
Fabrizio Petriconi

Skipping Steps in Workflow
Using Rules

2 IBM Security

Version Control (hidden)

Ver Date Author Update Summary

1 16/04/18 David E Direct copy of Fabrizio’s module

2 14/05/18 David E Minor update from Fabrizio

3 IBM Security

Aim of this module:
Show how Rules can be used to
turn a linear workflow into a
branched one

4 IBM Security

Agenda

 The Concept of Skipping Steps in a Workflow

 Examples of using Rules to Alter Flow
oSkipping activities in a single flow
oBranching to different flows based on logic/parameters

 Hiding redundant Menu Items

5 IBM Security

Module Outcomes

At the end of this module you should:

 Understand the concept of using rules to skip steps in a workflow

 Understand how to implement skips and branches

 Understand how to hide menu items

6 IBM Security

IGI Components

Enterprise
Connectors

Id. Broker /
Adapters

ISIM Integration
(ISIGADI)

Bulkload
Tools

Access Governance Core* Access Risk Controls ARC for SAP Access Optimizer

Report Designer Process Designer Task Planner

Enterprise Connectors

Role Mining (incl.
Data Exploration)

Copy of Users, Entitlements,
Roles

SAP Fine-Grained
Risk Analysis

Manage SAP Risk
Objects

BAs, SAP Roles, AOs,
“SAP Authorization”

Risk Violations

Bus. Activities, Risks (SoD,
SA), Mitigations

Reports Reports Reports

Manage Tasks and
Jobs

Schedules, Tasks and Jobs

Manage Processes

Processes, Activities,
Menus

Manage Reports

Queries, Reports and
Dashboards

Manage Connectors

Connectors, Profiles, Profile
Types, Attribute Mapping

Identity Warehouse

Rule Engine
(Event Processing)

Authorization Manager
(Entitlement Server)

Self Care
(incl. passwords)

People, Accts,
Entitlements,

Applications etc.

Reports

Access Certifier
(Certification
campaigns)

Manage
Campaigns

Certification
Campaigns and

Datasets

Manage Core
Objects

Dashboards

BA Mapping
Risk Scoring

Role Lifecycle

Manage Risk Objects

Workflow Engine

User Account
Matching

APIs DPRA

Notifications

Service Center UI Administrative Console UI

VA Local
Management

Interface (LMI)

VA Command
Line Interface

(CLI)

Virtual
Appliance
App Server

SDI Instances
Posgres DB

Utilities
Firmware

OS

@IGI 5.2.3

Access/Accounts
Identities

Roles
Passwords

Access Request

Qs

The Concept of Skipping
Steps in a Workflow

8 IBM Security

IGI Workflow: Basic Process

GEN AUTH
1

AUTH
2 EXE

• A basic process is generally a sequence
- A linear flow of activities executed in sequence

• We can alter the linear flow by:
- GEN activity exposes SoD escalation – so Escalation process called
- Reminder – may escalate to an Escalation process
- Time escalation

• How can we implement a non-linear flow?
- How can we branch to different activities based on some metrics or logic?
- IGI does not have branching built into the workflow engine
- Need to implement some custom solution using Rules

9 IBM Security

IGI Workflow: Implementing Skips and Branches

GEN AUTH
1

AUTH
2 EXE

Post
Action
Rule

• If we want to implement skips and branches, need to implement on top of the
linear flow
- Skip – can skip over one approver step (AUTH activity)
- Branch – can jump over one or more approver steps to create multiple flows

• This is done by automatically approving steps based on logic
- Implemented as Rules (normally Post-Actions on GEN/AUTH activities)
- Can be parameterized using variables (properties) on objects, like entitlements

No
Required
Approver

Post
Action
Rule

10 IBM Security

IGI Workflow: Implementing Skips and Branches

 Say you have a workflow with three sets of approvers;
oGEN -> AUTH1 -> AUTH2 -> AUTH3 -> EXE

oNormal IGI workflow processing is linear

 Can use auto approval based on some condition to implement branching

 For example if we wanted to branch to AUTH1 for ABC condition and AUTH2 & AUTH3

otherwise:

o If ABC condition, perform AUTH1 but skip (auto approve) AUTH2 and AUTH3

o If !ABC condition, skip (auto approve) AUTH1 and only do AUTH2 and AUTH3

GEN AUTH1 AUTH2 AUTH3 EXE

GEN AUTH1 AUTH2 AUTH3 EXE

GEN AUTH1 AUTH2 AUTH3 EXE

GEN
AUTH1

AUTH2 AUTH3

EXEABC
?

