IBM Spectrum LSF What's New in LSF Service Pack 13 July 2022

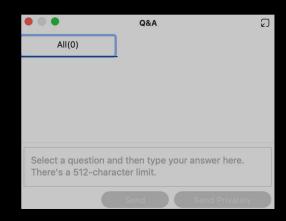
John Welch jswelch@us.ibm.com Technical Specialist Data & AI

Qi Wang Senior Software Archtect Spectrum Computing

Yu-Ching Chen Advisory Software Developer Spectrum Computing

Bohai ZhangSupport Manager
Spectrum Computing

Yi SunTechnical Account Manager
Spectrum Computing



Bill.McMillan@uk.ibm.comPrincipal Product Manager
Spectrum Computing

Agenda

- Continuous Delivery of New Capabilities
- New Enhancements prior to Service Pack 13
- Service Pack 13 Enhancements
- Q&A: Ask questions at any time in the Q&A panel

Release Strategy: Revolution vs Evolution

Major Release (10.1)

Contains:

- Significant Architectural Changes
- Possible incompatibilities.
- Relinking/compiling against API's

Customer Impact

- Significant project
- Slow to upgrade, slow to apply patches
- Dependencies on ISV's to certify
- Delayed value

Service Pack (10.1.0.x)

Contains:

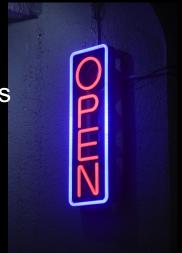
- Significant new functionality
- Cumulative fix roll up
- No incompatibilities, no relinking

Customer Impact

Applied as a rolling update (e.g. Windows)

0

- Quick to update
- No dependencies on ISV's to certify
- Accelerated value


Continuous Delivery of New Capabilities

New Enhancements prior to Service Pack 13

Support EC2 Fleet API in LSF Resource Connector for AWS
 Available via LSF <u>patch</u>

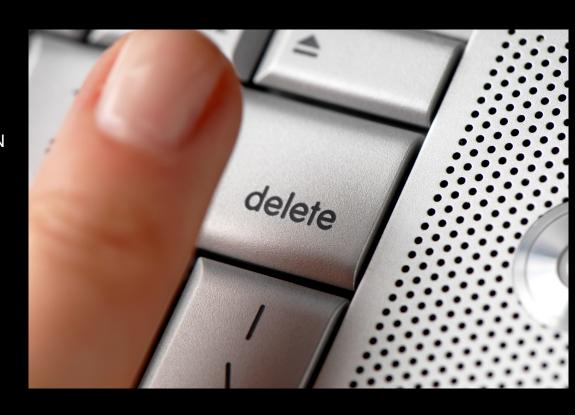
- Cloud provider plug-ins for the LSF Resource Connector
- Operator for LSF integration on OpenShift and Kubernetes

Service Pack 13

- Job Scheduling and Execution
- Resource Connector
- Resource Management
- Container Support
- Command Output Formatting
- Miscellaneous Changes

Job Scheduling and Execution

- Kill jobs by status
- Kill jobs and record jobs as DONE
- Job count based fairshare scheduling
- Delete "job groups" using idle times
- Modify cgroup memory and swap limits for running jobs


*New bkill options

Kill by job status with-stat run|pend|susp

run: kill jobs in RUN, WAIT, UNKWN pend: kill jobs in PEND, PSUSP susp: kill jobs in SSUSP, USUSP

Kill jobs and record as DONE
 -d

Only applies to jobs in RUN, USUSP or SSUSP states

*Job count based fairshare scheduling

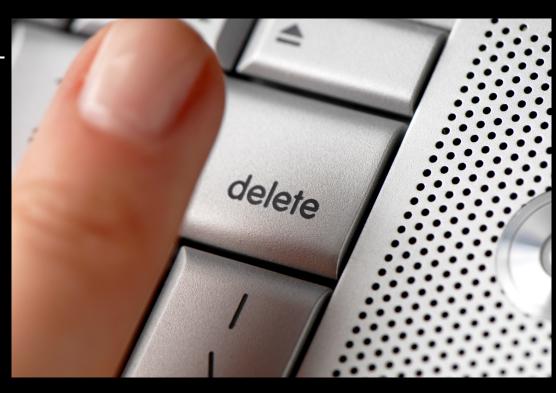
- New FAIRSHARE_JOB_COUNT parameter in lsb.params
 - Values Y,y,N,n
 - Defaults to N

