table space backups to restore hot tables and make them available
to applications before the rest of the tables are available.

* You can find more opportunities to perform backups or reorganizations at a
table space level because the required maintenance window is smaller.

16 Best Practices: Physical database design for data warehouse environments

Good table space design has a significant effect in reducing processor, 1/0,
network, and memory resources required for query performance and maintenance
operations.

Consider creating separate table spaces for the following database objects:
 Staging tables

* Indexes

* Materialized query tables (MQTs)

* Table data

* Data partitions in ranged partitioned tables

Creating too many table spaces in a database partition can have a negative effect
on performance because a significant amount of system data is generated,
especially in the case of range partitioned tables. Try to keep the maximum
number of individual table partitions in hundreds, not in thousands.

When creating table spaces, use the following guidelines:
* Specify a descriptive name for your table spaces.
* Include the database partition group name in the table space name.

* Enable the autoresize capability for table spaces that can grow in size. If a table
space is nearly full, this capability automatically increases the size by the
predefined amount or percentage that you specified.

* Explicitly specify a partition group to avoid having table spaces created in the
default partition group.

Choosing buffer pool and table space page size

An important consideration in designing tables spaces and buffer pools is the page
size. DB2 databases support page sizes of 4 KB, 8 KB, 16 KB, and 32 KB for table
spaces and buffer pools.

In a data warehouse environment, large number of rows are fetched, particularly
from the fact table, in order to answer queries. To optimize fetching of large
number of rows, the IBM Smart Analytics System product uses 16 KB as the
default page size. If you are using row compression, a large page size works better
with large table spaces because they use large record identifiers (RIDs) and you
can store more rows per page.

Using a large page size table space for the large tables must be weighted with
other recommendations. For example, creating large tables as MDC tables is a best
practice. However, a large page size can result in some wasted space. MDC tables
that have dimensions on columns with a large number of distinct values or with
skewed data that result in partially filled pages.

Another consideration is whether it makes sense to use table spaces with different
page sizes to optimize access to individual tables. Each table space is associated
with a buffer pool of the same page size. However, buffer pools can be associated
with multiple table spaces. For optimum use of the total memory available to DB2
databases and use of memory across different table spaces, use one or at most two
different buffer pools. Associating a buffer pool to multiple table spaces allows
queries that access different table spaces at different times to share memory
resources.

Implementing a physical data model 17

Reducing the number of different table space page sizes across the database helps
you consolidate the associated buffer pools. Use one or, at most, two different page
sizes for all table spaces. For example, create all table spaces with a 16 KB page
size, a 32 KB page size, or both page sizes for databases that need one large table
space and another smaller table space. Use only one buffer pool for all the table
spaces of the same page size.

Table design for partitioned databases

18

Understanding the volumes of data intended for a table and how the table is
joined with other tables in queries is important for a good table design in
partitioned databases.

Because of the volumes of data involved in database partitioned tables, particularly
fact tables, a significant outage is required to correct any data skew or collocation
issues in post production. Outages require a considerable amount of organization.

The columns used in the table partitioning key determine how data is distributed
across the database partitions to which the table belongs. Choose the partitioning
key from those columns in the table that have the highest cardinality and low data
skew to achieve even distribution of data.

You can check the distribution of records in a partitioned table by issuing the
following query:

SELECT DBPARTITIONNUM(DATE_ID) AS "PARTITION NUMBER",
COUNT(1)*10 AS "TOTAL # RECORDS"

FROM BI_SCHEMA.TB_SALES_FACT TABLESAMPLE SYSTEM (10)

GROUP BY DBPARTITIONNUM(DATE_ID)

ORDER BY DBPARTITIONNUM(DATE_ID);

The use of the sampling clause improves the performance of the query by using
just a sample of data in the table. Use this clause only when you are familiar with
the table data. The following text shows an example of the result set returned by
the query:

PARTITION NUMBER TOTAL # RECORDS
1 10,313,750
2 10,126,900
3 9,984,910
4 10,215,840

For details about how to use routines to estimate data skews for existing and new
partitioning key, see “Choosing partitioning keys in DB2 Database Partitioning
Feature environments” at the following URL: http://www.ibm.com/developerworks/data/
library/techarticle/dm-1005partitioningkeys/.

In addition to even distribution of data, query performance is further improved by
collocated queries that are supported by table design. If the query join is not
collocated, the database manager must broadcast the records from one database
partition to another over the network, which results in suboptimal performance.
Collocation of data is often achieved at the expense of uneven or skewed

Best Practices: Physical database design for data warehouse environments

 http://www.ibm.com/developerworks/data/library/techarticle/dm-1005partitioningkeys/
 http://www.ibm.com/developerworks/data/library/techarticle/dm-1005partitioningkeys/

distribution of data across database partitions. Your table design must achieve the
right balance between these competing requirements.

When designing a partitioned table, consider the following guidelines:

* Use partitioning keys that include only one column because fewer columns lead
to a faster hashing function for assigning records to individual database
partitions.

* Achieve even data distribution. The data skew between database partitions
should be less than 10%. Having one partition smaller-than-the-average by 10%
is better than one partition larger-than-the-average by 10% to avoid having one
database partition slower than the others. A slower partition results in slower
overall query performance.

* Explicitly define partitioning keys. If a partitioning key is not specified, the
database manager chooses the first column that is not a LOB or long field. This
selection might not report optimal results.

When investigating collocation of data for queries consider the following
guidelines:

* Collocation can occur only when the joined tables are defined in the same
database partition group.

* The data type of the distribution key for each of the joined tables should be the
same.

* For each column in the distribution key of the joined tables, an equijoin
predicate is typically used in the query WHERE clause.

* The primary key and any unique index of the table must be a superset of the
associated distribution key. That is, all columns that are part of the distribution
key must be present in the primary key or unique index definition. The order of
the columns does not matter.

The general recommendation for data warehouses is to partition the largest
commonly joined dimension on its level key and partition the fact table on the
corresponding foreign key. For most fact tables, this approach satisfies the
requirement that the distribution key column has a very high cardinality, which
helps ensure even distribution of data; the joins between a fact table and the
largest commonly used dimension minimize data movement between database
partitions.

For more information about how to address even distribution of data with the
collocation of tables and improved performance of existing queries through
collocated table joins, see “Best Practices: Query optimization in a data warehouse”
at http:/fwww.ibm.com/developerworks/data/bestpractices/smartanalytics/queryoptimization/
index.html.

Partitioning dimension tables

After you decide to partition the fact table along with the largest commonly joined
dimension table, you might need to move data for other dimension tables to
collocate the data.

Most dimension tables in data warehouse environments are small and therefore do

not benefit from being distributed across database partitions. Use the following
recommendations when designing database partitioned tables:

Implementing a physical data model 19

http://www.ibm.com/developerworks/data/bestpractices/smartanalytics/queryoptimization/index.html
http://www.ibm.com/developerworks/data/bestpractices/smartanalytics/queryoptimization/index.html

* Partition the largest commonly joined dimension table on its level key collocated
with the fact table because this table has the large number of unique values,
which is good for avoiding data skew in the fact table.

* Place smaller dimensions into a table space that belongs a single database
partition group.

* Replicate smaller dimension tables that belong to a single database partition
group across all database partitions.

* Replicate only a subset of columns for larger dimension tables to avoid
unnecessary storage usage when replicating data.

If a dimension table is not the largest in the schema, but still has a large number of
rows (for example, over 10 million), you can replicate only a subset of the columns
in the table. For more information about using replicated MQTs, see “Replicated
MQTs” on page 28.

Range partitioned tables for data availability and performance

20

Table partitioning, also known as range partitioning, is a method that you can use
to segment table data into separate data partitions. You can also assign data
partitions to separate table spaces. Use range partitioning for any of the following
reasons:

* Partitioning data into ranges to allow the optimizer to eliminate data partitions
that are not needed to satisfy a query. This partition elimination helps to reduce
I/0O operations.

* Assign each data partition to an individual table space so that you can perform
table space backups for a more strategic backup and data recovery design.

* Roll in data partitions by using the ALTER TABLE statement with the ATTACH
parameter.

* Roll out data partitions by using the ALTER TABLE statement with the
DETACH parameter.

* Minimize lock escalation because lock escalation in ranged partitioned tables
happens at the partition level.

* Facilitate a multi-temperature data solution by moving data partitions from one
temperature of storage tier to another as data ages.

For a data warehouse that contains 10 years of data and the roll-in/roll-out
granularity is 1 month, creating 120 partitions is an ideal way of managing the
data lifecycle. If the roll-in/roll-out granularity is by day, partitioning by day
requires over 3600 partitions, which can cause performance and maintenance
issues. An excessive number of data partitions increases the number of system
catalog entries and can complicate the process of collecting statistics. Having too
many range partitions can make individual range partitions too small for
multidimensional clustering.

When using calendar month ranges in range partitioning, take advantage of the
EXCLUSIVE parameter of the CREATE TABLE statement to simplify a lookup for
month end date. The following example shows the use of the EXCLUSIVE
parameter:

PARTITION PART_2011 DEC STARTING ('2011-12-01') ENDING('2012-01-01')
EXCLUSIVE IN TBSP_2010_4Q;

Best Practices: Physical database design for data warehouse environments

Indexes on range partitioned tables

Indexes on range partitioned tables can be either global or local. Starting with DB2
Version 9.7 Fix Pack 1 software, indexes are created as local indexes by default
unless they are explicitly created as global indexes or as unique indexes that do
not include the range partitioning key.

A global index orders data across all data partitions in the table. A partitioned or
local index orders data for the data partition to which it relates. A query might
need to initiate a sort operation to merge data from multiple database partitions. If
data is retrieved from only one partition or the partitioned indexes are accessed in
order, including the range partitioning key as the leading column, a sort operation
is not required.

Use global indexes for any of the following reasons:

* To enforce uniqueness on a column or set of columns that does not include the
range partitioning key.

* To order the data across all partitions. You can also take advantage of global

indexes to avoid a sort operation for an ORDER BY or a GROUP BY order
requirement on the (leading) columns.

Use local indexes for any of the following reasons:

* Take advantage of the ability to precreate local indexes on data partitions before
they are attached to the range partitioned table. Precreating local indexes
minimizes any interruption when you use the ATTACH PARTITION or
DETACH PARTITION parameter.

* Reduce I/O during ETL workloads as local indexes are typically more compact.

If the inner join of a nested loop join or the range predicate in a query require
probing multiple database partitions, multiple local indexes might be probed
instead of a single global index. Incorporate these scenarios into your test cases.