Yes

No

11 IBM Security

Using Arguments/Properties to Drive Flow in Rules

• If you want the Rules to be more flexible, could use variables

• For example, could have a Property on an Entitlement and then check that in a rule when
deciding whether to auto-approve (skip) the next step or not

• Key = no_required_approver
- could be also a multivalue

• Value = Admin Role alias to jump

12 IBM Security

Examples of Implementing Skips and Branches in IGI Workflow

 We will show three examples:
o All variations on the same thing

 Example 1 – Skipping a Step
o Simple single-approval workflow with jump for all users of type “Employee”

o If user type = Employee, skip the approval step

 Example 2 – Skipping a Step
o Simple dual-approval workflow with jump for all users of type “Employee” for a certain approval role

o If next approval role = “APPROVER01” and user type = “Employee”, skip the approval step

 Example 3 – Branching with Multiple Processes
o Implementing a branch for different user types

o Pre-actions will route to different workflow processes

o %%%

Example 1 – Skipping a Step

14 IBM Security

Example 1 – What Process Are We Trying to Implement?

GEN AUTH 1 EXE
Post

Action
Rule

• Have a simple single-approval workflow
- Shows how to implement skipping a step in a workflow

• We want to skip the approval step for some users, i.e. employees
- In this case can safely hard-code the user type in the rule
- Only need to apply a rule to determine whether the authorize activity (approval node)

can be skipped

• In this example we will:
- Implement a (custom) Post-Action Rule on the GEN activity

No
Required
Approver

15 IBM Security

Example 1 – Adding a Rule as Post-Action to GEN Activity

• We need to create a Post-action Rule to perform the approval skipping

16 IBM Security

Example 1 – The Rule

when
req : SwimRequestBean()

then

String operator = "System";
String userTypeToSkip = "Employee";

logger.info("Skip Approver on GEN by user type.");

BeanList<SwimRequestBean> childrenList = RequestFindRule.findRequestChildren(sql, req.getId(), null);
for (SwimRequestBean childReq : childrenList) {

SwimRequestBean fullReq = RequestFindRule.findRequestDetail(sql, childReq);

String authAlias = "";
for (SwimAuthorizationBean auth : fullReq.getAuthorizations()) {

 if (auth.getState() == AuthorizationStatus.AUTHORIZABLE.getCode()) {
 authAlias = auth.getApproverType_name();
 break;

}
}

if (authAlias.isEmpty()) {
continue;

}

UserBean ub = new UserBean();
ub.setId(fullReq.getBeneficiary_id());

BeanList<UserBean> ubList = UserAction.find(sql, ub);
if (ubList != null && !ubList.isEmpty()) {

ub = ubList.get(0);
String userType = ub.getPersontype_name();

 if (userType != null && userType.equals(userTypeToSkip)) {
 SwimRequestBean swimReq = RequestAuthorizationRule.authorizeRequest(sql, fullReq, authAlias, fullReq.getPermission(), operator);

logger.info("Request " + swimReq.getId() + " automatically approved: user " + ub.getCode() + " has type " + userType + ",
approver not need");

}
}

}

Hardcoded the user type to skip
(e.g. skip if type = “Employee”)

Get the admin roles for the AUTH
activity (approval step)

Get the beneficiary (the person this request is
for) and
IF they are of type “Employee” (i.e. the
Persontype_name of the user equals the
hardcoded user type,
THEN skip over the approval step (i.e.
automatically authorize the request).

17 IBM Security

Example 1 – The Rule Explained

 The rule will take place after the Generation step

 Rule will check the beneficiary type and if the involved actor is an employee, all the
approval steps will be skipped

 In the rule you need a generic identity (in this case called System) authorized to perform
the involved authorization activity.
o In this example Auth Request step, is configured to be performed by an Application Manager, so

System must have the Admin Role of Application Manager

 You can customize the rule to consider other logic, good examples could be identity
belonging to specific OU or entitlements flagged with custom properties etc.

Example 2 – Skipping a Step

19 IBM Security

Example 2 – What Process Are We Trying to Implement?

GEN AUTH
1

AUTH
2 EXE

Post
Action
Rule

• Look at an example of how branching could be implemented

• Say we wanted to skip a second level of approval for some entitlements based
on Admin Role(s)
- Could set this value for specific entitlements in IGI
- Then code a rule to check for this value and auto-approve the second-level, thus

skipping the step

• In this example we will:
- Use a (custom) NoRequiredApprovers property on entitlement
- Implement a (custom) Post-Action Rule on the activity

No
Required
Approver

Post
Action
Rule

20 IBM Security

Example 2 – Adding a Rule as Post-Action to 1st AUTH Activity

• We need to create a Post-action Rule to perform the approval skipping

21 IBM Security

Example 2 – The Rule

when
req : SwimRequestBean()

then
String operator = "System";
String userTypeToSkip = "Employee";
String authAliasToSkip = "APPROVER01";

logger.info("SkipApprover on Auth by user type.");