User Interface changes

- bgpinfo -l and bqueues -l display new columns: STARTED_JOBS and RESERVED_JOBS
- bgpinfo -l will always display these new columns.
- bqueues -l will only display these columns when FAIRSHARE_JOB_COUNT =

```
[root@ib21b01 ~]# bqueues -lr normal
QUEUE: normal
 -- For normal low priority jobs, running only if hosts are lightly loaded. This is the default queue.
PARAMETERS/STATISTICS
PRIO NICE STATUS
                       MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV PJOBS
                      - - - - 16
    0 Open:Active
                                                0 16 0 0
Interval for a host to accept two jobs is 0 seconds
SCHEDULING PARAMETERS
                                     io ls it tmp
loadStop
SCHEDULING POLICIES: FAIRSHARE NO INTERACTIVE
USER SHARES: [default, 1]
SHARE_INFO_FOR: normal/
USERS: all
HOSTS: all
REQUEUE_EXIT_VALUES: 2
```

*Delete "job groups" using idle times


 New JOB_GROUP_IDLE_TTL parameter in lsb.params

Idle time-to-live (TTL) is in seconds

bgdel has new option "-d" to specify idle time.

Idle time is in seconds

bjgroup has new IDLE_TIME column in output

*cgroup memory and swap limits modifiable when job is running

- Requirements (same as before)
 - Enable LSF cgroup integration in lsf.conf
 - RHEL 6.2 and above or SLES 11 SP and above
 - cgroup subsystem has been enabled on the Linux hosts of the cluster.

LSF cgroup v1 vs v2

-M mem limit	-v swap limit	cgroup v1 & v2 mem limit	cgroup v1 mem+swap limit	cgroup v2 swap limit	
300	Unspecified or unlimited	300	300	0	
Unspecified or unlimited	300	300	300	0	
300	300	300	600	300	

cgroup behaviour when changing limits.

cgroup v1 memory limit reduced example

Job submission with memory and swap limits

```
$ bsub -m qwang-front -M 100 -v 50 ./memoryeater 80 $ bmod -M 50 633
Job <633> is submitted to default gueue <normal>.
Mon Jan 24 12:24:36: Resource usage collected.
          MEM: 82 Mbytes; SWAP: 0 Mbytes; ...
           PGID: 9220; PIDs: 9220 9221 9223
```

Modify memory limit example 1

```
Parameters of job <633> are being changed
Mon Jan 24 12:25:44: Resource usage collected.
           MEM: 50 Mbytes; SWAP: 32 Mbytes; ...
           PGID: 9220; PIDs: 9220 9221 9223
```

Modify memory limit example 2

```
$ bmod -M 20 633
Parameters of job <633> are being changed
EXTERNAL MESSAGES:
MSG ID FROM
                POST TIME
                            MESSAGE
                                        ATTACHMENT
                Jan 24 12:27 Could not modify the job's cgroup m
      root
```

cgroup v2 memory limit reduction - same example 2

```
MEMORY USAGE:
MAX MEM: 82 Mbytes; AVG MEM: 53 Mbytes
SCHEDULING PARAMETERS:
         r15s rlm r15m ut pg io ls it
                                                               mem
loadSched - - -
loadStop
EXTERNAL MESSAGES:
MSG ID FROM
                            MESSAGE
               POST TIME
                                                           ATTACHMENT
      root
               Jan 24 12:27
                            Could not modify the job's cgroup m
 0
```

cgroup v2: the job is killed

swap limit reduction rules

- cgroup v1: the cgroup subsystem won't modify the mem+swp limit if the new value is less than the current usage.
- cgroup v2: accepts the new limit, and leaves the job alone

```
$ bsub -m modesty1 -M 50 -v 50 ./memoryeater 80
Job <631> is submitted to default queue <normal>.
$ bmod -v 10 631
Parameters of job <631> are being changed
```