Candidates for multidimensional clustering

Multidimensional clustering (MDC) tables can help improve the performance of
many queries, reduce locking, and simplify table maintenance operations. In
particular, MDC tables reduce the need to do a REORG to maintain data
clustering.

Data in an MDC table is ordered and stored in a different way than regular tables.
A table is defined as an MDC table through the CREATE TABLE statement. You
must decide whether to create a regular or an MDC table during physical data
warehouse design because you cannot change an MDC table definition after you
create the table. Create MDC tables in a test environment before implementing
them in a production environment.

An MDC table physically groups data pages based on the values for one or more
specified dimension columns. Effective use of MDC can significantly improve
query performance because queries access only those pages that have records with
the correct dimension values.

Implementing a physical data model 21

22

The database manager creates a cell to reference each unique combination of values
in dimension columns. An inefficient design causes an excessive number of cells to
be created, which in turn increases the space used and negatively affects query
performance. Follow these guidelines to choose dimension columns:

* Choose columns that are frequently used in queries as filtering predicates. These
columns are usually dimensional keys.

* Create MDC tables on the columns that have low cardinality in order to have
enough data to fill out entire cell.

* Create MDC tables that have an average of five cells per unique combination of
values in the clustering keys. The more dimensions you can include in the
clustering key, the higher is the benefit of using MDC tables.

* Use generated columns to reduce the number of distinct values for MDC
dimensions in tables that do not have column candidates with suitable low
cardinality.

For example, the BI_SCHEMA .SALES fact table in the sample scenario has three

dimensions called STORE_ID, PRODUCT_ID, and DATE_ID that are candidates for

dimension columns. To choose the dimension columns for this table, follow these

steps:

1. Ensure that the BI._ SCHEMA.SALES table statistics are current. Issue the
following SQL statement to update the statistics:

RUNSTATS ON TABLE BI_SCHEMA.TB_SALES_FACT FOR SAMPLED DETAILED INDEXES ALL;

2. Determine whether the STORE_ID and DATE_ID columns are suitable as
dimension columns. Use the following query to calculate the potential density
of the cells columns based on an average unique cell count per unique value
combination greater than 5:

SELECT CASE
WHEN (NPAGES/EXTENTSIZE)/
(SELECT COUNT(1) AS NUM_DISTINCT_VALUES
FROM (SELECT 1 FROM BI_SCHEMA.TB_SALES_ FACT GROUP BY STORE_ID, DATE_ID))
> 5
THEN
'"THESE COLUMNS ARE GOOD CANDIDATES FOR DIMENSION COLUMNS'
ELSE
'TRY OTHER COLUMNS FOR MDC' END
FROM SYSCAT.TABLES A, SYSCAT.TABLESPACES B
WHERE TABNAME='TB_SALES_FACT' AND TABSCHEMA='BI_SCHEMA'
AND A.TBSPACEID=B.TBSPACEID;

If the BI SCHEMA .SALES table is in a partitioned database environment, use
the following query:

SELECT CASE
WHEN (NPAGES/EXTENTSIZE)/
(SELECT COUNT(1) AS NUM_DISTINCT_VALUES
FROM (SELECT 1 FROM BI_SCHEMA.TB_SALES FACT
GROUP BY DBPARTITIONNUM(STORE_ID),STORE_ID, DATE_ID))
> 5
THEN
'"THESE COLUMNS ARE GOOD CANDIDATES FOR DIMENSION COLUMNS'
ELSE
'"TRY OTHER COLUMNS FOR MDC' END
FROM SYSCAT.TABLES A, SYSCAT.TABLESPACES B
WHERE TABNAME='TB_SALES_FACT' AND TABSCHEMA='BI_SCHEMA'
AND A.TBSPACEID=B.TBSPACEID;

Best Practices: Physical database design for data warehouse environments

The BI_SCHEMA .SALES table is range partitioned on the DATE_ID column.
The range partitions for 2012 include a month of dates. For queries that have
predicates by date, a date column helps to reduce the row access rows to 1 day
out of 30 days in the month.

3. Create the B SCHEMA .SALES as an MDC table organized by the STORE_ID
and DATE_ID columns in a test environment. Load the table with a
representative set of data.

4. Verify that the chosen dimension columns are optimal. Issue the following SQL
statements to verify whether the total number of free pages (FPAGES) is close
to the number of pages that contain data (NPAGES):

RUNSTATS ON TABLE BI_SCHEMA.TB_SALES_FACT;

SELECT CASE

WHEN FPAGES/NPAGES > 2

THEN 'THE MDC TABLE HAS MANY EMPTY PAGES'

ELSE 'THE MDC TABLE HAS GOOD DIMENSION COLUMNS' END
FROM SYSCAT.TABLES A
WHERE TABNAME='TB_SALES_FACT' AND TABSCHEMA='BI_SCHEMA';

If the number of free pages is double the number of data pages or more, then
the dimension columns that you chose are not optimal. Continue repeating
previous steps to test additional columns as dimension columns.

If you cannot find suitable candidates, use generated columns as dimension
columns to reduce the cardinality of existing columns. Using generated columns
works well for equality predicates. For example, if you have a column called
PRODUCT_ID with the following characteristics:

¢ The values for PRODUCT_ID ranges from 1 to 100,000.

* The number of distinct values for PRODUCT_ID is higher than 10,000.

¢ PRODUCT_ID is frequently used in predicates like PRODUCT_ID =
<constant_value>.

You can use a generated column on PRODUCT_ID divided by 1000 as a dimension
column so that values range from 1 to 100. For a predicate like PRODUCT_ID =
<constant_value>, access is limited to a cell that contains only 1/1000 of the table
data.

Including row compression in data warehouse designs

Row compression can help you increase the performance of all database operations
by reducing I/O and storage requirements for the database and maintenance
operations. These requirements can become additional goals that align with your
data warehouse design goals.

When designing a data warehouse, you must decide whether to compress a table
or an index when they are created. In a data warehouse environment, use row
compression on tables or index compression when your data servers are not CPU
bound.

Row compression can significantly improve I/O performance through a better
buffer pool hit ratio as more compressed data can be accommodated in the buffer
pool.

Row compression does use additional CPU resources, so use row compression only
in data servers that are not CPU bound. Because most operations in a data

warehouse read large volumes of data, row compression is typically a good choice

Implementing a physical data model 23

to balance I/O and CPU usage. If you perform many update, insert, or delete
operations on a compressed table, use the PCTFREE 10 clause in the table
definition to avoid overflowing records and consequent reorganizations.

To show the current and estimated compression ratios for tables and indexes:

e For DB2 Version 9.7 or earlier releases, use the
ADMIN_GET_TAB_COMPRESS_INFO_V97 and
ADMIN_GET_INDEX_COMPRESS_INFO administrative functions to show the
current and estimated compression ratios for tables and indexes. The following
example shows the SELECT statement that you can you use to estimate row
compression for all tables in the B SCHEMA schema:

SELECT * FROM TABLE(SYSPROC.ADMIN GET TAB_COMPRESS_INFO V97('BI_SCHEMA','','ESTIMATE'));

e For DB2 Version 10.1 and later releases, use the
ADMIN_GET_TAB_COMPRESS_INFO and
ADMIN_GET_INDEX_COMPRESS_INFO administrative functions. The
following example shows the compression estimates for a particular table
“TB_SALES_FACT":

SELECT * FROM TABLE(SYSPROC.ADMIN GET_TAB_COMPRESS_INFO('BI_SCHEMA','TB_SALES FACT'));

If the workload is CPU bound, selective vertical compression or selective
horizontal compression helps you to get storage savings at the cost of some
complexity.

Selective vertical compression

If 5% of the columns in a table are accessed 90% of time, you can compress the fact
table but keep an uncompressed MQT divided across all database partitions that
has these frequently-accessed columns. Maintaining redundant data requires both

administration and ETL overhead.

If relatively few columns are queried 90% of the time, a compressed table along
with a composite uncompressed index on these columns is easier to administer

Selective horizontal compression

If the 90% of the data accessed is the most recent data, consider creating range
partitioned tables with compressed historical data and uncompressed recent data.

24 Best Practices: Physical database design for data warehouse environments

Best practices

Use the following best practices when implementing a physical data model:

Define only one partition group that spans across all data partitions as
collocated queries can only occur within the same database partition. For
more details, see “The importance of database partition groups” on page 15.

Use a large page size table space for the large tables to improve performance
of queries that return a large number of rows. The IBM Smart Analytics
Systems have 16 KB as the default page size for buffer pools and table spaces.
Use this page size as the starting point for your data warehouse design. For
more details, see “Choosing buffer pool and table space page size” on page
17.

Hash partition the largest commonly joined dimension on its level key and
partition the fact table on the corresponding foreign key. All other dimension
tables can be placed in a single database partition group and replicated across
database partitions. For more details, see “Table design for partitioned
databases” on page 18.

Replicate all or a subset of columns in a dimension table that is placed in a
single database partition group to improve query performance. For more
details, see “Partitioning dimension tables” on page 19.

Avoid creating a large number of table partitions or pre-creating too many
empty data partitions in a range partitioned table. Implement partition
creation and allocation as part of the ETL job. For more details, see “Range
partitioned tables for data availability and performance” on page 20.

Use local indexes to speed up roll-in and roll-out of data. Corresponding
indexes can be created on the partition to be attached. Also, using only local
indexes reduces index maintenance when attaching or detaching partitions.
For more details, see “Indexes on range partitioned tables” on page 21.

Use multidimensional clustering for fact tables. For more details, see
“Candidates for multidimensional clustering” on page 21.

Use administrative functions to help you estimate compression ratios on your
tables and indexes. For more details, see “Including row compression in data
warehouse designs” on page 23

Ensure that the CPU usage is 70% or less of before enabling compression. If

reducing storage is critical even in a CPU-bound environment, compress data
that is infrequently used. For example, compress historical fact tables.

For more details about best practices for row compression, see “DB2 best practices:
Storage optimization with deep compression” at the following URL:
http:/fwww.ibm.com/developerworks/data/bestpractices/deepcompression/.

Implementing a physical data model 25

http://www.ibm.com/developerworks/data/bestpractices/deepcompression/

26 Best Practices: Physical database design for data warehouse environments

Designing an aggregation layer

Aggregating or summarizing data helps enhance query performance. Use DB2
database objects that help you aggregate data such as materialized query tables
(MQTs), views, or view MQTs.

