
MQ Light on Rails

SHead
Published on 14/08/2015 / Updated on 18/08/2015

In this article I will discuss how to connect a web application developed and running on Mac OS to
an MQ queue manager. Ruby on Rails will be used to develop the web application and the AMQP
beta for MQ will be used to allow connections from AMQP clients. MQ Light will provide the
AMQP client required to connect the system.

The sample Rails project can be downloaded from GitHub.

Ruby on Rails
Ruby on Rails is a model-view-controller (MVC) framework designed to allow developers to create
websites rapidly. Rails is designed to create websites using software engineering principles such as
“don’t repeat yourself” (DRY) and “convention over configuration” (CoC). Rails is usually
deployed with a database operating under it, providing access and storage of model objects created
within the framework.

In a standard MVC applications, Models define objects used within the application, Controllers
handle requests and process information, and Views display content created within the application.

By using Ruby as the request handler, Rails provides an object-oriented programming language to
implement web services.

AMQP tech preview
In February, it was announced that AMQP support would be added to MQ v8.0.0.3. This will allow
MQ Light applications connect to MQ networks and applications within that network.

Scenario
Now you know about the technologies involved, let’s see where this might be useful. If you are
creating a blogging website, you may want to be notified when a blog gets posted about a specific
topic. By setting up a message sender when new blogs are posted and a receiver subscribed to the
topic, you would be notified when there are new posts.

In this article, I will demonstrate how to set up a message sender on a topic with MQ Light. A
subscriber could be set up separately using one of the various MQ Light clients. Rails is designed to
quickly create web pages with static content so embedding a receiver to listen on a topic would
require languages outside the scope of this article.

https://developer.ibm.com/messaging/author/stephenh/
https://www.ibm.com/developerworks/community/blogs/messaging/entry/mq_support_for_mq_light_beta_now_available?lang=en
https://github.com/ibm-messaging/mqlight-on-rails
https://developer.ibm.com/messaging/mq-light/
http://rubyonrails.org/

Setting up AMQP on MQ
For the remainder of this article, MQ will be used as the queue manager. However, MQ Light could
also be used to develop the system if MQ is not available. Where MQ running on a separate
machine is discussed you can replace the details with address amqp://localhost and port 5672 if you
are using a local installation of MQ Light.

A queue manager needs to be created on a platform supported by the AMQP beta. The instructions
below demonstrate how to get and AMQP channel running on Linux.

ctrmqm AMQP_RAILS_SAMPLE
strmqm -e CMDLEVEL=801 AMQP_RAILS_SAMPLE
strmqm AMQP_RAILS_SAMPLE
setmqaut -m AMQP_RAILS_SAMPLE -t qmgr -p nobody -all +connect
setmqaut -m AMQP_RAILS_SAMPLE -t topic -n SYSTEM.BASE.TOPIC -p nobody -all +pub
+sub
runmqsc AMQP_RAILS_SAMPLE

START SERVICE(SYSTEM.AMQP.SERVICE)
DEFINE CHANNEL(AMQP_RAILS_CHANNEL) CHLTYPE(AMQP) PORT(5672) MCAUSER('nobody')
START CHANNEL(AMQP_RAILS_CHANNEL)

Now you’ve got an MQ queue manager running and you’re ready to start developing your Rails
application.

Getting a server running
The first step is to ensure you have everything installed correctly. In order to develop in Rails on
Mac OS you will need Ruby 1.9.3 or higher, sqlite3 and MQ Light Ruby client.

In order to create your new application and get the server running you will need to open a new
terminal to work in. Navigate to the directory you want the application stored in and enter the
following commands:

rails new mqapp
cd mqapp
rails server

This will first build a new package with everything necessary to run a Rails server then start the
server. Once this is complete you will be able to access the server on http://localhost:3000. To start
with there will be no content and a default page is displayed. You will now need to put in the front
page of website. To kill the server at any time issue ctrl+c to kill the server process running in the
terminal.

Following the MVC framework, you will need to create a new controller to handle requests to the
home page and a view to display the front page content. Open a new terminal and navigate to the
mqapp directory.

rails generate controller welcome index

Now the necessary files have been created for the front page. The next step is to tell Rails to load
the welcome index page. In the mqapp directory, open config/routes.rb. This is the main routing file
for the application and will specify how to connect requests to controllers. As Rails encourages

http://localhost:3000/
https://developer.ibm.com/messaging/mq-light/docs/?lang=ruby

CoC, most routes will be handled automatically by specifying the name of a controller and the
action required. Route are only manually specified when the name of the controller is not being
used as the request name.

The comments in routes.rb provide examples of various routes. The one you are interested in is root
‘welcome#index’. Uncomment this line and reload the webpage. You will now be redirected to the
generic Rails index page.

Looking in the app directory in mqapp, you will see there is are multiple folders including
controllers and views. These are the two main folders that are needed for development.

Let’s start by personalising the home page. Open view/welcome/index.html.erb. Clear the current
content and replace it with:

<h1>MQ Light on Rails</h1>
<h2>Publish message</h2>

Save this file and the new content will be there when you reload the page. The second line is a
placeholder for the moment. You now have a work Rails application running. The next step is to add
a message sender.