Resource Connector Enhancements

 Automatic Selection of Spot template

 Selecting templates for minimum number of servers

*Automatic selection of spot templates

- Configuration information
- Limitations

Configuration information

- Set the allocationStrategy parameter to lowestPrice in awsprov_templates.json.
- Recommended to set spot instance as higher priority template than on demand templates
- Existing configuration for spot instance will work automatically with the new feature

Limitations

- Spot price checks are not guaranteed to be real time. There may be a short delay between seeing a price drop from a primary source before LSF is able to see the change
- Templates are only re-enabled after price goes below the set price, but only after the next demand cycle will jobs be able to be provisioned onto the template

*Template Optimization

- Introduction
- Configuration example
- Algorithm
- Limitations

Introduction

- This feature will allow configuring templates to optimize to other templates
- The admin will configure optimization rules that determine how many VMs of one template is worth another template
- LSF will go through regular demand scheduling and determine how many VMs will be needed on each template
- LSF then will go through each optimization configuration to determine which machines can be optimized and moved to the new VM Templates

Configuration

 New optimization allocRules section in policy_config.json

 The fromTemplate factor determines how many VMs will be worth optimizing toTemplate factor VMs

```
"Optimizations" : {
  "allocRules":[
       "fromTemplate": {
          "provider": "aws",
         "templateName": "templateA",
          "factor": 4
       "toTemplate": {
          "provider" : "aws",
         "templateName": "templateC",
          "factor": 1
       "fromTemplate": {
         "provider": "aws",
         "templateName": "templateA",
          "factor": 2
       "toTemplate" : {
         "provider": "aws",
         "templateName": "templateB",
          "factor": 1
```

badmin output

```
$ badmin rc view -c policies
```

...

Optimizations

4 hosts (aws:templateA) replaced by 1 hosts (aws:templateC)

2 hosts (aws:templateA) replaced by 1 hosts (aws:templateB)

badmin rc view -c policies show the optimizations from => to
 provider:templateID:Factor => provider:templateID:Factor

Limitations

- Enhancement does not guarantee optimal job placement.
- Since LSF does not force jobs to the optimize template nor the related provisioned real host, this may cause some jobs to require a re-provision

Resource Management

- Global Resources
- bwait enhacement
- GPU resource allocation for resizable jobs
- Default values for GPU parameter are changed

*Global Resources

- Configuration
 Isb.globalpolicies
- 2. Commands and Usage

Configuration

1) Enable global policy

- Add following parameter in lsf.conf for all clusters use same values.
- ✓ LSB_GPD_PORT=<port>
- ✓ LSB_GPD_CLUSTER=<cluster>

configure the cluster as the submission cluster which startup gpolicyd service

Configuration (Cont.)

2) Example of global resources in lsb.globalpolicies of GPD cluster

```
Begin Resource
RESOURCENAME
                     TYPE
                               INTERVAL INCREASING
                                                     CONSUMABLE RELEASE DESCRIPTION
global res static
                     Numeric
                                         Ν
                                                                        (global static res)
gres2
                    Numeric
                                                                        (global static res 2)
                                         Ν
                                                                        (global dynamic res)
global res dynamic
                    Numeric
                               60
                                         Ν
End Resource
Begin ResourceMap
RESOURCENAME
                     LOCATION
global res static
                     (100@[all])
ares2
                     (10@[all])
global res dynamic
                     ([all])
End ResourceMap
```

Currently only support NUM@[all] for static resource and [all] for dynamic resource.

Configuration Dynamic Global Resource

Create gres for dynamic global resource and put it to \$LSF_SERVERDIR of GPD cluster.

```
$ cat gres.test
#!/bin/bash
value=500
while true
do
    echo "1 global_res_dynamic ${value}"
    sleep 60
done
```

Global Distribute Policy

The global resource will be distributed among all the connected clusters. There are two kind of policies to control the distribution.

a) evenly distribution policy

The available global resource will be divided evenly among all the connected clusters. It's dynamically.

Example:

Suppose there is a global resource and its initial value 100 shared among 4 clusters. Each cluster can get 25 available resource first. If cluster1 run used 20 resource, then the total available is 80 now and each cluster can get 20 available resource at this moment.

b) compete distribution policy

Each local cluster will compete to use the global resource. This is the *default* behavior.

Configure Global Distribute Policy

Example of global policies in lsb.globalpolicies file in GPD cluster.

```
For global resources:
Begin DistributePolicy
NAME=Resource Distribute Policy
DISTRIBUTE=resource
POLICY=compete
End DistributePolicy
For global limits:
Begin DistributePolicy
NAME=Limit Distribute Policy
DISTRIBUTE=limit
POLICY=evenly
End DistributePolicy
```

Query Global Policy Information

```
$ bgpinfo policy
Global Policy:
Global distribute policy for global resources: compete
Global distribute policy for global limits: evenly
```

Configure Reservation for Global Resource

Example of global resource reservation in lsb.globalpolicies file in GPD cluster.

Begin ReservationUsage

RESOURCE METHOD RESERVE

gres1 PER TASK Y

gres2 PER HOST Y

End ReservationUsage

Query Global Resource Configuration

\$ bgpinfo resource -c

RESOURCE_NAME	TYPE	ORDER	INTERVAL	RELEASE	CONSUMABLE	METHOD	RESERVE
<pre>global_res_dynamic</pre>	Numeric	Dec	60	Yes	Yes	-	No
global_res_static	Numeric	Dec	0	Yes	Yes	-	No
compete_res	Numeric	Dec	0	Yes	Yes	PER_HOST	Yes
non consume	Numeric	Dec	0	Yes	No	_	No

Using global resource

(same way as local resource)

bsub -R "rusage[global_res_static=10]" sleep 1000

bsub -R "rusage[global_res_static=10]" sleep 1000

bsub -n2 -R "rusage[global_res_static=10/task]" sleep 1000

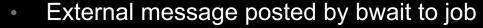
Check global resource information

(same as local share resource)

\$ bgpinfo resource

RESOURCE	TOTAL	RESERVED
policy_change_res	8.0	0.0
<pre>global_res_dynamic</pre>	-	0.0
<pre>global_res_static</pre>	200.0	0.0

- To check in each execution cluster
 - bhosts -s
- To check specific global resource
 - bgpinfo resource -s <resourceName>
- To check wide format
 - -W

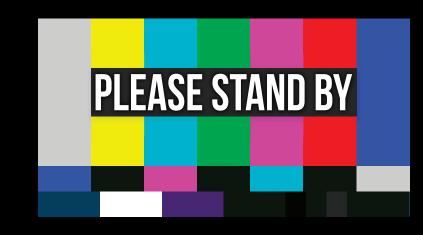

Check global resource information

To check detail resource usage and avail information for each cluster

<pre>\$ bgpinfo resource</pre>	-1	Total avail resource	
RESOURCE	CLUSTER	TOTAL	RESERVED
global_res_static	<all></all>	170.0	30.0 Used
	mcpull-ib22b08-e	44.0	0.0
	exec_ib15b02	42.0	10.0
	exec_ib15b03	42.0	20.0
	mcpull-ib15b01-s	42.0	0.0
gres2	<all></all>	4.0	6.0
	mcpull-ib22b08-e	1.0	0.0
	exec_ib15b02	1.0	2.0
	exec_ib15b03	1.0	4.0
	mcpull-ib15b01-s	1.0	0.0

*bwait enhancement

New LSB_BWAIT_IN_JOBS=N in lsf.conf
 Default is Y



EXTERNAL MESSAGES:

MSG_ID FROM POST_TIME MESSAGE ATTACHMENT

136 _system_ Nov 10 02:34 started(8109) N

bjobs -l or bhist –l show external message

*Dynamic GPU allocation of resizable jobs

1. In-scope

- Resizable jobs consider GPU resource requirements
- Shrink all tasks on a host
- GPU enforcement of cgroup v1 and v2
- LSB_GPU_NEW_SYNTAX=extend only

2. Out of scope

- Jobs with mps, aff, mig enabled in GPU requirements
- NVIDIA Data Center GPU Manager
- Docker jobs
- Shrink first execution host

GPU allocation change when resize

- Grown action
 - When a job grows slots, its GPUs usage changes proportionately:
 - Host-based GPUs usage increases only when the job gains tasks on a new host.
 - Task-based GPUs usage increases whenever the job grows