MQTs, also known as summary tables, precompute the results of an expensive or
frequently used query or set of queries. The result set is stored in a dedicated table
which can be used later to answer that frequently used query or similar queries.
The source tables that are referenced when populating or refreshing data in an
MQT are called base tables.

Using materialized query tables

Using MQTs to aggregate data at different levels, you can support applications that
analyze data without having to design multiple base tables or compromise the
atomic granularity of data.

Suboptimal performance of analytical queries is often the trigger point to use
MQTs, especially in service level agreement (SLA) driven environments. Typically,
you can define MQTs after you populate the fact tables and develop a set of
important analytical queries.

MQTs can greatly improve query performance at the cost of extra storage and

additional maintenance. The optimizer automatically reroutes your queries to the
MQTs.

You can redesign MQTs over time as queries and the analysis of data evolves.
From a design perspective, understand how MQTs are created, populated, and
maintained to be able to choose the right type of MQT. You can create MQTs that
use any of the following modes:

Refresh deferred
Use this mode in a data warehouse environment to control when the data
is refreshed. This mode propagates changes made to the base tables to the
MQT manually when you issue the REFRESH TABLE statement. You can
control the selection of the MQT based on age of data by setting the
dft_refresh_age database configuration parameter or the CURRENT
REFRESH AGE special register. If the REFRESH AGE time limit is
exceeded, the optimizer does not reroute your dynamic queries to MQTs.

Refresh deferred with staging table
Use this mode when you have multiple ingest streams to update the base
tables. Using this mode can help avoid locking the base tables in this
situation. This mode automatically propagates changes made to the base
table to a staging table specified when you created the MQT. To refresh the
MQT that uses the staging table, issue the REFRESH TABLE statement.

Refresh immediate
Use this mode in data warehouse environments where smaller volumes of
data are involved. This mode automatically propagates the changes made
to the base table to the MQT. The MQT remains current at all times. The
INSERT, UPDATE, and DELETE operations on the base table carry with
the overhead of MQT maintenance.

© Copyright IBM Corp. 2012 27

28

The following guidelines can help you improve the performance and increase
usability of MQTs:

* Give a descriptive name to your MQT that includes the names of the base table
and aggregation levels. Such naming convention helps in analysis of access plans
and verification that the optimizer reroutes your queries to the right MQT for

certain queries. An example for an MQT name that aggregates sales data by
store, date, and product line is MQT_SALES_STORE_DATE_ PRODUCT.

* If you are planning to use REFRESH IMMEDIATE or REFRESH DEFERRED
with MQT staging tables, create only one MQT per base table. If you have more
than one MQT for a base table, the performance of update operations in the base
table can decrease dramatically.

* If the base table has compression enabled, enable compression on the MQT as
well. A compressed MQT becomes more competitive for query reroute by the
DB2 optimizer.

* Improve the performance of the MQT refresh by creating an index on the base
table that includes the columns specified in the GROUP BY clause of the MQT
definition.

* For database partitioned base tables, improve the performance of the MQT
refresh by creating MQTs in the same database partition group as the base
tables. If possible, hash partition the MQT by using the same partitioning keys
as the base fact table.

* For range partitioned base tables, improve the performance of the MQT refresh
by creating MQTs as range partitioned tables on the same ranges as the base
tables. Also, creating range partitioned MQTs makes MQTs more attractive
candidates to the optimizer. If a table partitioning key column is also one of the
dimensions to aggregate data in the MQT, you should not create a range
partitioned MQT. For example, if you have a fact table range partitioned by
MONTH and the MQT has GROUP BY MONTH, the range partitioned MQT
table has only one row per month.

* Provide flexibility in a recovery scenario by creating MQTs in separate table
spaces. It can be easier to re-create and refresh MQTs rather than restore them.

* Create an MQT on a view for queries that use that view even if the view
contains constructs like outer joins or complex queries that are unsupported
with regular MQT matching. For more details, see “Using views and view MQTs
to define data marts” on page 29.

Replicated MQTs

Using replicated MQTs is a great technique to improve the performance of complex
queries by copying the contents of a small dimension table to each database
partition of a database partition group. For joins between a large database
partitioned table and a small dimension table, the query execution is faster because
the data for the dimension table is replicated to each database partition and data
transfer from other database partitions is not required.

Dimension tables typically have a few update operations. Therefore, specifying the
REFRESH IMMEDIATE option to create replicated MQTs for small dimension
tables makes the MQT maintenance free.

If your environment has many data partitions and the number of the replicated
MQTs is significant, consider replicating only the subset of the columns that are
referenced in your queries.

Best Practices: Physical database design for data warehouse environments

Because replicated MQTs are stand-alone objects, you must manually create
indexes similar to the indexes on the base tables. You should define unique indexes
on the base tables as regular indexes on the replicated MQTs.

Using layered MQT refresh to improve maintenance

Using a layered MQT refresh approach to build MQTs takes advantage of existing
MQTs. This approach is very useful for cubing applications where it is quite
common to have aggregation on various dimension levels to support drill-downs
and roll-ups, dozens of MQTs on various hierarchy levels, and a limited window
to refresh MQTs.

The following steps shows an example on how to use a layered MQT refresh
approach:

1. Create MQT1 defined on DATE_ID, STORE_ID, and PRODUCT_ID.
2. Create MQT?2 defined on YEAR_ID, STORE_ID, PRODUCT_ID

3. Refresh MQT1.
4

. Populate MQT2 by using the LOAD FROM CURSOR command on the base
fact table. The optimizer reroutes the command to MQT1. The cursor is based
on the MQT?2 definition.

5. Set integrity for MQT?2 using the UNCHECKED clause.

This method to populate MQT?2 is faster because it only aggregates data in MQT1
by YEAR_ID and does not access the base fact table at all.

However, the database manager does not know about the similarities between
different MQTs. Therefore, the sequence to issue the MQTs refresh is quite
important. Create the indexes and collect statistics after MQTs are refreshed. For
more information, see “Materialized query tables” on page 41.

Using views and view MQTs to define data marts

Views are a convenient way of hiding some details of the physical data model.
They can express a business view of the world and enforce security rules within an
organization. A view might encapsulate expressions that use the underlying object
names and computations that the business user or the business application
metadata model understands.

You can use views to define individual data marts based on the specific
requirements of individual lines of business that are different from the enterprise
warehouse.

The advantages of views are:

* They do not require additional space.

* Their maintenance requirements are minimal.

* They simplify application development by hiding the complexity of the physical
data model.

Data marts can be represented by using views over the base tables when the views
are relatively simple. Carefully consider whether a view can represent a fact table.
If a “fact view” gets too complex and includes operations such as UNION, LEFT
OUTER JOIN, or GROUP BY queries that join the fact view with other dimension

Designing an aggregation layer 29

table, views might have poor query performance when joined to other complex
views. This performance issue might become apparent only when the number of
queries and the database grow.

Starting with DB2 V9.7 or later versions, consider using view MQTs. You can create
MQTs by simply selecting from a view. If you have a fact view for your data mart
and you create a view MQT on that fact view, queries that access the fact view can
be rerouted to the view MQT which looks as a simple fact table in the internally
rewritten query.

Best practices

Use the following best practices when designing an aggregation layer:

* Use MQTs to increase the performance of expensive or frequently used
queries that aggregate data. For more information, see “Using materialized
query tables” on page 27.

* Use replicated MQTs to improve the performance of queries that use joins
between a large database partitioned table and a small dimension table and
reduce the intra-partition network traffic. For more information, see
“Replicated MQTs” on page 28

¢ Use views to define individual data marts when the view definition remains
simple. For more information, see “Using views and view MQTs to define
data marts” on page 29

30 Best Practices: Physical database design for data warehouse environments

DB2 Version 10.1 features for data warehouse designs

Use new features in DB2 Version 10.1 in your data warehouse to make your data
lifecycle management easier, optimize storage utilization, and store and retrieve
time-based data.

DB2 Version 10.1 introduces the following new features:
e “Storage optimizations”

* “Multi-temperature data storage”

e “Adaptive compression” on page 32

* “Time travel query by using temporal tables” on page 32
Storage optimizations

In DB2 Version 10.1, automatic storage table spaces have become the standard for
DB2 storage because they provide the advantage of both ease of management and
improved performance. For user-defined permanent table spaces, the SMS (system
managed space) type is deprecated since Version 10.1. For more details about how
to re-create SMS table spaces to automatic storage, see “SMS permanent table
spaces have been deprecated” at the following URL: http://pic.dhe.ibm.com/infocenter/
db2luw/v10r1/topic/com.ibm.db2.luw.wn.doc/doc/i0058748.html.

Starting with Version 10.1 Fix Pack 1, the DMS (database managed space) type is
deprecated. For more details about how to convert DMS table spaces to automatic
storage, see “DMS permanent table spaces are deprecated” at the following URL:
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.wn.doc/doc/
10060577 .html.

You can now create and manage storage groups, which are groups of storage
paths. A storage group contains storage paths with similar characteristics.
Automatic storage table spaces inherit media attribute values, device read rate, and
data tag attributes from the storage group that the table spaces are using by
default. Using storage groups has the following advantages:

* You can physically partition table spaces managed by automatic storage. You can
dynamically reassign a table space to a different storage group by using the
ALTER TABLESPACE statement with the USING STOGROUP option.

* You can create different classes of storage (multi-temperature storage classes)
where frequently accessed (hot) data is stored in storage paths that reside on fast
storage while infrequently accessed (cold) data is stored in storage paths that
reside on slower or less expensive storage.

* You can specify tags for storage groups to assign tags to the data. Then, define
rules in DB2 Work Load Manager (WLM) about how activities are treated based
on these tags.

For more details, see “Storage management has been improved” in the DB2 V10.1
Information Center at the following URL: http://pic.dhe.ibm.com/infocenter/db2luw/
v10r1/topic/com.ibm.db2.luw.wn.doc/doc/c0058962.html.

Multi-temperature data storage

In a data warehouse environment, aligning active (hot) data with faster storage
and inactive (cold) data with slower storage makes data lifecycle management

© Copyright IBM Corp. 2012 31

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.wn.doc/doc/i0058748.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.wn.doc/doc/i0058748.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.wn.doc/doc/i0060577.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.wn.doc/doc/i0060577.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.wn.doc/doc/c0058962.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.wn.doc/doc/c0058962.html

32

easier. Also, you can apply different maintenance operations to table spaces with
different temperature. You can define as many temperatures of data as your
environment requires depending on the different storage characteristics and the
type of workload.