BeanList<SwimRequestBean> childrenList = RequestFindRule.findRequestChildren(sql, req.getId(), null);
for (SwimRequestBean childReq : childrenList) {

SwimRequestBean fullReq = RequestFindRule.findRequestDetail(sql, childReq);

 boolean applyRule = false;
 for (SwimAuthorizationBean auth : fullReq.getAuthorizations()) {
 if (authAliasToSkip.equals(auth.getApproverType_name())) {
 if (AuthorizationStatus.AUTHORIZABLE.getCode() == auth.getState()) {
 applyRule = true;
 }
 break;
 }
 }

 if (!applyRule) {
 return;
 }

String authAlias = "";
for (SwimAuthorizationBean auth : fullReq.getAuthorizations()) {
if (auth.getState() == AuthorizationStatus.AUTHORIZABLE.getCode()) {
authAlias = auth.getApproverType_name();
break;

}
}

if (authAlias.isEmpty()) {
continue;

}

Hardcoded the user type to skip (e.g. skip if
type = “Employee”) and the role of the
approver (“APPROVER01”)

Get the admin roles for the AUTH
activity (approval step) and if it
matches the “APPROVER01” then
continue to rule, otherwise exit

22 IBM Security

Example 2 – The Rule (cont.)

UserBean ub = new UserBean();
ub.setId(fullReq.getBeneficiary_id());

BeanList<UserBean> ubList = UserAction.find(sql, ub);
if (ubList != null && !ubList.isEmpty()) {

ub = ubList.get(0);
String userType = ub.getPersontype_name();

 if (userType != null && userType.equals(userTypeToSkip)) {
 SwimRequestBean swimReq = RequestAuthorizationRule.authorizeRequest(sql, fullReq, authAlias, fullReq.getPermission(), operator);

logger.info("Request " + swimReq.getId() + " automatically approved: user " + ub.getCode() + " has type " + userType + ",
approver not need");

}
}

}

 The rule is very similar to the earlier one

 It’s just adding the step to check the admin role of the next step and only process if it
matches “APPROVER01”

Get the beneficiary (the person this request is for) and
IF they are of type “Employee” (i.e. the
Persontype_name of the user equals the hardcoded
user type,
THEN skip over the approval step (i.e. automatically
authorize the request).

Example 3 – Implementing
Branching through Multiple
Processes

24 IBM Security

Example 3 – Implementing Branching

GEN AUTH
[Manager] EXE

• To Branch you need a Pre-Action rule to customize your behaviour:
- In this example I want:

• A standard flow in case user type is “Employee” (Flow 1)

• Branch to Flow 2 in case of type “External“

• Branch to Flow 3 in case of type “Industry Energy Buyer”

GEN
AUTH

[Department
Manager]

AUTH
[Security
Officer]

EXE

GEN AUTH
[Manager]

AUTH
[Project

Manager]
EXE

FLOW
1

FLOW
2

FLOW
3

Pre
Action
Rule

25 IBM Security

Example 3 – Implementing Branching

Pre-Action

26 IBM Security

Example 3 – Defining the Rule

• Define The Rule

27 IBM Security

Example 3 – The Rule [1]
when

request : SwimRequestBean()
then
//
final String Switch1FlowName = "SWITCH 1 - Access Request [Personal]";
final String Switch2FlowName = "SWITCH 2 - Access Request [Personal]";

String destinationFlowName;

UserBean beneficiaryBean = _UserAction.findUserByCode(sql, request.getBeneficiary_userid());
String beneficirayType = beneficiaryBean.getPersontype_name();

if (beneficirayType.equalsIgnoreCase("External")) {
 destinationFlowName = Switch1FlowName;
} else if (beneficirayType.equalsIgnoreCase("Industry Energy Buyer")) {
 destinationFlowName = Switch2FlowName;
} else {
 // Proceed on standard flow
 return;
}

SwimRequestBean parentReq = new SwimRequestBean();
parentReq.setApplicant_userid(request.getApplicant_userid());
parentReq.setBeneficiary_userid(request.getBeneficiary_userid());
parentReq.setNotes(request.getNotes());
request.setNotes("VOID_REQUEST_TO_REMOVE");

List<SwimEntitlementBean> rAdd = request.getRolesToAdd();
if (rAdd != null && !rAdd.isEmpty()) {

for (SwimEntitlementBean swimEntitlementBean : rAdd) {
parentReq.addRoleToAdd(swimEntitlementBean);

}
}
List<SwimEntitlementBean> rRem = request.getRolesToRemove();
if (rRem != null && !rRem.isEmpty()) {

for (SwimEntitlementBean swimEntitlementBean : rRem) {
parentReq.addRoleToRemove(swimEntitlementBean);