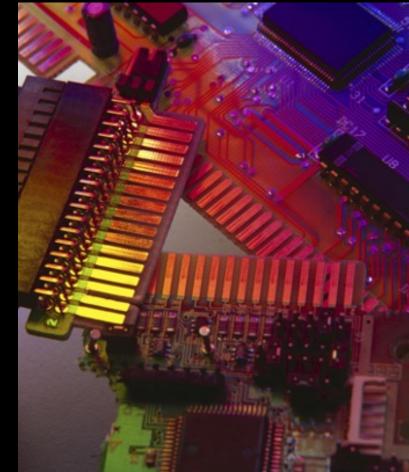
Shrink action

- Only support host based shrinking
- Job releases all tasks on a host or more than one hosts.
- The first execution host is not allowed to be released for resizable GPU job.

New in the User Interface for GPU resize

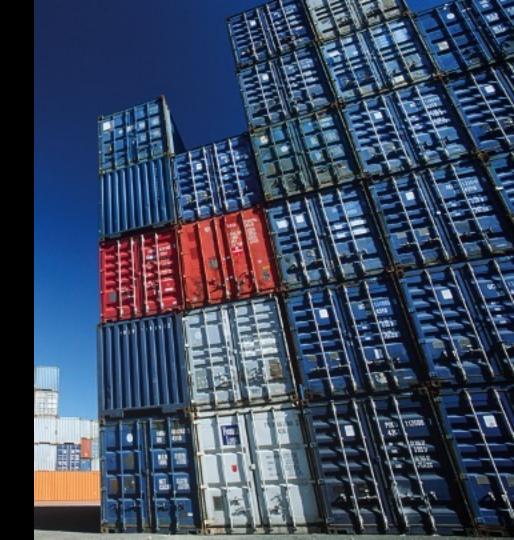
Enhancement to commands:

- bjobs/bacct/bhist –gpu –l : Show the new allocated GPUs together with previous allocated GPUs in "GPU_ALLOCATION" section
- bhosts –gpu: GPUs' job counters will be updated
- bhist –I: new allocated GPUs string will be displayed in resized action event line.


New environment variables (for resize notification command scripts):

- LSB_RESIZE_GPUS:
 - Lists the additional GPUs for a grow event or the released GPUs for a shrink event.
- LSB RESIZE TIME:

Timestamp for the resize action, which helps identify the exact resized GPU allocation for changed tasks. Export this environment variable for the blaunch command before new tasks grow or shrink. If not set, when the blaunch resizes tasks, LSF uses the latest resized GPU allocation.


*Default values for GPU parameter have changed to

LSF_GPU_AUTOCONFIG=Y
LSB_GPU_NEW_SYNTAX=extend
LSF_GPU_RESOURCE_IGNORE=Y

Container Enhancements

- Podman version 3.3.1 Support
- Apptainer for running LSF Jobs
- New parameter to mount or not mount TMP Directory

*Podman version 3.3.1 Support

- Configuration example
- Submission example
- Differences between old Podman support and new

Podman Configuration

Configuration

```
CONTAINER=podman[image(image name) options(podman run options)]
EXEC DRIVER=context[user(default)]
            starter[/path/to/serverdir/docker-starter.py]
             controller[/path/to/serverdir/docker-control.py]
$ bapp -l pd
APPLICATION NAME: pd
 -- podman instead of docker for controller
STATISTICS:
   NJOBS
             PEND
                       RUN
                             SSUSP
                                      USUSP
                                                 RSV
       3
                                          0
PARAMETERS:
CONTAINER: podman[image(ubuntu) options(--rm)]
EXEC DRIVER:
    context[user(default)]
    starter[/opt/ibm/10.1/linux3.10-qlibc2.17-x86 64/etc/docker-starter.py]
    controller[/opt/ibm/10.1/linux3.10-glibc2.17-x86 64/etc/docker-control.py]
```

Podman Job submission example

• Usage submit job to the application profile or the queue that has podman job configured

```
$ bsub -app pd hostname
Job <1> is submitted to default queue <normal>.
```

Podman Job

What is different from old Podman job?

1. The old configuration of podman is obsolete

Before this project, the configuration of podman in lsb.applications and lsb.queues is CONTAINER=docker[image(image_name) options(podman_run_options)]

The reason is that podman is considered as placement of docker. Nowadays, docker becomes less important in container runtime and podman is independent for use. So, we use 'podman' instead of 'docker' in configuration.