Another application in data warehouse environments is to use multi-temperature
storage classes with range partitioned tables. After assigning table spaces to
different storage groups to define multiple temperatures, assign each data partition
to a table space with the appropriate temperature to prioritize the data access.

You can create storage groups by using the CREATE STOGROUP statement to
indicate the corresponding storage paths and device characteristics as shown in the
following example:
CREATE STOGROUP hot-sto-group-name ON hot-sto-path-1, ..,hot-sto-path-N

DEVICE READ RATE hot-read-rate OVERHEAD hot-device-overhead

CREATE STOGROUP cold-sto-group-name ON cold-sto-path-1, ..,cold-sto-path-N
DEVICE READ RATE cold-read-rate OVERHEAD cold-device-overhead

After creating the storage groups, use the ALTER TABLESPACE statement to move
automatic storage tables spaces from one storage group to another. Assign tables
spaces that contain hot data to the hot storage groups and the table spaces that
contain cold data to the cold storage group. Having the data accessed by most
queries in the hot table spaces improves query performance substantially. For more
details, see “DB2 V10.1 Multi-temperature data management recommendations” at
the following URL: http://www.ibm.com/developerworks/data/library/long/dm-
1205multitemp/index.html.

Adaptive compression

In DB2 Version 10.1, adaptive compression uses page-level compression
dictionaries in addition to the table-level compression dictionary to compress
tables. Adaptive compression adapts to changing data characteristics and provides
significantly better compression ratios in many cases because the page-level
compression dictionary takes into account all of the data that exists within the
page. In data warehouse environments, better compression rates translates into
substantial storage reductions.

Page-level compression dictionaries are automatically maintained. Therefore, you
do not need to perform a table reorganization to compress data on that page. In
addition to improved compression rates, this approach to compression can improve
the availability of your data and the performance of maintenance operations that
involve large volumes of data. For more details, see “DB2 best practices: Storage
optimization with deep compression” at the following URL: http://www.ibm.com/
developerworks/data/bestpractices/deepcompression/.

Time travel query by using temporal tables

Use temporal tables to associate time-based state information with your data. Data
in tables that do not use temporal support apply to the present, while data in
temporal tables can be valid for a period defined by the database system, user
applications, or both.

With temporal tables, a warehouse database can store and retrieve time-based data
without additional application logic. For example, a database can store the history
of a table so you can query deleted rows or the original values of updated rows.
For more details, see “DB2 best practices: Temporal data management with DB2”

Best Practices: Physical database design for data warehouse environments

http://www.ibm.com/developerworks/data/library/long/dm-1205multitemp/index.html
http://www.ibm.com/developerworks/data/library/long/dm-1205multitemp/index.html
http://www.ibm.com/developerworks/data/bestpractices/deepcompression/
http://www.ibm.com/developerworks/data/bestpractices/deepcompression/

at the following URL: http://fwww.ibm.com/developerworks/data/bestpractices/temporal/
index.html.

Best practices

Use the following best practices to take advantage of new DB2 Version 10.1 features:

* Use automatic storage table spaces. If possible, convert existing SMS or DMS
table spaces to automatic storage.

* Use storage groups to physically partition automatic storage table spaces in
conjunction with table partitioning in your physical warehouse design.

» Use storage groups to create multi-temperature storage classes so that
frequently accessed data is stored on fast storage while infrequently accessed
data is stored on slower or less expensive storage.

* Use adaptive compression to achieve better compression ratios.

* Use temporal tables and time travel query to store and retrieve time-based
data.

DB2 Version 10.1 features for data warehouse designs 33

http://www.ibm.com/developerworks/data/bestpractices/temporal/index.html
http://www.ibm.com/developerworks/data/bestpractices/temporal/index.html

34 Best Practices: Physical database design for data warehouse environments

Data warehouse design for a sample scenario

This section describes the physical data model designed for a sample scenario of a
data warehouse for a fictitious company that sells a large number of products. The
company data warehouse stores daily sales data for all these products. The
examples in this paper are based on this sample scenario.

Physical data model design

The physical data model illustrated in the following diagram shows the tables and
relationships that are used in the sample data warehouse.

£ TB_STORE_DIM

TB_CITY_FK *5 STORE_ID : INTEGER
r——————— § STORE_NAME : VARCHAR(30)
T ¢ CITY_ID : INTEGER [FK]
i

£ TB_STORE_LOCATION_DIM
7 CITY_ID : INTEGER
§ CITY_NAME : VARCHAR(30)
g STATE_ID : INTEGER
§ STATE_NAME : VARCHAR(30)
§ COUNTRY_ID : INTEGER
§ COUNTRY_NAME : VARCHAR(30)

] TB_DATE_DIM
5 DATE_ID : DATE
5 WEEK_ID : SMALLINT
& MONTH_ID : SMALLINT
& MONTH_NAME : VARCHAR(10)
g PERIOD_ID : SMALLINT
E YEAR : SMALLINT

TB_STORE_:FACT_FK

A

I TB_SALES_FACT

8 DATE_ID : DATE [FK] T
8 PRODUCT_ID : INTEGER [FK] i
8 STORE_ID : INTEGER [FK]

2 QUANTITY : INTEGER I
& COST_VALUE : DECIMAL(10, 2)

& TAX_VALUE : DECIMAL(10 , 2)

& NET_VALUE : DECIMAL(10 , 2)

E GROSS_VALUE : DECIMAL(10, 2)

¥

|
TB_PRODUCT [FACT FK
|

T
= TB_PRODUCT_DIM

"5 PRODUCT_ID : INTEGER

5 PRODUCT_NAME : VARCHAR(50)

& PRODUCT DESCRIPTION : VARCHAR(1000)

I & PRODUCT_PRICE : DECIMAL(20 , 2)

| 8 PRODUCT_LINE_ID : INTEGER [FK]

| 5 PRODUCT_LAST_UPDATE : TIMESTAMP

|

TB_DATE_FACT_FK

TB_PRODUCT_LINE_FK

=] TB_PRODUCT_FAMILY_DIM

%% PRODUCT FAMILY_ID : INTEGER
& PRODUCT_FAMILY_NAME : VARCHAR(50)
& PRODUCT_FAMILY_DESCRIPTION : VARCHAR(1000)

= TB_PRODUCT_LINE_DIM
"2 PRODUCT LINE_ID : INTEGER
72 PRODUCT_FAMILY_ID : INTEGER [FK]

TB_PRODUCT_FAMILY_FK

& PRODUCT_LINE_NAME : VARCHAR(50)
5 PRODUCT_LINE_DESCRIPTION : VARCHAR(1000)
§ PRODUCT_LINE_LAST_UPDATE : TIMESTAMP

Figure 5. Physical data model for the sample data warehouse

© Copyright IBM Corp. 2012

§ PRODUCT FAMILY_LAST UPDATE : TIMESTAMP
§ PRODUCT_LINE_OF_BUSINESS_ID : INTEGER
E PRODUCT_LINE_OF_BUSINESS_NAME : VARCHAR(50)

Dimension tables

The physical data model for the sample scenario consists of the following
dimension tables to accommodate the date, product, and store data:

TB_DATE_DIM
TB_PRODUCT DIM
TB_PRODUCT_LINE_DIM
TB_PRODUCT_FAMILY DIM
TB_STORE_DIM
TB_STORE_LOCATION DIM

Fact tables

The physical data model for the sample scenario consists of the following fact table
that contains the sales transaction data:

TB_SALES_FACT

Table constraints

To establish relationships between the dimension and fact tables, the physical data
model for the sample scenario consists of the following table constraints:

TB_PRODUCT_FACT_FK
TB_PRODUCT_LINE_FK
TB_PRODUCT_FAMILY FK
TB_CITY_FK
TB_STORE_FACT_FK
TB_DATE_FACT_FK

Implementation of the physical data model

36

This section describes the DDL statements that were used to implement the
physical data model in a IBM InfoSphere Warehouse Version 9.7 environment. This
physical data model includes database partition groups, table spaces, tables,
indexes, constraints, and MQTs.

Database partition groups
The physical data model for the sample scenario consists of two database partition

groups. The following DDL statements show how to create these database partition
groups:

Database partition
group name Details

SDGP -- CREATE DATABASE PARTITION GROUP SDPG ON
-- CATALOG PARTITION FOR NON-PARTITIONED TABLES.
CREATE DATABASE PARTITION GROUP SDPG ON DBPARTITIONNUM(O);

PDPG -- CREATE DATABASE PARTITION GROUP PDPG ON
-- ALL DATABASE PARTITIONS FOR PARTITIONED TABLES
CREATE DATABASE PARTITION GROUP PDPG ON DBPARTITIONNUMS(1 TO 8);

The PDPG database partition group was created on the database
partitions 1 - 8.

Best Practices: Physical database design for data warehouse environments

Table spaces

The physical data model for the sample scenario has separate table spaces for
dimension tables, fact tables, indexes, and MQTs. All table spaces have the
AUTORESIZE attribute set to YES and the INCREASESIZE attribute set to 10
percent. The following DDL statements listed in this table show how to create
these table spaces and assign them to the correct database partition group:

Table space name Details

TS_SD_DIMENSIONS -- CREATE TABLE SPACE FOR DIMENSION TABLES IN
-- DATABASE PARTITION GROUP SDPG (CATALOG PARTITION ONLY)
CREATE TABLESPACE TS_SD_DIMENSIONS
IN DATABASE PARTITION GROUP SDPG
AUTORESIZE YES INCREASESIZE 10 PERCENT;

TS_PD_LARGE_DIMS -- CREATE TABLE SPACE FOR LARGE DIMENSION TABLES IN
-- DATABASE PARTITION GROUP PDPG (PARTITIONS 1-8)
CREATE TABLESPACE TS_PD_LARGE_DIMS
IN DATABASE PARTITION GROUP PDPG
AUTORESIZE YES INCREASESIZE 10 PERCENT;

TS_PD_FACT_PAST -- CREATE TABLE SPACES FOR THE FACT TABLES IN

TS PD FACT 201112 -- DATABASE PARTITION GROUP PDPG (PARTITIONS 1-8)
TS_PD_FACT_ZO]_ZQ]_ CREATE TABLESPACE TS_PD_FACT_PAST
TS_PD_FACT_201202 IN DATABASE PARTITION GROUP PDPG
TS_PD_FACT_ZOIZO?) AUTORESIZE YES INCREASESIZE 10 PERCENT;

CREATE TABLESPACE TS_PD_FACT 201112
IN DATABASE PARTITION GROUP PDPG
AUTORESIZE YES INCREASESIZE 10 PERCENT;

