
Cognitive Software Delivery – Quality, 
Scale & Intelligence in Open Liberty
May 25th 2022, | 11:00am EST

By Kevin Smith – STSM, CI/CD Architect, IBM Application Platform



2

Introduction
Over the last 8 years we have been building up a highly scalable, intelligent CI/CD 
pipeline in support of Open Liberty.

v Microservice architecture built on top of a Kafka event backbone

v One of IBM’s largest CI/CD pipelines
v Up to 20,000 machines created and configured each week

v 3+ million Kafka events per week
v Executes over 2 years of testing daily (machine time)

v Supports over 200 platform/JDK runtime environments including Docker and Open Shift

v Each weekend, 4 years of testing executed to verify product on all supported platforms: 
20+ million tests

v Realtime insights into product quality and infrastructure

v Over 60% of test failures automatically triaged



3

Our Journey…



Stabilisation Phase

Time to known quality

Tolerance of regressions

Test run frequency

Team would generally start 
to make software ready for 
release when all 
functionality has been 
developed.

Team should get their 
software ready for release 
throughout development at 
periodic intervals.

Team keeps software ready 
for release at all times 
during development.

Months Weeks Days / Hours

N/A Days Hours

High Low Zero

Weekly Daily Every Change

Waterfall Agile Continuous 
Delivery

Evolution of product lifecycles

© 2022 IBM Corporation



Personal 
Build

Continuous
Build

Release
Build

Re-Iterate

Re-Iterate
Exit Gates: To progress the code 
either all tests must pass or 
only known defects be 
encountered.

• Unit Test: 
Verifies smallest testable pieces of code.

• Build Verification Test: 
Small set of tests used to initially validate the build.

• Functional Test (Lite): 
Verifies correct behaviour of functions.  The “Lite” version 
is around 70% of the entire corpus, focusing on golden path 
testing and common error paths.

• Functional Test (Full Corpus): 
Entire corpus of functional tests.  A superset of the “Lite” 
functional tests adding in uncommon code paths, long 
running tests and rare error paths.

• Supported Operating Environment Test
Runs the Entire corpus of functional tests against a large 
matrix of OS/JDK combinations supported by the product.  

• Installation Verification:
Verify the product has been correctly packaged.

• Persona (SVT):
Large scale testing including customer like scenarios, load, 
scalability, recoverability tests.  Majority are run manually to 
include some exploratory testing.

• Continuous Persona Test (NEST):
24/7 test environment running customer like scenarios 
constantly, updated using DevOps principles.

• Performance Test
Designed to identify performance issues and bottlenecks as 
well as verify the throughput of the product.

• Compliance/Compatibility Test (CTS):
A set of tests and tools to confirm the product performs to an 
industry standard specification (J2EE). 

Functional Test (Full Corpus)

Supported Operating Environment 
Test (SOE)

Installation Verification Test

Persona (SVT) - Regression plus 
exploratory testing

Continuous Persona Test (NEST)

Performance Test

Compliance / Compatability Test 
(CTS)

Code Change Exit Gate Exit Gate
Potential 
Release 
Build

Unit Test

Build 
Verification 

Test

Functional 
Test (Lite)

Unit Test

Build 
Verification 

Test

Functional 
Test (Lite)

Unit Test

Build 
Verification 

Test

Functional 
Test (Lite)

Software Delivery Pipeline

© 2022 IBM Corporation



Build Agent Farm

Rational Team 
Concert

• Software delivery lifecycles often begin when a product or 
set of deliverables are small and easily verified

• Initially, a CI Tool (e.g. Jenkins or Rational Team Concert) will 
connect to a set of agents to run builds or tests

• With each release more function is added, and the challenge 
to verify this function starts to increase

• Testing and triage can grow exponentially compared to the 
product size

Small applications can use a single end to end build to compile and 
verify the product as total execution time is small.

© 2022 IBM Corporation



• Software delivery lifecycles often begin when a product or 
set of deliverables are small and easily verified

• Initially, a CI Tool (e.g. Jenkins or Rational Team Concert) will 
connect to a set of agents to run builds or tests

• With each release more function is added, and the challenge 
to verify this function starts to increase

• Testing and triage can grow exponentially compared to the 
product size

As function grew, so did testing.  Eventually testing needed to be 
done in parallel.  Currently we use 30 parallel builds to run 80+ hours 
of testing on a release build.

Build Agent Farm

Rational Team 
Concert

© 2022 IBM Corporation



Build Agent Farm

• Software delivery lifecycles often begin when a product or 
set of deliverables are small and easily verified

• Initially, a CI Tool (e.g. Jenkins or Rational Team Concert) will 
connect to a set of agents to run builds or tests

• With each release more function is added, and the challenge 
to verify this function starts to increase

• Testing and triage can grow exponentially compared to the 
product size

The Original Build

Once you add in cross platform testing, things scale up rapidly.  We 
run cross platform testing each weekend and currently it requires 
over 4 years of machine time to complete.