CONTAINER=podman[image(image name) options(podman run options)]

2. The 'docker' boolean resource dependency is not mandatory for 'podman' job anymore.

'docker' Boolean resource should be configured before container configuration. For podman, we do not have this configuration dependency anymore.

3. More strict checking

'default' user is mandatory for podman job. If it is not configured, 'default' is the default value. 'starter' and 'controller' are mandatory for podman to work.

*Singularity and Apptainer Job Support Apptainer Job example

Configuration

keyword 'apptainer' is introduced in CONTAINER configuration for lsb.applications and lsb.queues.

Usage

an Apptainer job should be submitted to an application profile or a queue that configured with `apptainer` container

\$ bsub -app apptainer hostname
Job <1> is submitted to default queue <normal>.

GPU Job for Apptainer examples

Configuration

`LSB_RESOURCE_ENFORCE=gpu` is used to isolate GPUs by cgroups for Singularity/Apptainer job container. It should be enabled for GPU isolation.

Usage

an Apptainer job should be submitted with GPU specifications.

```
$ bsub -I -gpu num=2 -app apptainer nvidia-smi -L
Job <724> is submitted to default queue <interactive>.
<<Waiting for dispatch ...>>
<<Starting on dlw14.aus.stglabs.ibm.com>>
INFO:     Using cached SIF image
GPU 0: Tesla V100-SXM2-16GB (UUID: GPU-bbbe483a-6e5f-721f-c271-fd175f0d8656)
GPU 1: Tesla V100-SXM2-16GB (UUID: GPU-f1c54787-2f6c-c2bd-769d-e7ecb0324207)
$ bsub -I -gpu num=1 -app apptainer nvidia-smi -L
Job <725> is submitted to default queue <interactive>.
<<Waiting for dispatch ...>>
<<Starting on dlw14.aus.stglabs.ibm.com>>
INFO:     Using cached SIF image
GPU 0: Tesla V100-SXM2-16GB (UUID: GPU-bbbe483a-6e5f-721f-c271-fd175f0d8656)
```

*Mount /tmp directory in container jobs

New LSF_DOCKER_MOUNT_TMPDIR in lsf.conf

When this parameter is set to Y or y, LSF mounts the temporary (/tmp) directory to the temporary directory of the host (/tmp) in the container of the Docker job.

Default value is Y

Command Output Formatting

- New output fields for bqueues -o
- New –o parameter for blimits
- CPU Peak Efficiency added

*New output fields added to bqueues -o option

Column Name	Width	Alias
MAX_CORELIMIT	8	CORELIMIT
MAX_CPULIMIT	30	CPULIMIT
DEFAULT_CPULIMIT	30	DEF_CPULIMIT
MAX_DATALIMIT	8	DATALIMIT
DEFAULT_DATALIMIT	8	DEF_DATALIMIT
MAX_FILELIMIT	8	FILELIMIT
MAX_MEMLIMIT	8	MEMLIMIT
DEFAULT_MEMLIMIT	8	DEF_MEMLIMIT
MAX_PROCESSLIMIT	8	PROCESSLIMIT
DEFAULT_PROCESSLIMIT	8	DEF_PROCESSLIMIT
MAX_RUNLIMIT	12	RUNLIMIT
DEFAULT_RUNLIMIT	12	DEF_RUNLIMIT
MAX_STACKLIMIT	8	STACKLIMIT
MAX_SWAPLIMIT	8	SWAPLIMIT
MAX_TASKLIMIT	6	TASKLIMIT
MIN_TASKLIMIT	6	-
DEFAULT_TASKLIMIT	6	DEF_TASKLIMIT
MAX_THREADLIMIT	6	THREADLIMIT
DEFAULT_THREADLIMIT	6	DEF_THREADLIMIT
RES_REQ	20	-
HOSTS	50	-

Output example

```
$ bqueues -o "queue_name runlimit"
QUEUE NAME RUNLIMIT
admin -
owners -
priority -
night -
short -
normal 300.0
mininteractive -
idle -
```

*New -o option for blimits

Field Names and Field Widths supported

Name	Width
NAME	12
CLUSTER	12
USERS	16
QUEUES	16
HOSTS	16
PROJECTS	16
LIC_PROJECTS	20
APPS	8
SLOTS	8
MEM	8
TMP	8
SWP	8
JOBS	8

User defined resources will have a column width of 10.