CREATE TABLESPACE TS_PD_FACT 201201
IN DATABASE PARTITION GROUP PDPG
AUTORESIZE YES INCREASESIZE 10 PERCENT;

CREATE TABLESPACE TS_PD_FACT 201202
IN DATABASE PARTITION GROUP PDPG
AUTORESIZE YES INCREASESIZE 10 PERCENT;

CREATE TABLESPACE TS_PD_FACT 201203
IN DATABASE PARTITION GROUP PDPG
AUTORESIZE YES INCREASESIZE 10 PERCENT;

TS_PD_REPL_DIMS -- CREATE TABLE SPACE FOR REPLICATED DIMENSION TABLES
-- IN DATABASE PARTITION GROUP PDPG
CREATE TABLESPACE TS_PD_REPL_DIMS
IN DATABASE PARTITION GROUP PDPG
AUTORESIZE YES INCREASESIZE 10 PERCENT;

TS_PD_MQT_SALES -~ CREATE TABLE SPACE FOR THE FACT TABLES MQTs
-~ IN DATABASE PARTITION GROUP PDPG
CREATE TABLESPACE TS_PD_MQT_SALES
IN DATABASE PARTITION GROUP PDPG
AUTORESIZE YES INCREASESIZE 10 PERCENT;

Schema

The physical data model for the sample scenario uses the following schemas to
group objects by type in the sample scenario:

* BI_STAGE (stage tables)
* BI _SCHEMA (dimension tables, fact tables, indexes)
* BI _MQT (MQTs, indexes)

Use these schemas when creating database objects for the sample scenario.

Data warehouse design for a sample scenario 37

Dimension tables

The physical data model implements the dimension tables defined for the sample
scenario. The following DDL statements listed in this table show how to create
these dimension tables:

Dimension table Details
Product dimension -- CREATE PRODUCT DIMENSION TABLE
(TB PRODUCT DIM) CREATE TABLE BI_SCHEMA.TB_PRODUCT_DIM
B - (PRODUCT_ID INTEGER NOT NULL,
PRODUCT_NAME VARCHAR(50) NOT NULL,
PRODUCT_DESCRIPTION VARCHAR(1000) NOT NULL,
PRODUCT_PRICE DECIMAL(20,2) NOT NULL,

PRODUCT_LINE_ID INTEGER NOT NULL,
PRODUCT_LAST_UPDATE TIMESTAMP NOT NULL,
CONSTRAINT TB_PRODUCT DIM_PK

PRIMARY KEY (PRODUCT ID))

IN TS_PD_LARGE_DIMS

COMPRESS ™ YES

DISTRIBUTE BY HASH (PRODUCT ID);

Date Dimension -- CREATE DATE DIMENSION TABLE
(TB DATE DIM) -- The DATE_ID column is defined as a DATE data type
-7 -- to improve performance of queries with joins
-- between this table and the fact table.
CREATE TABLE BI_SCHEMA.TB_DATE_DIM
(DATE_ID DATE NOT NULL,
WEEK_ID SMALLINT NOT NULL,
MONTH_ID SMALLINT NOT NULL,
MONTH_NAME VARCHAR(10) NOT NULL,
PERIOD_ID SMALLINT NOT NULL,
YEAR SMALLINT NOT NULL,
CONSTRAINT TB DATE DIM PK
PRIMARY KEY (DATE_ID))
IN TS_SD_DIMENSIONS;

Product Family -- CREATE PRODUCT FAMILY DIMENSION TABLE

(TB_PRODUCT_FAMILY_DIM) CREATE TABLE BI_SCHEMA.TB_PRODUCT_FAMILY_DIM
(PRODUCT_FAMILY_ID INTEGER NOT NULL,
PRODUCT_FAMILY_NAME VARCHAR(50) NOT NULL,

PRODUCT_FAMILY_DESCRIPTION VARCHAR(1000) NOT NULL,
PRODUCT FAMILY_LAST UPDATE TIMESTAMP NOT NULL,
PRODUCT_LINE_OF BUSINESS_ID INTEGER NOT NULL,
PRODUCT_LINE_OF BUSINESS_NAME VARCHAR(50) NOT NULL,
CONSTRAINT TB_PRODUCT FAMILY DIM PK
PRIMARY KEY (PRODUCT FAMILY ID))
IN TS_SD_DIMENSIONS;

Product Line -~ CREATE PRODUCT LINE DIMENSION TABLE
(TB_PRODUCT_LINE_DIM) CREATE TABLE BI_SCHEMA.TB_PRODUCT_LINE_DIM
- - (PRODUCT_LINE_ID INTEGER NOT NULL,
PRODUCT_FAMILY_ID INTEGER NOT NULL,
PRODUCT_LINE_NAME VARCHAR(50) NOT NULL,
PRODUCT _LINE_DESCRIPTION VARCHAR(1000) NOT NULL,
PRODUCT_LINE_LAST UPDATE TIMESTAMP NOT NULL,
CONSTRAINT TB_PRODUCT_LINE_DIM PK
PRIMARY KEY (PRODUCT_LINE_ID))
IN TS_SD_DIMENSIONS;

38 Best Practices: Physical database design for data warehouse environments

Dimension table Details

Store location dimension -- CREATE STORE LOCATION DIMENSION TABLE
(TB_STORE_LOCATION_DIM) CREATE TABLE BI_SCHEMA.TB_STORE_LOCATION_DIM
(CITY_ID INTEGER NOT NULL,

CITY_NAME VARCHAR(30) NOT NULL,
STATE_ID INTEGER NOT NULL,
STATE_NAME VARCHAR(30) NOT NULL,
COUNTRY_ID INTEGER NOT NULL,
COUNTRY_NAME VARCHAR(30) NOT NULL,
CONSTRAINT TB_STORE_LOCATION_DIM PK
PRIMARY KEY (CITY_ID))
IN TS_SD_DIMENSIONS;

Store dimension -- CREATE STORE DIMENSION TABLE
(TB _STORE DIM) CREATE TABLE BI_SCHEMA.TB_STORE_DIM
- - (STORE_ID INTEGER NOT NULL,
STORE_NAME VARCHAR(30) NOT NULL,
CITY_ID INTEGER NOT NULL,
CONSTRAINT TB_STORE_DIM PK
PRIMARY KEY (STORE_ID))
IN TS_SD_DIMENSIONS;

Fact table

The physical data model implements the fact table defined for the sample scenario.

The following DDL statement listed in this table shows how to create this fact
table:

Fact table Details

TB_SALES_FACT -~ CREATE SALES FACT TABLE AS RANGE PARTITION BY MONTH
CREATE TABLE BI_SCHEMA.TB_SALES_FACT
(DATE_ID DATE NOT NULL,
PRODUCT_ ID INTEGER NOT NULL,
STORE_ID INTEGER NOT NULL,
QUANTITY INTEGER NOT NULL,
COST_VALUE DECIMAL(10,2) NOT NULL,
TAX_VALUE DECIMAL(10,2) NOT NULL,
NET_VALUE DECIMAL(10,2) NOT NULL,
GROSS_VALUE DECIMAL(10,2) NOT NULL)
PARTITION BY RANGE (DATE_ID)
(PARTITION PART PAST STARTING (MINVALUE)
ENDING ('2011-12-01') EXCLUSIVE IN TS_PD_FACT PAST,
PARTITION PART 2011 DEC STARTING ('2011-12-01')
ENDING ('2012-01-01') EXCLUSIVE IN TS_PD_FACT 201112,
PARTITION PART 2012 JAN STARTING ('2012-01-01')
ENDING ('2012-02-01') EXCLUSIVE IN TS_PD_FACT 201201,
PARTITION PART 2012 FEB STARTING ('2012-02-01')
ENDING ('2012-03-01') EXCLUSIVE IN TS_PD_FACT 201202)
COMPRESS YES
DISTRIBUTE BY HASH(PRODUCT ID)
ORGANIZE BY (STORE_ID, DATE_ID);

Data warehouse design for a sample scenario

39

Table constraints

The physical data model implements the table constraints defined for the sample
scenario. Use the DDL statements shown in this table to create these constraints:

Constraint name Details

TB_PRODUCT_FACT_FK -- DEFINE RELATIONSHIP BETWEEN TB_SALES_FACT
-~ AND TB_PRODUCT DIM
ALTER TABLE BI_SCHEMA.TB_SALES_FACT
ADD CONSTRAINT TB_PRODUCT FACT_FK
FOREIGN KEY(PRODUCT ID)
REFERENCES BI_SCHEMA.TB_PRODUCT DIM (PRODUCT ID)
NOT ENFORCED;

TB_PRODUCT_LINE_FK -- DEFINE RELATIONSHIP BETWEEN TB_PRODUCT DIM
-~ AND TB_PRODUCT_LINE_DIM
ALTER TABLE BI_SCHEMA.TB_PRODUCT DIM
ADD CONSTRAINT TB_PRODUCT LINE_FK

FOREIGN KEY (PRODUCT LINE_ID)
REFERENCES
BI_SCHEMA.TB_PRODUCT_LINE_DIM(PRODUCT LINE_ID)
NOT ENFORCED;

TB_PRODUCT_FAMILY_FK -- DEFINE RELATIONSHIP BETWEEN TB_PRODUCT_LINE_DIM
-- AND TB_PRODUCT_FAMILY_DIM
ALTER TABLE BI_SCHEMA.TB_PRODUCT_LINE_DIM
ADD CONSTRAINT TB_PRODUCT_FAMILY_FK

FOREIGN KEY(PRODUCT FAMILY_ ID)
REFERENCES
BI_SCHEMA.TB_PRODUCT_FAMILY DIM(PRODUCT FAMILY_ID)
NOT ENFORCED;

TB_CITY FK -- DEFINE RELATIONSHIP BETWEEN TB_STORE_DIM
-~ AND TB_STORE_LOCATION_DIM
ALTER TABLE BI_SCHEMA.TB_STORE_DIM
ADD CONSTRAINT TB_CITY_FK
FOREIGN KEY(CITY_ID)
REFERENCES BI_SCHEMA.TB_STORE_LOCATION_DIM(CITY ID)
NOT ENFORCED;

TB_STORE_FACT_FK -- DEFINE RELATIONSHIP BETWEEN TB_SALES_FACT
-~ AND TB_STORE_DIM
ALTER TABLE BI_SCHEMA.TB_SALES_FACT
ADD CONSTRAINT TB_STORE_FACT_FK
FOREIGN KEY(STORE_ID)
REFERENCES BI_SCHEMA.TB_STORE_DIM (STORE_ID)
NOT ENFORCED;