Building a publisher
A new controller is needed to handle the message requests.

rails generate controller publishers

You will need to inform the application that there are new routes to be added. In
mqapp/config/routes.rb add the publishers resource:

Rails.application.routes.draw do
 get 'welcome/index'

 resources :publishers
…

Now that the resource has been added, a view is needed to allow the user to enter a message and
connection details. Navigate to views/publishers and create a new file new.html.erb. This file will be
loaded when http://localhost:3000/publishers/new is called. By convention, Rails will look for a
view file called new as that is the action being requested. Sticking to this convention means you do
not need to define routes manually.

The new.html.erb will contain a form that allows users to enter a message with connection details
and publish it to a specified topic. The user will need to be able to enter the queue manager address,
port, topic and message. Rails provides a form builder to quickly add forms to web pages.

<h1>Publish message</h1>
<%= form_for :publisher, url: publishers_path do |f| %>

 <%= f.label :address, "IP Address"%>

 <%= f.text_field :address %>

 <%= f.label :port, "Port"%>

 <%= f.text_field :port %>

 <%= f.label :topic, "Publication Topic"%>

 <%= f.text_field :topic %>

 <%= f.label :content, "Message Text" %>

 <%= f.text_area :content %>

 <%= f.submit "Publish" %>

<% end %>

When the form is submitted, the create function will need to be called in the controller so url:
publishers_path is added at the top of the form. You can see how this path is defined by running
rake routes in the terminal. This displays the paths and actions that are currently defined within the
application.

http://localhost:3000/publishers/new

The view has now been created for publishing messages. Next you need to handle the create request
in the publishers controller. Open controllers/publishers_controller.rb. The first step is to add the
create action to handle sending messages.

class PublishersController < ApplicationController
 def create
 end
end

You can now see the form added to the view at /publishers/new. However, if you submit the form
you will receive a template error. This is because you have defined the create action but have not yet
implemented the action. A simple display of the contents of the form can be seen by adding the
following to the create action defined earlier in the publishers controller.

render plain: params[:publisher].inspect

Now let's do something more useful than just displaying the content of the form we've just
submitted. Using the information entered into the form and the MQ Light Ruby sample client you
can publish the message to the desired topic.

require 'mqlight'

class PublishersController < ApplicationController
 def create
 address = params[:publisher][:address]
 port = params[:publisher][:port]
 topic = params[:publisher][:topic]
 content = params[:publisher][:content]

 amqpservice = 'amqp://' + address + ':' + port

 client = Mqlight::BlockingClient.new(amqpservice)
 client.send(topic, content)

 render plain: "Published"
 end

Add the address of your queue manager, if this is with running on a separate machine you will need
the IP address from that machine. Earlier we defined a channel listening on port 5672 so enter that
into the form. Now submit the form again and a message should be displayed if the queue manager
is running and the details were correct.

Error handling
If the queue manager is not running or the client is unable to publish the message an exception will
be thrown and the application will break. The next step is to add some error handling to catch these
exceptions.

 …
 amqpservice = 'amqp://' + address + ':' + port

 result = "Message published"
 begin
 client = Mqlight::BlockingClient.new(amqpservice)
 client.send(topic, content)
 rescue Exception => e

 result = e.message
 end

 render plain: result
 end

Now exceptions will be caught and returned to the user. The current display shows message result
so we need to redirect the user. The follow code demonstrates how to return the user to the publish
message page, including the result of the publication.

class PublishersController < ApplicationController
 @@result = ""

 helper_method :getResult
 helper_method :setResult

 def getResult
 @@result
 end

 def setResult
 @@result = ""
 end

 def create
 address = params[:publisher][:address]
 port = params[:publisher][:port]
 topic = params[:publisher][:topic]
 content = params[:publisher][:content]

 amqpservice = 'amqp://' + address + ':' + port

 @@result = "Message published"
 begin
 client = Mqlight::BlockingClient.new(amqpservice)
 client.send(topic, content)

 rescue Exception => e
 @@result = e.message
 end

 redirect_to "/publishers/new"
 end
end

A number of changes have been made to the publisher controller. The result variable has been
changed into a class variable so it can be used within the view. Helper methods have been added to
access it. A redirect has been added to return the user to publish message page.

The view now needs to be updated to display the message returned from the MQ Light client. The
following changes are made in /views/publishers/new.html.erb.

<h1>Publish message</h1>
<%= getResult %>
<%= setResult %>
<%= form_for :publisher, url: publishers_path do |f| %>

Finishing the application
The final steps are to add links from the welcome page to the publisher. The index.html.erb file
needs to be updated with the following:

<h1>MQ Light on Rails</h1>
<h2><%= link_to 'Message Publisher', new_publisher_path %></h2>

You now have an MQ Light running on Rails publishing messages at a MQ queue manager running
on a separate system (or maybe an MQ Light installation running locally).

	MQ Light on Rails
	Ruby on Rails
	AMQP tech preview
	Scenario
	Setting up AMQP on MQ
	Getting a server running
	Building a publisher
	Error handling
	Finishing the application