}
}
List<SwimEntitlementBean> rUpd = request.getRolesToUpdate();
if (rUpd != null && !rUpd.isEmpty()) {

for (SwimEntitlementBean swimEntitlementBean : rUpd) {
parentReq.addRoleToUpdate(swimEntitlementBean);

}
}

Hardcoded the other two workflow
processes to branch to

Find the beneficiary (user who the request is
for) and then the user type for that user. Use
this to determine the process to run
(destinationFlowName), and if not one we’re
looking for drop out of the rule and continue
the normal process

Need to setup a new SwimRequestBean
based on the current one, to drive the other
process. It includes the roles (entitlements)
being added, removed or modified

28 IBM Security

Example 3 – The Rule [2]

// Identify process
CfgProcess cfgProcess = new CfgProcess();
cfgProcess.setName(destinationFlowName);

CfgProcessDAO cfgProcessDAO = new CfgProcessDAO(logger);
cfgProcessDAO.setDAO(sql);

// Identify GEN
CfgProcessactivity cfgPA = null;
try {

cfgPA = cfgProcessDAO.findGenerator(cfgProcess);
} catch (Exception ex) {

logger.info("Wokflow Process: " + destinationFlowName + " not defined!");
throw ex;

}

UserBean systemUB = new UserBean();
systemUB.setCode("System");

GenerateRequest gRequestDAO = new GenerateRequest(logger);
gRequestDAO.setDAO(sql);
gRequestDAO.initialize("ideas", cfgPA.getPermission(), systemUB);

// Generate the parent and child request
parentReq = gRequestDAO.generate(parentReq);

logger.info("InFormal Request generated: " + parentReq.getId() + " in PENDIG");

Define the new process to be run and set the
Data Access Object (old approach to coding)

Find the GEN activity for the new process,
and fail if it doesn’t exist

Trigger the new process

29 IBM Security

Example 3 – The Rule Explained

 The rule will take place before the Generation step

 Rule will check the beneficiary type and will generate another request in the right
workflow

 API Limitations unfortunately will generate also the request for the original flow
oHopefully API will soon give us the possibility to skip generating the bad request

 To overcome the issue of the double request, we flagged the bad request with a specific
note and than we use an easy scheduled job to delete those bad requests (this will be
simplified soon so to avoid this step)
oSee over

30 IBM Security

Example 3 – Using a Job to Delete Redundant Processes [1]

• In Task Planner define a Task that includes a standar StoreProcedureJob

31 IBM Security

Example 3 – Using a Job to Delete Redundant Processes [2]

• Parameters for StoreProcedureJob:
- applicationName: AccessGovernanceCore

- storeProcedure:
DELETE FROM igacore.REQUEST r WHERE r.NOTES LIKE '%VOID_REQUEST_TO_REMOVE'

• Scheduling

Hiding redundant Menu Items

33 IBM Security

IGI Workflow: Daily Work and Hide Auth step

• Best practice is to use Daily Work activity for approval
- A single menu tab should be used for “important” approval or in case of single approval

• To hide menu not required:
- Put process in maintenance mode and select it

- Go to the Assign tab and select the activity and role

- Right-click the menu title for the admin role

- Select the Details item

- Use Menu Link disabled

• If some of your workflow are used for Branch, you have to hide all the GEN

Close

35 IBM Security

Module Summary

You should now:

 Understand the concept of using rules to skip steps in a workflow

 Understand how to implement skips and branches

 Understand how to hide menu items

© Copyright IBM Corporation 2016. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind, express
or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor shall have the effect of,
creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM software. References in these
materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and / or capabilities referenced in these materials may
change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product or feature availability in any way. IBM, the IBM logo, and
other IBM products and services are trademarks of the International Business Machines Corporation, in the United States, other countries or both. Other company, product, or service names may be trademarks
or service marks of others.

Statement of Good Security Practices: IT system security involves protecting systems and information through prevention, detection and response to improper access from within and outside your enterprise.
Improper access can result in information being altered, destroyed, misappropriated or misused or can result in damage to or misuse of your systems, including for use in attacks on others. No IT system or
product should be considered completely secure and no single product, service or security measure can be completely effective in preventing improper use or access. IBM systems, products and services are
designed to be part of a lawful, comprehensive security approach, which will necessarily involve additional operational procedures, and may require other systems, products or services to be most effective.

IBM DOES NOT WARRANT THAT ANYSYSTEMS, PRODUCTS OR SERVICES ARE IMMUNE FROM, OR WILL MAKE YOUR ENTERPRISE IMMUNE FROM, THE MALICIOUS OR ILLEGAL CONDUCT
OF ANY PARTY.

THANK YOU

ibm.com/security

securityintelligence.com

xforce.ibmcloud.com

@ibmsecurity

youtube/user/ibmsecuritysolutions

FOLLOW US ON:

