
Test Data Fabrication Use
Case

Mark Moncelle – IT Architect

State Farm

YouTube Video:

State Farm: Speed application and product development with test data management

https://www.youtube.com/watch?v=C6EdxiNKoZA&feature=youtu.be

Disclosure: Views represented are those of the presenters and not necessarily State Farm

https://www.youtube.com/watch?v=C6EdxiNKoZA&feature=youtu.be

DevOps – Principles and practices designed to
improve the delivery of high value, high quality
changes to production.*
• Core Capabilities

• Version Control
• Comprehensive Test Automation
• Deployment automation
• Continuous integration
• Shifting left on security
• Short-live feature branches
• Effective Test data Management

*Forsgren, Nicole, et al. Accelerate: the Science behind DevOps: Building and Scaling
High Performing Technology Organizations. IT Revolution, 2018

DevOps, Test Driven Development, and Continuous
Delivery/Integration all drive smaller tests

Unit Test

Integration Test

Subsystem Test

Program Test Results
Automated
Validation

Program Test Results
Automated
Validation

Program

Program

Program

Program

Program Program

Program

Program

Program

Program Program

Program

Program

Data at
Rest

Data at
Rest

Program

Automated
Validation

UI

Fabricated Test
Data

Fabricated Test
Data

Fabricated Test
Data

Business Challenge: How to enable Unit test
for complex processes

JOB

Captured
Input
File

Tempfile

B

A

E

DD

C

G

F

Captured
Data At

Rest

Captured
Data At

Rest

H

K L

JI

M

Output
File

Data passed between programs only ever exists in memory. Temporary
files disappear when the job completes.

Why/Why Not Capture or Fabricate?

Capture Fabrication

Reliable source of realistic data Readily available once set up

Scales in complexity* Difficult to scale the complexity of
the data*

Costs of capture and obfuscating
production data

Cost to build and maintain
fabrication routines

Availability of Edge and Fringe cases Flexibility to create edge and fringe
cases

A few words about Complexity To Capture, you need to
understand:
• 4 Tables (structures)
• 4 Table relationships
To Fabricate, you need to
understand:
• 4 Tables (structures)
• 4 Table Relationships
• 15 field types (relevant

content)
• 8+ Field Relationships (for

Example)
• Cust Start < Cust End
• Cust Start < Current

Date
• Expected Delivery

Date > Current Date
• SKU Number ~ Size
• Size ~ Batteries

Customer

PK,FK1 Customer ID

 Name
 Address
 Customer Start Date
 Customer End Date

Inventory

PK,FK1 SKU Number

 Stock Count
 Ordered
 Expected Delivery Date

Orders

PK Orders Number
PK Customer ID
PK SKU Number

 Quantity

Products

PK,FK1 SKU Number

 Description
 Size
 Batteries
 Color

Production environment may have very
complex data models

Legacy programs may be complex

And may not be well
understood by the
developer

Future State –
Automated
Unit Test
Data

Use “stock” technology to:
• Evaluate source code for important

fields
• Use Machine Learning Prediction

Models to classify fields
• Build Fabrication rule templates for

various classifications
• Automatically generate data for unit

and integration testing
• Execute Automated Tests

A
u

to
m

a
te

d
 U

n
it

/r
e

g
re

ss
io

n
 t

e
st

 d
a

ta

Optim TDF

Merlin

Merlin DM

Fabrication Project

Glossary of
Fabrication fields

(templates)
Create Project

Modified Software
unit

DeveloperDeveloper

Project
Exist?

Execute
Fabrication

Project

Metadata
Data Lake

Rational Asset
Analyzer

Data Field
Classification

Create
Fabrication

Project

Automated
Test Pipeline

Data
Movement

Fabricated
data

Challenge #1: Large number of fields are read
in by each program

• Use Static Analysis to detect
“interesting” fields.
• Input fields that are used in logic (IF,

WHEN, CASE…) or calculations (ADD,
EVALUATE, etc.)

This eliminates approximately 80% of
the fields from further analysis. (on
average, 25 “interesting fields” per
program)

IF (EXPIR-DATE-8 = '99999999') OR
(EXTNL-ERR-IND = 'Y') OR
((STATUS-CODE OF MASTER-RECORD (1) >

'09' AND < '19')
AND ((EFFECTIVE-DATE-8

OF MASTER-RECORD
NOT = SPACES)

AND (EFFECTIVE-DATE-8
OF MASTER-RECORD

< '20050101')))
CONTINUE

ELSE
PERFORM 001-OLD-TERM-DLET

THRU 001-OLD-TERM-DLET-EXIT
VARYING TERM-SUB FROM +1 BY +1
UNTIL TERM-SUB > STATUS-SEGMENT-LMT

OR TERM-DLTE-ROW (TERM-SUB) =
SPACES
IF MSF05-ERR-IND = 'Y'

GO TO 000-GOBACK
END-IF

ADDR_STATE, ADDRESS_STATE_CODE, AGENT_STATE, AGENT_STATE_CODE, AGT_STATE, ALPHA_STATE, ALPHA_STATE_CODE, ANNUAL_STATEMENT_LINE,

ANNUAL-STATEMENT-LINE, AUTO_STATE_CODE, BRNDLRSTATE-TXT, CITY_CODE_ST, CITY_ST, CLAIM_STATE, CLM_STATE, CLM-STATE, CLTRL_STATE,

COMBINED_STATE, CROSS-REFR-STATE-QT1500, CROSS-REFR-STATE-QT4010, CROSS-REFR-STATE-QT8110, CR-TO-STATE-QT2500, CR-TO-STATE-QT4010, CR-TO-

STATE-QT8110, CR-TO-STATE-QTD021, CUST_STATE, DEFAULT_STATE, DEQUE-STATE, DRIVER_STATE, DRIVER-LICENSE-STATE-ID, DRVR_STATE, DSGTN-MED-

PRVDR-POSTL-ST-CD, ECHO-STATE, EFF-DATE-STATE, EXCL_STATES, EXCLUDED_STATES, FINAL-STATE, FIRE-STATE-ID, GEO-STATE, GEO-ST-CD, H983_PAYEE_STATE,

H983_TAX_STATE, HD001_PI_STATE, HD001_PROC_STATE, HD001_SERV_STATE, HD002_PROC_STATE, HD002_RATE_STATE,

HD015_PEND_CHANGE_RATE_STATE, HD043_ASSIGN_STATE, HD049_WRT_STATE, HD060_PROC_STATE, HD060_UND_PI_STATE, HD090_PROC_STATE,

HIST_AGENT_STATE, LIC_STATE, LOC-RISK-STATE, LTR-GD-POL-STATE, LTR-RES-POL-STATE, MAIL_MILITARY_STATE, MAIL_STATE, MAIL-MILITARY-STATE, MAIL-ST-

CD, MID_SI_STATE, MIS_STATE, MISC_STATE, MIS-STATE, MULTI-STATE-ALPHA, NAII-STATE, NCOA_STATE, NCOA-FINAL-STATE, NCOA-STATE, NEW_POSTAL_ST,

NEW_STATE, NEXT_STATE, NO-BILL-FOLL-UP-STATE, OLD_POSTAL_ST, OTHER_STATES, PARM-016-STATE, PAYEE_STATE, POLICY_STATE, POSTAL_ABBREV,

POSTALCODE, POSTAL-STATE-CODE-0001, POSTAL-STATE-CODE-001, POSTL_ST, POSTL-CD, POSTL-ST, POSTL-ST-CD, POSTL-ST-PRVNC-CD, PRIN_STATE,

PROC_STATE, PROCESSING_STATE, PRVNC-POSTL-CD, PSTL-ST, PSTL-ST-CD, QOG14-STATE-CODE, QOG14-STATE-SUB, RATE_STATE, RATE-STATE, RATING_STATE,

RECAP_STATE, REPL-STATE-QT0200, REPL-STATE-QT0300, REPL-STATE-QT0500, REPL-STATE-QT0600, REPL-STATE-QT1000, REPL-STATE-QT1500, REPL-STATE-

QT1800, REPL-STATE-QT1900, REPL-STATE-QT4000, REPL-STATE-QT7200, REPL-STATE-QT7500, RES_STATE, RESIDENT_STATE, RESIDENT-STATE, RISK-MIS-STATE,

SCO-STATE, SCR_STATE, SC-STATE, SELLER-STATE-ID, SERV_STATE_AGENT_CODE, SF_STATE, SF_STATE_CODE, SORT_STATE, ST_ABBREV, ST-ABBR-CD, STATE,

STATE_AGENT_CODE, STATE_ALPHA, STATE_CODE, STATE_KEY, STATE_NUM, STATE-0001, STATE1, STATE3, STATE8, STATE-ADD-INT, STATE-AGENT-CODE, STATE-

ALPHA, STATE-ALPHAI, STATE-ALPHAL, STATECD, STATE-CODE, STATEI, STATE-ID, STATE-IN, STATE-INITIALS, STATEL, STATE-NUMERIC, STATEO, STATE-OUT, STATE-

QTSCOM, STATESORTCODE, STAT-STATE, SUM-MIS-STATE, SUP_STATE, TAX_RES_STATE, TAX_STATE, TAX-STATE, TEAM-STATE, TERM_AGENT_STATE, TERM_STATE,

TITLE-STATE-ID, TOWN_ST, TOWNSHIP_ST, TRANSFER_TO_STATE, TRFTO_STATE, UNDERLY-STATE-QT7200, WC-DESCRIPTION-STATE, WC-DESCRIPTION-STATE-

0155, WC-HOLD-STAT-STATE, WRITE_STATE, WRITING_STATE, WRITING-MIS-STATE, WRT_STATE, WRT-STATE, WS-PARM71-SAVE-STATE, XSTATE, ZQOGAC-GEO-

STATE-P01, ZQOGAC-STATE-P01,

Challenge #2: Naming conventions for fields
are inconsistent and documentation is scarce

• Use Machine Learning models to predict field content types (e.g. State
Code, SQL return Code, etc.)
• Field Name, Size, Type, & comparison values as features for ML Classification

Initial set of training produced up to 95% accuracy for 100 different classifications

Challenge #3: Building a fabrication project is
time-consuming
• Create Rule templates for each classification (estimate 200-300 total

classifications)

• Leverage Optim – TDF API’s to:
• Import and/or build data structure

• Assign rule templates to fields

• Generate fabricated data

Challenge #4: Incorporate developer
feedback to correct the data

• Develop simple UI to allow
developer to:
• Pick a different

classification

• Type in allowed values

Capture developer
corrections are used for
future re-training of
Classification model.

Challenge #5: Execute Unit tests with
fabricated data
• Integrate output with zUnit testing tool

Current state
• Process has been proven “manually”, now operationalizing the

solution

• Identify additional classifications
• On-going retraining for the model as

new classifications are identified
• Building fabrication rules/templates

for known classifications
• Creating automation to generate

fabrication projects within Optim-
TDF

• UI for Developer feedback
• Integration into Unit test tooling

Where do we go from
here?
• Identify/Refine initial use cases

– e.g. compiler upgrade

• Train classification model for
Java

• Expand scope of analysis for
Integration testing