TB_DATE_FACT_FK -- DEFINE RELATIONSHIP BETWEEN TB_SALES_FACT
-- AND TB_DATE_DIM
ALTER TABLE BI_SCHEMA.TB_SALES_FACT
ADD CONSTRAINT TB_DATE_FACT FK
FOREIGN KEY(DATE_ID)
REFERENCES BI_SCHEMA.TB_DATE_DIM(DATE_ID)
NOT ENFORCED;

40 Best Practices: Physical database design for data warehouse environments

Indexes

For Version 9.7 and earlier releases, the physical data model includes individual
indexes on each of the foreign key columns to promote the use of star joins. Use
the following DDL statement to create indexes on the
BI_SCHEMA.TB_SALES_FACT table:

Index name Details

IDX_SALES_FACT_ON_DATE CREATE INDEX BI_SCHEMA.IDX SALES FACT ON_DATE
ON BI_SCHEMA.TB_SALES_FACT (DATE_ID);

IDX_SALES_FACT_ON_PRODUCT CREATE INDEX BI_SCHEMA.IDX_SALES_FACT_ON_PRODUCT
ON BI_SCHEMA.TB_SALES FACT (PRODUCT_ID);

IDX_SALES_FACT_ON_STORE ~ CREATE INDEX BI_SCHEMA.IDX_SALES_FACT_ON_STORE
ON BI_SCHEMA.TB_SALES_FACT (STORE_ID);

For Version 10.1 and later releases, the physical data model includes composite
indexes that have multiple foreign key columns to promote the use of zigzag join.
Use the following DDL statement to create an index on the
BI_SCHEMA.TB_SALES_FACT table:

Index name Details

IDX_SALES_FACT ON_FKS CREATE INDEX BI_SCHEMA.IDX SALES_FACT ON_FKS
ON BI_SCHEMA.TB_SALES_FACT (DATE_ID,PRODUCT ID,STORE_ID);

Materialized query tables

To satisfy queries on the sample scenario that aggregate sales data the physical
data model implements several MQTs for sales of products and product lines. The
following DDL statement shows how to create these MQTs:

MQT name Details
MQT_SALES_STORE_DATE_ -- CREATE MQT TO AGGREGATE PRODUCT SALES DATA
PRODUCT -- BY STORE, DATE, AND PRODUCT

CREATE TABLE BI_MQT.MQT_SALES_STORE_DATE_PRODUCT AS
(SELECT F.STORE_ID, F.DATE_ID, F.PRODUCT ID,
SUM(BIGINT(F.QUANTITY)) AS SUM_QUANTITY
FROM BI_SCHEMA.TB_SALES_FACT F
GROUP BY F.STORE_ID, F.DATE_ID, F.PRODUCT_ID)

DATA INITIALLY DEFERRED REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION MAINTAINED BY SYSTEM
COMPRESS YES
DISTRIBUTE BY HASH(PRODUCT ID)
PARTITION BY RANGE(DATE_ID)
(PART PART_PAST STARTING(MINVALUE)
ENDING("2011-12-01') EXCLUSIVE IN TS_PD MQT_SALES,
PART PART 2011 DEC STARTING ('2011-12-01")
ENDING("2012-01-01') EXCLUSIVE IN TS_PD MQT_SALES,
PART PART 2012 JAN STARTING ('2012-01-81')
ENDING("2012-02-01') EXCLUSIVE IN TS_PD_MQT_SALES,
PART PART 2012 FEB STARTING ('2012-02-01")
ENDING("2012-03-01') EXCLUSIVE IN TS_PD_MQT_SALES)
ORGANIZE BY (STORE_ID, DATE_ID);

Data warehouse design for a sample scenario 41

MQT name Details

MQT_SALES_STORE_DATE_ -- CREATE MQT TO AGGREGATE PRODUCT LINE SALES DATA
PRODUCT LINE -~ BY STORE, DATE, AND PRODUCT LINE
- CREATE TABLE BI_MQT.MQT_SALES_STORE_DATE_PRODUCT_LINE AS
(SELECT F.STORE_ID, F.DATE_ID, PD.PRODUCT LINE_ID,
SUM(F.GROSS_VALUE) AS SUM_GROSS_VALUE
FROM BI_SCHEMA.TB_SALES_FACT F,
BI_SCHEMA.TB_PRODUCT DIM PD
WHERE F.PRODUCT_ID=PD.PRODUCT_ID
GROUP BY F.STORE_ID, F.DATE_ID, PD.PRODUCT LINE_ID)
DATA INITIALLY DEFERRED REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION MAINTAINED BY SYSTEM
COMPRESS YES
DISTRIBUTE BY HASH(STORE_ID, PRODUCT LINE_ID)
IN TS_PD_MQT_SALES;

MQT_SALES_STORE_MONTH_ -- CREATE MQT TO AGGREGATE PRODUCT LINE SALES DATA
PRODUCT LINE -~ BY STORE, MONTH, AND PRODUCT LINE
- CREATE TABLE BI_MQT.MQT_SALES_STORE_MONTH_PRODUCT_LINE AS
(SELECT F.STORE_ID, DD.MONTH_ID, DD.YEAR,
PD.PRODUCT LINE_ID,
SUM(F.GROSS_VALUE) AS SUM_GROSS_VALUE
FROM BI_SCHEMA.TB_SALES FACT F,
BI_SCHEMA.TB_PRODUCT DIM PD,
BI_SCHEMA.TB_DATE_DIM DD
WHERE F.PRODUCT ID = PD.PRODUCT ID
AND F.DATE_ID = DD.DATE_ID
GROUP BY F.STORE_ID, DD.MONTH_ID, DD.YEAR,
PD.PRODUCT_LINE_ID)
DATA INITIALLY DEFERRED REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION MAINTAINED BY SYSTEM
COMPRESS YES
DISTRIBUTE BY HASH(STORE_ID, PRODUCT LINE_ID)
IN TS_PD_MQT_SALES;

Examples for incremental updates and full refresh of MQTs

For incremental updates of the MQT, you can use the REFRESH TABLE statement.
However, you can use alternative methods to perform an incremental update such
as using the LOAD APPEND command to add new data to the MQT. The following
examples show some of the methods to perform incremental updates and full
refresh of MQTs.

Using the REFRESH TABLE statement to perform a full refresh

The following steps illustrate one of the methods to perform a full refresh
on an MQT:

1. Populate the MQT_SALES_STORE_DATE_PRODUCT MQT by issuing
the following SQL statement:

REFRESH TABLE BI_MQT.MQT_SALES_STORE_DATE_PRODUCT;

This operation is logged in the database transaction logs.

2. After populating the MQT, create an index on the STORE_ID and
DATE_ID columns to improve the performance of operations on the
MQT by issuing the following DDL statement:

CREATE INDEX BI_MQT.IDX_MQT_SALES_STORE_DATE_PRODUCT ID
ON BI_MQT.MQT_SALES_STORE_DATE_PRODUCT (STORE_ID, DATE_ID);

42 Best Practices: Physical database design for data warehouse environments

3. Collect statistics on the MQT by issuing the following SQL statement:

RUNSTATS ON TABLE BI_MQT.MQT_SALES_STORE_DATE_PRODUCT
WITH DISTRIBUTION AND SAMPLED DETAILED INDEXES ALL;

Re-creating an MQT to perform a full refresh

For a full refresh of an MQT, re-creating the MQT and loading the data
from a cursor followed by integrity processing can have better performance
than using the REFRESH TABLE statement. The following example shows
how to declare a cursor, use load to populate the MQT, and then perform
integrity processing;:

DECLARE C_CUR CURSOR FOR
(SELECT F.STORE_ID, F.DATE_ID, F.PRODUCT_ID,
SUM(BIGINT(F.QUANTITY)) AS SUM_QUANTITY
FROM BI_SCHEMA.TB_SALES_FACT F
GROUP BY F.STORE_ID, F.DATE_ID, F.PRODUCT ID);

LOAD FROM C_CUR OF CURSOR REPLACE
INTO BI_MQT.MQT_SALES_STORE_DATE_PRODUCT NONRECOVERABLE;

SET INTEGRITY FOR BI_MQT.MQT SALES_STORE_DATE_PRODUCT
ALL IMMEDIATE UNCHECKED;

Performing incremental updates on partitioned MQTs

For incremental updates on partitioned MQTs, use staging tables to attach
or detach partitions to the MQT after attaching or detaching partitions to
the fact table during the ETL process. The following steps illustrate the use
of staging tables:

1. Create the staging tables for the MQT and the TB_SALES_FACT table
by issuing the following SQL statements:

-- STAGING TABLE TO BE ATTACHED AS NEW PARTITION
-- TO THE MQT_SALES_STORE_DATE_PRODUCT MQT
DROP TABLE BI_STAGE.MQT SALES_STORE_DATE_PRODUCT PARTITION;
CREATE TABLE BI_STAGE.MQT SALES_STORE_DATE_PRODUCT PARTITION
LIKE BI_MQT.MQT_SALES_STORE_DATE_PRODUCT
COMPRESS YES
DISTRIBUTE BY HASH(PRODUCT ID)
ORGANIZE BY (STORE_ID, DATE_ID)
IN TS_PD_MQT_SALES;

-~ STAGING TABLE TO BE ATTACHED AS NEW PARTITION
-- TO THE TB_SALES_FACT TABLE
DROP TABLE BI_STAGE.TB SALES FACT NEW_PARTITION;
CREATE TABLE BI_STAGE.TB_SALES_FACT NEW_PARTITION

LIKE BI_SCHEMA.TB_SALES FACT

COMPRESS YES

DISTRIBUTE BY HASH(PRODUCT ID)

ORGANIZE BY (STORE_ID, DATE_ID)

IN TS_PD_FACT_201203;

The DROP statement ensures that new empty tables are used for each
incremental update.