Rational Team 
Concert

© 2022 IBM Corporation



0

200

400

600

800

POC Version 1 Version 2 Version 3 Version 4 Version 5

Agent Count

Number of agents

• Software delivery lifecycles often begin when a product or 
set of deliverables are small and easily verified  

• Initially, a CI Tool (e.g. Jenkins or Rational Team Concert) will 
connect to a set of agents to run builds or tests

• With each release more function is added, and the challenge 
to verify this function starts to increase

• Testing and triage can grow exponentially compared to the 
product size

• Managing and maintaining agents quickly becomes costly 
and unreliable

• A better approach was needed…

Build Agent Farm

Rational Team 
Concert

© 2022 IBM Corporation



Infrastructure as 
code

High throughput 
and 

performance

Flexible and 
scalable

Continuous 
monitoring

Self healing and 
resilient

Rapid feedback 
on failures

Compliance

Low cost – Use 
only what you 

need

Quality 
assurance

Fully automated

Pipeline Key Requirements

© 2022 IBM Corporation



• Switch to infrastructure as code

• Our Elastic Build Cloud was created to provision and 
configure systems as and when needed, utilizing Ansible

• Over time, expanded to support many different target 
environments

• Infrastructure lives only as long as the work requested

• Every build or test run gets a freshly created machine, 
custom configured for its needs

• Extreme scaling – can create up to 20,000 custom configured 
systems each week!

Docker

Static Machines

Elastic Build 
Cloud

Virtual 
Machines

Open Shift

Test 
Containers

Rational Team 
Concert

2 4 6

1 3 5

Detect Build

Create Plan

Create and 
Configure

Verify

Run Build

Cleanup

© 2022 IBM Corporation



• Having a powerful environment to run our build and test 
workload  is only part of the solution

• How do we manage it and how do we triage any issues found 
by the system?

• Costs were increasing exponentially

• Failures were getting skipped in favor of newer 
issues.

• Data overload

• Needed to move to a model where test results were 
considered transient

• Defects should be system of record for test failures, 
not a test result database

• A test failure should result in an action

• All test failures needed to be actioned or information 
would be lost

• That is where the Cognitive Analytics system comes in…

Docker

Static Machines

Elastic Build 
Cloud

Virtual 
Machines

Open Shift

Test 
Containers

Rational Team 
Concert

© 2022 IBM Corporation



Docker

Static Machines

Elastic Build 
Cloud

Virtual 
Machines

Open Shift

Test 
Containers

Rational Team 
Concert

Kafka

Cognitive Analytics 

© 2022 IBM Corporation



Docker

Static Machines

Elastic Build 
Cloud

Virtual 
Machines

Open Shift

Test 
Containers

Rational Team 
Concert

Kafka

Cognitive Analytics 

© 2022 IBM Corporation



Docker

Static Machines

Elastic Build 
Cloud

Virtual 
Machines

Open Shift

Test 
Containers

Rational Team 
Concert

Kafka

Cognitive Analytics 

Data 
Preparation

Data 
Analysis

UI FrameworkData 
Science 

Framework

Failure Grouping

Triage

Insights

Monitoring

. . .

View 
Models

© 2022 IBM Corporation



Docker

Static Machines

Elastic Build 
Cloud

Virtual 
Machines

Open Shift

Test 
Containers

Rational Team 
Concert

Jenkins

Tekton

Public Cloud

Kafka

Cognitive Analytics 

Data 
Preparation

Data 
Analysis

View 
Models

UI FrameworkData 
Science 

Framework

Failure Grouping

Triage

Insights

Monitoring

. . .

© 2022 IBM Corporation



Docker

Static Machines

Elastic Build 
Cloud

Virtual 
Machines

Open Shift

Test 
Containers

Rational Team 
Concert

Jenkins

Tekton

Public Cloud

Kafka

Cognitive Analytics 

Data 
Preparation

Data 
Analysis

View 
Models

UI FrameworkData 
Science 

Framework

Failure Grouping

Triage

Insights

Monitoring

. . .

© 2022 IBM Corporation



Docker

Static Machines

Elastic Build 
Cloud

Virtual 
Machines

Open Shift

Test 
Containers

Rational Team 
Concert

Jenkins

Tekton

Public Cloud

Kafka

Github
Monitor

Github
Updater

Cognitive Analytics 

Data 
Preparation

Data 
Analysis

View 
Models

UI FrameworkData 
Science 

Framework

Failure Grouping

Triage

Insights

Monitoring

. . .

© 2022 IBM Corporation



Jenkins
Jenkins

Docker

Static Machines

Elastic Build 
Cloud

Virtual 
Machines

Open Shift

Test 
Containers

Rational Team 
Concert

Jenkins

Tekton

Public Cloud

Kafka

Github
Monitor

Pipeline 
Coordinator

RTC 
Work 

Handler

Github
Updater

Jenkins 
Work 

Handler

Public 
Cloud 
Work 

Handler

Cognitive Analytics 

Manage Jenkins CI 

Pool Dynamically

Data 
Preparation

Data 
Analysis

View 
Models

UI FrameworkData 
Science 

Framework

Failure Grouping

Triage

Insights

Monitoring

. . .

© 2022 IBM Corporation



20

So what does all this 
technology give us?