Example Formatted Output

\$ blimits -a -o "Name:10 queues hosts: delimiter='," INTERNAL RESOURCE LIMITS: NAME , QUEUES, HOSTS limit1 , normal, tyandevsvl1 NONAME000 , normal, -NONAME001 , short, -EXTERNAL RESOURCE LIMITS: NAME , QUEUES, HOSTS limit1 , normal, tyandevsvl1 NONAME001 , short, -

*bjobs report CPU peak efficiency

- Background
- Scope of enhancement
- Configuration
- Details of functions
- Feature interactions

Background

Users want to know the peak CPU number a finished job actually used, and the CPU efficiency based on the CPU number the job requested, and also the memory efficiency of the finished jobs.

Actual Peak number of CPUs job used

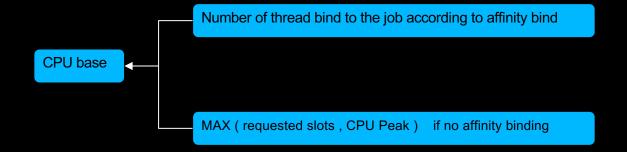
?

Number of CPU requested in bsub

Scope of enhancement

- 1. bjobs report peak number of CPUs used
- 2. bjobs report CPU usage efficiency
- 3. bjobs report memory efficiency
- 4. bhist/bacct show CPU/mem efficiency and peak usage for finished jobs after job finished

Configuration


Define new CPU_PEAK_SAMPLE_DURATION parameter in lsb.params to control how offen the CPU/memory efficiency calculation will be triggered.

The default value is 60, which means the calculation is triggered every 60 seconds.

If define the value to 0, the caculation will be triggered only while job finish/suspend/resumed or modified.

Details of function – CPU Efficiency

CPU Efficiency = (CPU Peak / CPU base) * 100%

Details of function – Memory Efficiency

Use current MAX MEM collected in sbd for memory efficiency calculating.

Memery efficiency = (maxMem / rusage mem) * 100%

If the job has not request memory in rusage[] section, memory efficiency = 0%, as we use this memory efficiency to optimize the value of memory we requested for memory.

For parallel job we would use the summary of maxMem and rusage on all execution hosts for calculating the efficiency.

If specify the rusage memory in per_task or per_host in any level, the summary of rusage memory calculation will follow the specification.

Details of function

The CPU and memory efficiency calculation will be triggered every CPU_PEAK_SAMPLE_DURATION reached and the cpuPeak or maxMem is bigger than last duration.

New struct introduced in Isbatch.h to record new info for query jobs:

```
struct jobCpuMemAcct{
   float cpuPeak; /**< Job CPU usage peak */
   float cpuEfficiency; /**< Job CPU usage efficiency */
   float memEfficiency; /**< Job memory usage efficiency */
}</pre>
```

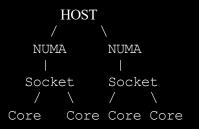
Feature interaction

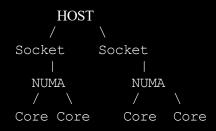
Efficiency calculation is triggered once after

- 1) a successful bmod based on current effective resreq
- 2) a successful bresize action

The effective resreq rusage will not be changed by bswitch so no efficiency calculation after bswitch.

Miscellaneous Enhancements


- Updated support for hardware locality library
- Limit jobs and tasks in Multiclsuter receive queues
- Honoring the preferred host for host group members
- Host group support for commands that support host names
- New platform support



*Hardware locality (hwloc) 2.6 support

Change hierarchy for hosts with one NUMA per socket:

Previously in hwloc v1: Now in hwloc v2:

Update to lim –T/lshosts –T to include physical index for socket & core

```
$ lshosts -T bjhc01
                                         $1shosts -T bjhc01
Host[125.7G] bjhc01
                                         Host[125.7G] bjhc01
    NUMA[0: 62.7G]
                                             Socket0
                                                  NUMA[0: 62.7G]
        Socket
             core(0 16)
                                                      core0(0 16)
             core(1 17)
                                                      core1(1 17)
             core(2 18)
                                                      core2(2 18)
             core(3 19)
                                                      core3(3 19)
                                                      core4 (4 20)
             core(4 20)
             core (5 21)
                                                      core5(5 21)
                                                      core6(6 22)
             core(6 22)
                           Change to
             core(7 23)
                                                      core7(7 23)
                                             Socket1
    NUMA[1: 62.9G]
                                                 NUMA[1: 62.9G]
        Socket
                                                      core0(8 24)
             core (8 24)
             core (9 25)
                                                      core1(9 25)
             core(10 26)
                                                      core2(10 26)
             core(11 27)
                                                      core3(11 27)
                                                      core4(12 28)
             core(12 28)
                                                      core5(13 29)
             core(13 29)
                                                      core6(14 30)
             core (14 30)
             core(15 31)
                                                      core7(15 31)
```

*Queue level remote jobs/tasks running limit

New parameter in lsb.queues for RCVJOBS_FROM queues

```
IMPT_JOBLIMIT – defaults to unlimited

IMPT_TASKLIMIT – defaults to unlimited
```

For example

```
Begin Queue
QUEUE_NAME = example
...

IMPT_JOBLIMIT = 100  # how many remote jobs can be started

IMPT_TASKLIMIT = 200  # how many tasks from remote jobs can be started

RCVJOBS_FROM = remote_cluster1 remote_cluster2

End Queue
```

*Host Group member preference

For example, in lsb.hosts

```
hgroup1 (host1 host2)  # no preference
hgroup2 (host3+2 host4+1 host5)  # preference on hosts
hgroup3 (hgroup1+2 hgroup2+1 host6) # preference on subgroups
```

Rules

- 1. The preference defined in subgroup will be overwritten by its parent
- 2. hostgroup preference take effects only if asked host is a single hostgroup

Submission examples

```
$ bsub -m hgroup3 ...
LSF converts to "host1+2 host2+2 host3+1 host4+1 host5+1 host6" for scheduling.
$ bsub -m "hgroup2 host1" ...
LSF converts to "host3 host4 host5 host1" for scheduling.
```

Restrictions & Limitations

Admin can **not** configure preference at hostgroup in the following cases:

- An exclamation mark (!) indicates an externally defined host group (egroup).
- Use a tilde (~) to exclude specified hosts or host groups from the list.
- o Dynamic group.
 - •Use an asterisk (*) as a wildcard character.
- •Use square bracket with a hyphen (host[integer1-integer2]) or a colon (host[integer1:integer2]), or with commas (host[integer1, integer2, ...]).
- MC Lease-in hosts, like ALLREMOTE

Admin can **not** dynamically define preference with "bconf" or "badmin hghostadd"

bmgroup

Use bmgroup to verify preferences

*Enhanced hostgroup support

Configuration

New LSF_HOSTGROUP_INFO = Y in lsf.conf. Default is N

Commands

- Ishosts [host_name | host_group]
- Isload -m [host_name | host_group]
- battr [create | show | delete] –m [host_name | host group]
- brsvs [-p [all | host_name | host_group]] | [-z [all | host_name | host_group]]
- bresume –m [host_name | host_group]

*New platform support

- RHEL 8.5 and 8.6 on x64 and Power, kernel 4.18.0, glibc 2.28
- RHEL 9.0 on x64 and Power, kernel 5.14.0, glibc 2.34
- RHEL 8.x, RHEL 9.0, and IBM AIX 7.x on IBM Power 10

Full platform support

References

Release Notes of FP13:

https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=wn-whats-new-in-lsf-101-fix-pack-13

Download link of FP13 from IBM Fix Central:

https://www.ibm.com/support/fixcentral/swg/selectFixes?product=ibm/Other+software/IBM+Spectrum+LSF&release=All&platform=All&function=fixId&fixids=lsf-10.1.0.13-spk-2022-Apr-build601088&includeSupersedes=0

Thank you

John Welch Technical Specialist

jswelch@us.ibm.com

© Copyright IBM Corporation 2022. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind, express or implied. Any statement of direction represents IBM's current intent, is subject to change or withdrawal, and represent only goals and objectives. IBM, the IBM logo, and ibm.com are trademarks of IBM Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available at Copyright and trademark information.