2. Populate summarized data into the MQT staging table from the staging
table for the TB_SALES_FACT table by issuing the following SQL
statement:

Data warehouse design for a sample scenario 43

44

INSERT INTO BI_STAGE.MQT_SALES_STORE_DATE_PRODUCT PARTITION
(SELECT F.STORE_ID, F.DATE_ID, F.PRODUCT_ID,
SUM(BIGINT(F.QUANTITY)) AS SUM_QUANTITY
FROM BI_STAGE.TB_SALES_FACT_NEW PARTITION F
GROUP BY F.STORE_ID, F.DATE_ID, F.PRODUCT_ID);

3. Attach the BI_STAGE.TB_SALES_FACT_NEW_PARTITION staging
table to the TB_SALES_FACT table by issuing the following statements:

ALTER TABLE BI_SCHEMA.TB_SALES_FACT
ATTACH PARTITION PART_2012_MAR
STARTING ('2012-03-01') ENDING('2012-04-01') EXCLUSIVE
FROM BI_STAGE.TB_SALES_FACT_NEW_PARTITION;

SET INTEGRITY FOR BI_SCHEMA.TB_SALES_FACT
ALLOW WRITE ACCESS IMMEDIATE CHECKED INCREMENTAL;

4. Attach the MQT_SALES_STORE_DATE_PRODUCT_PARTITION
staging table with the corresponding summarized data to the
MQT_SALES_STORE_DATE_PRODUCT MQT by issuing the following
statements:

ALTER TABLE BI_MQT.MQT_SALES_STORE_DATE_PRODUCT DROP MATERIALIZED QUERY;

ALTER TABLE BI_MQT.MQT_SALES_STORE_DATE_PRODUCT ATTACH PARTITION
STARTING ('2012-03-01")
ENDING('2012-04-01") EXCLUSIVE
FROM BI_STAGE.MQT SALES_STORE_DATE_PRODUCT PARTITION;

SET INTEGRITY FOR BI_MQT.MQT_SALES_STORE_DATE_PRODUCT
ALLOW WRITE ACCESS IMMEDIATE CHECKED INCREMENTAL;

5. Re-materialized the MQT_SALES_STORE_DATE_PRODUCT MQT by
issuing the following SQL statements:

ALTER TABLE BI_MQT.MQT_SALES_STORE_DATE_PRODUCT ADD MATERIALIZED QUERY
(SELECT F.STORE_ID, F.DATE_ID, F.PRODUCT_ID,
SUM(BIGINT(F.QUANTITY)) AS SUM_QUANTITY
FROM BI_SCHEMA.TB_SALES_FACT F
GROUP BY F. STORE_ 1D, F. DATE ID, F.PRODUCT_ID)
DATA INITIALLY DEFERRED REFRESH DEFERRED;

SET INTEGRITY FOR BI_MQT.MQT_SALES_STORE_DATE_PRODUCT
ALL IMMEDIATE UNCHECKED;

Replicated dimension tables

The physical data model replicates the dimension tables across all database
partitions and places them in a separate table space. Use the following DDL
statements to create the MQTs that replicate the dimension tables:

MQT name Details

REPL_DATE_DIM CREATE TABLE BI_MQT.REPL_DATE_DIM
AS (SELECT = FROM BI SCHEMA TB_DATE_DIM)
DATA INITIALLY DEFERRED REFRESH IMMEDIATE
ENABLE QUERY OPTIMIZATION MAINTAINED BY SYSTEM
DISTRIBUTE BY REPLICATION
IN TS_PD_REPL_DIMS;

Best Practices: Physical database design for data warehouse environments

MQT name Details

REPL_PRODUCT LINE DIM CREATE TABLE BI_MQT.REPL_PRODUCT LINE_DIM AS
(SELECT * FROM BI_SCHEMA.TB_PRODUCT_LINE_DIM)
DATA INITIALLY DEFERRED REFRESH IMMEDIATE
ENABLE QUERY OPTIMIZATION MAINTAINED BY SYSTEM
DISTRIBUTE BY REPLICATION
IN TS_PD_REPL_DIMS;

REPL_PRODUCT FAMILY DIM CREATE TABLE BI_MQT.REPL PRODUCT FAMILY DIM AS
(SELECT * FROM BI_SCHEMA.TB_PRODUCT FAMILY DIM)
DATA INITIALLY DEFERRED REFRESH IMMEDIATE
ENABLE QUERY OPTIMIZATION MAINTAINED BY SYSTEM
DISTRIBUTE BY REPLICATION
IN TS_PD_REPL_DIMS;

REPL_STORE_DIM CREATE TABLE BI_MQT.REPL_STORE_DIM AS
(SELECT * FROM BI_SCHEMA.TB_STORE_DIM)
DATA INITIALLY DEFERRED REFRESH IMMEDIATE
ENABLE QUERY OPTIMIZATION MAINTAINED BY SYSTEM
DISTRIBUTE BY REPLICATION
IN TS_PD_REPL_DIMS;

REPL_STORE_LOCATION_DIM CREATE TABLE BI_MQT.REPL_STORE_LOCATION_DIM AS
(SELECT * FROM BI_SCHEMA.TB_STORE_LOCATION DIM)
DATA INITIALLY DEFERRED REFRESH IMMEDIATE
ENABLE QUERY OPTIMIZATION MAINTAINED BY SYSTEM
DISTRIBUTE BY REPLICATION
IN TS_PD_REPL_DIMS;

Prepare the replicated table for use by performing the following steps:
1. Populate the replicated table by issuing the following SQL statement:

REFRESH TABLE BI_MQT.REPL_DATE_DIM;

2. Create an index on the DATE_ID column to improve the operations for
replication by issuing the following SQL statement:

CREATE INDEX BI_MQT.IDX REPL DATE_DIM_ON_DATE_ID
ON BI_MQT.REPL_DATE_DIM (DATE_ID);

3. Update the statistics for the replicated MQT by issuing the following SQL
statement:

RUNSTATS ON TABLE BI_MQT.REPL_DATE_DIM
WITH DISTRIBUTION AND SAMPLED DETAILED INDEXES ALL;

A script that contains all the DDL statements to create all database objects is
available for download at the following URL: http://www.ibm.com/developerworks/
data/bestpractices/warehousedatabasedesign/.

Data warehouse design for a sample scenario

45

http://www.ibm.com/developerworks/data/bestpractices/warehousedatabasedesign/
http://www.ibm.com/developerworks/data/bestpractices/warehousedatabasedesign/

46 Best Practices: Physical database design for data warehouse environments

Best practices summary

The following list summarizes the most relevant best practices for physical database
design in data warehouse environments.

Planning data warehouse design

Build prototypes of the physical data model at regular intervals during
the data warehouse design process. For more details, see “Designing
physical data models” on page 6

If a single dimension is too large, consider a star schema design for the
fact table and a snowflake design such as hierarchy of tables for
dimension tables.

Have a separate database design model for each layer. For more details,
see Database design layers.

For more details, see “Planning for data warehouse design” on page 5.

Designing a logical data model

Define indexes on foreign keys to improve performance on start join
queries. For Version 9.7, define an individual index on each foreign key.
For Version 10.1, define composite indexes on multiple foreign key
columns.

Ensure that columns involved in a relationship between tables are of the
same data type.

Define columns for level keys with the NOT NULL clause to help the
optimizer choose more efficient access plans. Better access plans lead to
improved performance. For more information, see “Defining and
choosing level keys” on page 11.

Define date columns in dimension and fact tables that use the DATE
data type to enable partition elimination and simplify your range
partitioning strategy. For more information, see “Guidelines for the date
dimension” on page 13.

Use informational constraints. Ensure the integrity of the data by using

the source application or by performing an ETL process. For more
information, see “The importance of referential integrity” on page 13.

For more details, see “Designing a physical data model” on page 11.

© Copyright IBM Corp. 2012

47

48

Implementing a physical data model

Define only one partition group that spans across all data partitions as
collocated queries can only occur within the same database partition. For
more details, see “The importance of database partition groups” on page
15.

Use a large page size table space for the large tables to improve
performance of queries that return a large number of rows. The IBM
Smart Analytics Systems have 16 KB as the default page size for buffer
pools and table spaces. Use this page size as the starting point for your
data warehouse design. For more details, see “Choosing buffer pool and
table space page size” on page 17.

Hash partition the largest commonly joined dimension on its level key
and partition the fact table on the corresponding foreign key. All other
dimension tables can be placed in a single database partition group and
replicated across database partitions. For more details, see “Table design
for partitioned databases” on page 18.

Replicate all or a subset of columns in a dimension table that is placed
in a single database partition group to improve query performance. For
more details, see “Partitioning dimension tables” on page 19.

Avoid creating a large number of table partitions or pre-creating too
many empty data partitions in a range partitioned table. Implement
partition creation and allocation as part of the ETL job. For more details,
see “Range partitioned tables for data availability and performance” on
page 20.

Use local indexes to speed up roll-in and roll-out of data. Corresponding
indexes can be created on the partition to be attached. Also, using only
local indexes reduces index maintenance when attaching or detaching
partitions. For more details, see “Indexes on range partitioned tables” on
page 21.

Use multidimensional clustering for fact tables. For more details, see
“Candidates for multidimensional clustering” on page 21.

Use administrative functions to help you estimate compression ratios on
your tables and indexes. For more details, see “Including row
compression in data warehouse designs” on page 23

Ensure that the CPU usage is 70% or less of before enabling
compression. If reducing storage is critical even in a CPU-bound
environment, compress data that is infrequently used. For example,
compress historical fact tables.

For more details, see “Implementing a physical data model” on page 15.

Designing an aggregation layer

Use MQTs to increase the performance of expensive or frequently used
queries that aggregate data. For more information, see “Using
materialized query tables” on page 27.

Use replicated MQTs to improve the performance of queries that use
joins between a large database partitioned table and a small dimension
table and reduce the intra-partition network traffic. For more
information, see “Replicated MQTs” on page 28

Use views to define individual data marts when the view definition
remains simple. For more information, see “Using views and view MQTs
to define data marts” on page 29

For more details, see “Designing an aggregation layer” on page 27.

Best Practices: Physical database design for data warehouse environments

Designing with new DB2 Version 10.1 features

Use automatic storage table spaces. If possible, convert existing SMS or
DMS table spaces to automatic storage.

Use storage groups to physically partition automatic storage table spaces
in conjunction with table partitioning in your physical warehouse
design.

Use storage groups to create multi-temperature storage classes so that
frequently accessed data is stored on fast storage while infrequently
accessed data is stored on slower or less expensive storage.

Use adaptive compression to achieve better compression ratios.

Use temporal tables and time travel query to store and retrieve
time-based data.

For more details, see “DB2 Version 10.1 features for data warehouse
designs” on page 31.

Best practices summary 49

50 Best Practices: Physical database design for data warehouse environments

Conclusion

Understanding the importance of having the right data warehouse foundation and
a good data warehouse design are key to long-term success through good query
performance, easier maintainability, and robust recovery options.