Real Time Monitoring

© 2022 IBM Corporation



Managing Technical Debt

• Over time our build and test system rots and 
intermittent issues build, this impacts our ability 
to create green release drivers (100% tests 
passing)

• BUILDCON introduced to address this:

• BUILDCON 5: Green release driver 
likely most of the time

• BUILDCON 4: Green release driver 
likely more than once a day on average

• BUILDCON 3: Green release driver 
once per day

• BUILDCON 2: All squads SHOULD be 
working on technical debt as currently 
can’t guarantee green release driver 
each day

• BUILDCON 1: All squads MUST be 
working on technical debt. Delivery of 
code automatically blocked for anything 
other than defect/technical debt work

© 2022 IBM Corporation



Highlighting the impact

97

97.5

98

98.5

99

99.5

100

11 October 2013

11 Decem
ber 2013

11 February 2014

11 April 2014

11 June 2014

11 August 2014

11 October 2014

11 Decem
ber 2014

11 February 2015

11 April 2015

11 June 2015

11 August 2015

11 October 2015

11 Decem
ber 2015

11 February 2016

11 April 2016

11 June 2016

11 August 2016

11 October 2016

11 Decem
ber 2016

11 February 2017

11 April 2017

11 June 2017

11 August 2017

11 October 2017

11 Decem
ber 2017

11 February 2018

11 April 2018

11 June 2018

11 August 2018

11 October 2018

11 Decem
ber 2018

11 February 2019

11 April 2019

11 June 2019

11 August 2019

11 October 2019

11 Decem
ber 2019

11 February 2020

11 April 2020

11 June 2020

11 August 2020

11 October 2020

11 Decem
ber 2020

11 February 2021
Pe

rc
en

ta
ge

 P
as

s R
at

e

Cross Platform Testing Over Time ( >20 million tests across 200+ OS/JDK combinations )

Java 11 added

Java 16 added

BU
ILDCO

N
 G

oes Live

First drop of 
Open Liberty

© 2022 IBM Corporation



24

And most importantly… 
Powerful triage and insights.



So
rt

ed
 P

la
tf

or
m

Note:  A dot represents one or more failures in a test suite

Introducing the Dot Plot

Test Suite sorted to group common elements together

© 2022 IBM Corporation



So
rt

ed
 P

la
tf

or
m

Test Suite sorted to group common elements together

Note:  A dot represents one or more failures in a test suite

© 2022 IBM Corporation

Introducing the Dot Plot



Recent Example – OS Sorting  (99.91% pass rate)        

© 2022 IBM Corporation



Recent Example – JDK Sorting (99.91% pass rate)

© 2022 IBM Corporation



Select dots and request auto-triage

© 2022 IBM Corporation



Analysis identifies multiple issues

© 2022 IBM Corporation



Guided Triage and Defect Linking

© 2022 IBM Corporation



Build Monitoring: Automated Triage

© 2022 IBM Corporation



Highlighting the impact

97

97.5

98

98.5

99

99.5

100

11 October 2013

11 Decem
ber 2013

11 February 2014

11 April 2014

11 June 2014

11 August 2014

11 October 2014

11 Decem
ber 2014

11 February 2015

11 April 2015

11 June 2015

11 August 2015

11 October 2015

11 Decem
ber 2015

11 February 2016

11 April 2016

11 June 2016

11 August 2016

11 October 2016

11 Decem
ber 2016

11 February 2017

11 April 2017

11 June 2017

11 August 2017

11 October 2017

11 Decem
ber 2017

11 February 2018

11 April 2018

11 June 2018

11 August 2018

11 October 2018

11 Decem
ber 2018

11 February 2019

11 April 2019

11 June 2019

11 August 2019

11 October 2019

11 Decem
ber 2019

11 February 2020

11 April 2020

11 June 2020

11 August 2020

11 October 2020

11 Decem
ber 2020

11 February 2021
Pe

rc
en

ta
ge

 P
as

s R
at

e

Cross Platform Testing Over Time ( >20 million tests across 200+ OS/JDK combinations)

Increased Focus O
n Triage

Java 11 added

Java 16 added

Autom
ated Triage

BU
ILDCO

N
 G

oes Live

First drop of 
Open Liberty

© 2022 IBM Corporation



Recent Example (99.93% pass rate)

© 2022 IBM Corporation



Older example (99.5% pass rate)

© 2022 IBM Corporation



Open Liberty

© 2021 IBM Corporation 36

Useful Links

Why choose Liberty 
for Microservices
https://ibm.biz/6ReasonsW
hyLiberty

Choosing the right 
Java runtime
https://ibm.biz/ChooseJava
Runtime

How to approach 
application modernization
https://ibm.biz/ModernizeJa
vaApps 

Open Liberty Site
https://www.openliberty.io 

Open Liberty Guides
https://www.openliberty.io/
guides https://openliberty.io

https://ibm.biz/6ReasonsWhyLiberty
https://ibm.biz/ChooseJavaRuntime
https://ibm.biz/ModernizeJavaApps
https://www.openliberty.io/
https://www.openliberty.io/guides
https://openliberty.io/


37

Questions?