Use the recommendations in this paper to help you implement a data warehouse
design that is scalable, balanced, and flexible enough to meet existing and future
needs in DB2 Database for Linux, UNIX, and Windows or IBM InfoSphere
Warehouse environments.

© Copyright IBM Corp. 2012 51

52 Best Practices: Physical database design for data warehouse environments

Important references

These important references provide further reading about physical data warehouse
design and related aspects.

© Copyright IBM Corp. 2012

Sample scenario script at the following URL: http://www.ibm.com/developerworks/
data/bestpractices/warehousedatabasedesign/

“Choosing partitioning keys in DB2 Database Partitioning Feature
environments” at the following URL: http://www.ibm.com/developerworks/data/
library/techarticle/dm-1005partitioningkeys/

“Table partitioning” at the following URL: http://publib.boulder.ibm.com/infocenter/
db2luw/v9r7 /topic/com.ibm.db2.luw.admin.partition.doc/doc/c0021558.html

“Dimensional schemas” at the following URL: http://publib.boulder.ibm.com/
infocenter/rdahelp/v7r5/topic/com.ibm.datatools.dimensional.ui.doc/topics/
c_dm_dimschemas.html

“Storage management has been improved” at the following URL:
http://vic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.wn.doc/doc/
¢0058962.html

“Best Practices: Database storage” at the following URL: http://fwww.ibm.com/
developerworks/db2/bestpractices/databasestorage/

“DB2 best practices: Storage optimization with deep compression” at the
following URL: http://www.ibm.com/developerworks/data/bestpractices/deepcompression/

“Best Practices: Query optimization in a data warehouse” at the following URL:
http://www.ibm.com/developerworks/data/bestpractices/smartanalytics/queryoptimization/
index.html

“DB2 V10.1 Multi-temperature data management recommendations” at the
following URL: http://www.ibm.com/developerworks/data/library/long/dm-
1205multitemp/index.html

“DB2 best practices: Temporal data management with DB2” at the following
URL: http://www.ibm.com/developerworks/data/bestpractices/temporal/index.html

“Best practices: Physical Database Design for Online Transaction Processing
(OLTP) environments” at the following URL: http://www.ibm.com/developerworks/
data/bestpractices/databasedesign/

DB2 Best Practices at the following URL: http://www.ibm.com/developerworks/db2/
bestpractices/

“Getting started with IBM InfoSphere Data Architect” at the following URL:
http://public.dhe.ibm.com/software/dw/db2/express-c/wiki/Getting_Started_with_IDA.pdf
Upgrading to DB2 Version 10.1 roadmap at the following URL:
http:/fwww-01.ibm.com/support/docview.wss? uid=swg21573228

DB2 database product documentation at the following URL:
https:/fwww-304.ibm.com/support/docview.wss?rs=71&uid=swg27009474

Lightstone, et al., Physical data warehouse design: the database professional’s guide to
exploiting indexes, views, storage, and more, ISBN 0123693896S. Morgan Kaufmann
Press, 2007.

Lightstone, et al., Database Modeling & Design: Logical Design. ISBN 0126853525T,
4th ed. Morgan Kaufmann Press, 2005.

53

http://www.ibm.com/developerworks/data/bestpractices/warehousedatabasedesign/
http://www.ibm.com/developerworks/data/bestpractices/warehousedatabasedesign/
 http://www.ibm.com/developerworks/data/library/techarticle/dm-1005partitioningkeys/
 http://www.ibm.com/developerworks/data/library/techarticle/dm-1005partitioningkeys/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.partition.doc/doc/c0021558.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.partition.doc/doc/c0021558.html
http://publib.boulder.ibm.com/infocenter/rdahelp/v7r5/topic/com.ibm.datatools.dimensional.ui.doc/topics/c_dm_dimschemas.html
http://publib.boulder.ibm.com/infocenter/rdahelp/v7r5/topic/com.ibm.datatools.dimensional.ui.doc/topics/c_dm_dimschemas.html
http://publib.boulder.ibm.com/infocenter/rdahelp/v7r5/topic/com.ibm.datatools.dimensional.ui.doc/topics/c_dm_dimschemas.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.wn.doc/doc/c0058962.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.wn.doc/doc/c0058962.html
http://www.ibm.com/developerworks/db2/bestpractices/databasestorage/
http://www.ibm.com/developerworks/db2/bestpractices/databasestorage/
http://www.ibm.com/developerworks/data/bestpractices/deepcompression/
http://www.ibm.com/developerworks/data/bestpractices/smartanalytics/queryoptimization/index.html
http://www.ibm.com/developerworks/data/bestpractices/smartanalytics/queryoptimization/index.html
http://www.ibm.com/developerworks/data/library/long/dm-1205multitemp/index.html
http://www.ibm.com/developerworks/data/library/long/dm-1205multitemp/index.html
http://www.ibm.com/developerworks/data/bestpractices/temporal/index.html
http://www.ibm.com/developerworks/data/bestpractices/databasedesign/
http://www.ibm.com/developerworks/data/bestpractices/databasedesign/
http://www.ibm.com/developerworks/db2/bestpractices/
http://www.ibm.com/developerworks/db2/bestpractices/
http://public.dhe.ibm.com/software/dw/db2/express-c/wiki/Getting_Started_with_IDA.pdf
http://www-01.ibm.com/support/docview.wss?uid=swg21573228
https://www-304.ibm.com/support/docview.wss?rs=71&uid=swg27009474

54 Best Practices: Physical database design for data warehouse environments

Contributors
John W. Bell
IBM Distinguished Engineer
IBM Data Warehouse Solutions
Paul Bird
Senior Technical Staff Member

IBM InfoSphere OptimTM and DB2 for Linux, UNIX, and Windows
Development

Serge Boivin

Senior Writer

DB2 Information Development

Information Management Software
Jaime Botella Ordinas

Accelerated Value Leader

IBM Software Group
Prashant Juttukonda

Senior Technical Manager

IBM Data Warehouse Solutions
Wenbin Ma

DB2 Development - Query Compiler

Information Management Software
Reuven (Ruby) Stepansky

Senior DB2 Specialist

NA Lab Services

IBM Software Group
Nattavut Sutyanyong

DB2 Development - Query Compiler

Information Management Software

© Copyright IBM Corp. 2012

55

56 Best Practices: Physical database design for data warehouse environments

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

Without limiting the above disclaimers, IBM provides no representations or
warranties regarding the accuracy, reliability or serviceability of any information or
recommendations provided in this publication, or with respect to any results that
may be obtained by the use of the information or observance of any
recommendations provided herein. The information contained in this document
has not been submitted to any formal IBM test and is distributed AS IS. The use of
this information or the implementation of any recommendations or techniques
herein is a customer responsibility and depends on the customer's ability to
evaluate and integrate them into the customer's operational environment. While
each item may have been reviewed by IBM for accuracy in a specific situation,
there is no guarantee that the same or similar results will be obtained elsewhere.
Anyone attempting to adapt these techniques to their own environment do so at
their own risk.

This document and the information contained herein may be used solely in
connection with the IBM products discussed in this document.

© Copyright IBM Corp. 2012 57

58

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE: © Copyright IBM Corporation 2011. All Rights Reserved.

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Best Practices: Physical database design for data warehouse environments

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

Windows is a trademark of Microsoft Corporation in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Contacting IBM

To provide feedback about this paper, write to db2docs@ca.ibm.com.

To contact IBM in your country or region, check the IBM Directory of Worldwide
Contacts at http:/fwww.ibm.com/planetwide.

To learn more about DB2 products, visit http://www.ibm.com/software/data/db2/.

Notices 59

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
mailto:db2docs@ca.ibm.com?subject=Physical database design for data warehouse environments
http://www.ibm.com/planetwide
http://www.ibm.com/software/data/db2/

60 Best Practices: Physical database design for data warehouse environments

Index
A

aggregation 27

best practices
aggregation 27
data marts 27
data warehousing
Version 10.1 features 31
physical data model design 11
physical data model
implementation 15
planning 5
row compression 23
buffer pools 15

D

data marts 27
data warehouse
data warehouse design 31
parts 5
physical data model
buffer pools 15
database partition groups 15
date dimensions 11
design 11
implementation 15
indexes 15
level keys 11
multidimensional clustering 15
page size 15
partitioned databases 15
range partitioned tables 15
referential integrity 11
row compression 15
table spaces 15
row compression 23
data warehouse design
aggregation 27
best practices
planning 5
data marts 27
key questions 5
planning 5
prototyping 5
sample scenario 35
schema choices 5
stages 3
database partition groups 15

indexes 15

L

level keys 11

© Copyright IBM Corp. 2012

M

materialized query tables

see MQTs 27
MQTs

examples 35

materialized 27

replicated 27

views on 27
multidimensional clustering 15

P

page size 15
partitioned databases 15
physical data model
buffer pools 15
database partition groups 15
date dimensions 11
design 11
implementation
examples 35
overview 15
indexes 15
properties of good model 3
sample scenario 35
prototyping 5

R

range partitioned tables 15
referential integrity
enforced constraints 11
informational constraints 11
row compression 15

S

snowflake schema 5
star schema 5

V

Version 10.1 features
adaptive compression 31
Multi-temperature data storage 31
storage optimizations 31
temporal tables 31
time travel query 31

61

62 Best Practices: Physical database design for data warehouse environments

Printed in USA

	Contents
	Executive Summary
	About this paper

	Introduction to data warehouse design
	Planning for data warehouse design
	Designing physical data models
	Choosing between star schema and snowflake schema
	Best practices

	Designing a physical data model
	Defining and choosing level keys
	Guidelines for the date dimension
	The importance of referential integrity
	Best practices

	Implementing a physical data model
	The importance of database partition groups
	Table space design effect on query performance
	Choosing buffer pool and table space page size
	Table design for partitioned databases
	Partitioning dimension tables
	Range partitioned tables for data availability and performance
	Candidates for multidimensional clustering
	Including row compression in data warehouse designs
	Best practices

	Designing an aggregation layer
	Using materialized query tables
	Using views and view MQTs to define data marts
	Best practices

	DB2 Version 10.1 features for data warehouse designs
	Best practices

	Data warehouse design for a sample scenario
	Physical data model design
	Implementation of the physical data model
	Materialized query tables
	Replicated dimension tables

	Best practices summary
	Conclusion
	Important references
	Contributors
	Notices
	Trademarks
	Contacting IBM

	Index
	A
	B
	D
	I
	L
	M
	P
	R
	S
	V

